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Abstract

An outstanding challenge in modeling the radiative properties of stratiform rain systems is an accurate representation of the

mixed-phase hydrometeors present in the melting layer. The use of ice spheres coated with meltwater or mixed-dielectric

spheroids have been used as rough approximations, but more realistic shapes are needed to improve the accuracy of the models.

Recently, realistically structured synthetic snowflakes have been computationally generated, with radiative properties that were

shown to be consistent with coincident airborne radar and microwave radiometer observations. However, melting such finely-

structured ice hydrometeors is a challenging problem, and most of the previous efforts have employed heuristic approaches.

In the current work, physical laws governing the melting process are applied to the melting of synthetic snowflakes using a

meshless-Lagrangian computational approach henceforth referred to as the Snow Meshless Lagrangian Technique (SnowMeLT).

SnowMeLT is capable of scaling across large computing clusters, and a collection of synthetic aggregate snowflakes from NASA’s

OpenSSP database with diameters ranging from 2–10.5 mm are melted as a demonstration of the method. To properly capture

the flow of meltwater, the simulations are carried out at relatively high resolution (15 μm), and a new analytic approximation

is developed to simulate heat transfer from the environment without the need to simulate the atmosphere explicitly.
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ABSTRACT: An outstanding challenge in modeling the radiative properties of stratiform rain

systems is an accurate representation of the mixed-phase hydrometeors present in the melting

layer. The use of ice spheres coated with meltwater or mixed-dielectric spheroids have been

used as rough approximations, but more realistic shapes are needed to improve the accuracy

of the models. Recently, realistically structured synthetic snowflakes have been computationally

generated, with radiative properties that were shown to be consistent with coincident airborne radar

andmicrowave radiometer observations. However, melting such finely-structured ice hydrometeors

is a challenging problem, and most of the previous efforts have employed heuristic approaches.

In the current work, physical laws governing the melting process are applied to the melting of

synthetic snowflakes using a meshless-Lagrangian computational approach henceforth referred

to as the Snow Meshless Lagrangian Technique (SnowMeLT). SnowMeLT is capable of scaling

across large computing clusters, and a collection of synthetic aggregate snowflakes from NASA’s

OpenSSP database with diameters ranging from 2–10.5 mm are melted as a demonstration of the

method. To properly capture the flow of meltwater, the simulations are carried out at relatively

high resolution (15 `𝑚), and a new analytic approximation is developed to simulate heat transfer

from the environment without the need to simulate the atmosphere explicitly.
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1. Background and Motivation29

Over the span of several decades leading up to the present, a great number of observational and30

theoretical studies of melting precipitation have been carried out, motivated by the expectation that31

an improved knowledge of the properties and distributions of melting hydrometeors could have32

impacts on remote sensing, communications, and weather prediction. Early studies of melting33

precipitation, in particular, emphasized in situ or laboratory observations of individual snow34

particles (Knight 1979; Matsuo and Sasyo 1981; Rasmussen and Pruppacher 1982; Rasmussen35

et al. 1984; Fujiyoshi 1986; Oraltay and Hallett 1989, 2005; Mitra et al. 1990; Misumi et al. 2014;36

Hauk et al. 2016). These studies revealed characteristic phases of hydrometeor melting, starting37

with minute drops forming at the tips of fine ice structures, followed by movement of liquid by38

the action of surface tension toward linkages between these structures; then to complete melting39

of the fine structures and flow of meltwater to the junctions of coarser ice structures, and finally40

to the collapse of the main ice frame and meltwater forming a drop shape (Mitra et al. 1990).41

Complementary field observations have provided information regarding the vertical structure and42

bulk properties of melting hydrometeor layers (Leary and Houze 1979; Stewart et al. 1984; Willis43

and Heymsfield 1989; Fabry and Zawadzki 1995; Heymsfield et al. 2002, 2015, 2021; Tridon et al.44

2019; Mróz et al. 2021). These studies inferred the role of hydrometeor self-collection, leading to45

larger aggregates of ice crystals with relatively low fall speeds above the freezing level in stratiform46

precipitation events. In the early stages of melting just below the freezing level, these snowflakes47

produce a peak of high radar reflectivity, followed by a decrease of reflectivity within a few hundred48

meters of the freezing level as the melting hydrometeors ultimately collapse into raindrops and49

acquire greater fall speeds.50

In parallel, several models of hydrometeor melting have been developed, including those in51

which the initial ice hydrometeors were assumed to be spheroidal (Mason 1956; Yokoyama and52

Tanaka 1984; Klaassen 1988; D’Amico et al. 1998; Szyrmer and Zawadzki 1999; Bauer et al. 2000;53

Olson et al. 2001; Battaglia et al. 2003), and those where realistically-structured, non-spherical54

ice geometries were assumed initially (Botta et al. 2010; Ori et al. 2014; Johnson et al. 2016;55

Leinonen and von Lerber 2018). However, of the latter, only Leinonen and von Lerber (2018)56

applied physical laws in their melting simulations. Numerous additional studies either relied upon57

previously-developed melting models or used heuristic descriptions of melting hydrometeors as58
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the basis for calculating hydrometeor microwave scattering properties (Meneghini and Liao 1996,59

2000; Russchenberg and Ligthart 1996; Fabry and Szyrmer 1999;Walden et al. 2000; Marzano and60

Bauer 2001; Adhikari and Nakamura 2004; Liao and Meneghini 2005; Zawadzki et al. 2005; Liao61

et al. 2009; Tyynelä et al. 2014; von Lerber et al. 2014). Generally speaking, the models developed62

in the aforementioned investigations can be used to reproduce the basic radar characteristics of63

melting layers, but there are quantitative differences in the simulated attenuation and backscatter that64

can be linked to assumptions regarding each modeled hydrometeor’s environment, geometry and65

fall speed, internal meltwater distribution, aggregation/breakup, and derived dielectric properties.66

Regarding applications of our knowledge of melting hydrometeor physics, it is understood that67

the relatively strong attenuation by melting precipitation is likely to have a greater influence on68

wireless and satellite communication systems, as less congested, higher-frequency bands are being69

exploited in these systems (Zhang et al. 1994; Panagopoulos et al. 2004; Siles et al. 2015). In70

numerical simulations of weather systems, melting precipitation contributes to a latent cooling71

of the environment that can have dynamical impacts (Lord et al. 1984; Szeto et al. 1988; Tao72

et al. 1995; Barth and Parsons 1996; Szeto and Stewart 1997; Unterstrasser and Zängl 2006;73

Phillips et al. 2007) and different parameterizations of melting hydrometeor microphysics can lead74

to different distributions of precipitation types at ground level (Thériault et al. 2010; Frick et al.75

2013; Geresdi et al. 2014; Planche et al. 2014; Loftus et al. 2014; Cholette et al. 2020). However,76

explicit descriptions of partially melted hydrometeors in the microphysics schemes of prediction77

models are a relatively recent development, and improvements in both the representation of melting78

hydrometeors and the assimilation of melting-layer-affected reflectivities and radiances should be79

anticipated.80

Simulating melting precipitation is challenging because it involves complex time-varying bound-81

aries, multiple phases, contact forces, as well as fluid processes that progress at a time scale much82

smaller than the time scale of melting. To simulate the melting process rigorously requires a83

numerical method to approximate continuum physics equations that are generally expressed in the84

form of partial differential equations (PDEs). The complexity of the boundaries makes traditional85

finite-difference, finite-element, or finite-volume approaches difficult or intractable to apply. In86

contrast, the meshless-Lagrangian particle-based approach commonly referred to as Smoothed87

Particle Hydrodynamics (SPH) can handle deformable boundaries readily and provides a gen-88
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eral prescription for encoding continuum physics equations into the particle dynamics. SPH was89

first introduced (independently) by Gingold and Monaghan (1977) and Lucy (1977) to simulate90

astrophysical phenomena. Since then, among others applications, it has been used extensively91

to simulate complex fluid-flows and heat conduction. Examples of the use of SPH to simulate92

melting ice can be found in computer graphics, and in a preliminary investigation, we explored93

the adaptation of the approach of Iwasaki et al. (2010) to melt snowflakes (Kuo and Pelissier94

2015). Motivated by this and earlier studies, and to gain a more complete understanding of the95

physics of melting precipitation, an SPH physics-based numerical method has been developed for96

simulating the evolving properties of fully three-dimensional melting hydrometeors with realistic97

shapes (snowflakes).98

While SPH allows the microphysical processes of melting precipitation to be simulated directly99

from the corresponding continuum physics equations, the approach is compute intensive and100

requires parallel computing to be of practical use. To address this, an efficient numerical imple-101

mentation, the SnowMeshless Lagrangian Technique (SnowMeLT), is developed that is capable of102

scaling across large computing clusters. In this work, SnowMeLT is used to melt snowflakes with103

diameters of up to ∼ 1 cm at a resolution of 15 `𝑚. This improves on the work of Leinonen and von104

Lerber (2018) where a resolution of 40 `𝑚 was used to melt snowflakes with diameters of up to105

5.6 mm. The increase in resolution is particularly important for the types of synthetic snowflakes106

considered here, since they are composed of crystals that typically have a thickness of only about107

a hundred micrometers or less. SnowMeLT also incorporates recent advances that provide a more108

accurate treatment of free-surface flows. Another notable difference is the formulation of the heat109

transfer from the surrounding environment. To avoid the prohibitively large cost of simulating the110

surrounding environment, Leinonen and von Lerber (2018) simplified the conduction by disregard-111

ing the effects of the meltwater, and used the floating random walk approach of Haji-Sheikh and112

Sparrow (1966) to solve for the heat transfer between the ice surface and a far-field temperature113

value prescribed at some large radial distance from the center of the melting hydrometeor. We note114

that this simplification is used for practical reasons and is not a limitation of the floating random115

walk method. Here, a method for specifying the heat transfer from the environment is developed116

using an SPH formulation of the heat conduction equation that includes conduction through the117

meltwater, and still avoids simulating the surrounding environment explicitly. The approach relies118
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on the assumption of a uniform air temperature near to the hydrometeor, and a far-field thermal119

boundary condition based on the steady-state conduction of heat through an environment with120

uniform conductivity and radial symmetry. While this approach has the advantage of being numer-121

ically efficient and includes the insulating effects of meltwater, it has the disadvantage of neglecting122

the insulating effects of the ice structure for which the latter approach does not. Also different123

from Leinonen and von Lerber (2018), SnowMeLT uses a curvature-based surface-tension force124

derived directly from the continuum-surface-force model and contact forces derived from Young’s125

Equation, rather than the more heuristic approach of using (macroscopic) pair-wise attractive forces126

inspired by molecular cohesion models.127

To demonstrate the applicability of SnowMelT, a set of eleven synthetic snowflakes are selected128

from the NASA OpenSSP database1 (Kuo et al. 2016) and melted. The selected hydrometeors are129

comprised of smaller individual “pristine" dendritic crystals that are aggregated to create snowflakes130

of larger sizes. Their diameters and masses range from 2.1 – 10.5 mm and 1.8 – 6.9 mg. The131

geometry of the selected synthetic snowflakes is quite complex and provides a good demonstration132

of the general applicability of SnowMeLT. Additionally, the single scattering properties of synthetic133

snowflakes from this database have been successfully used to improve the representation of snow134

in active/passive microwave remote sensing estimation methods for precipitation (Olson et al.135

2016). In view of this, it is conceivable that mixed-phase hydrometeors generated by melting136

theses synthetic snowflakes could lead to improved electromagnetic modeling of the melting layer137

in remote sensing methods, and as a result, the work presented in this study also demonstrates the138

potential of SnowMeLT for these methods.139

This paper is intended to be largely self-contained, with derivations of key equations provided in140

the appendices. In section 2, a brief description of SPH is given that introduces the key concepts141

and discusses challenges in its application to melting snowflakes, and in section 3, the formulation142

of the microphysics of SnowMeLT is developed in detail. In section 4, the deformation of a143

cube of water into a spherical drop and into a sessile drop on an ice slab is presented, as well144

as a comparison between SnowMeLT and a finite-difference, multi-shell approach for melting ice145

spheres, followed by the results for the aforementioned set of aggregate snowflakes. In section 5,146

the article concludes with an overview of the present implementation and the steps required to147

1https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp.
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produce mixed-phased hydrometeors for the purpose of modeling the melting layers of stratiform148

precipitation events.149

2. Smoothed Particle Hydrodynamics150

While SPH was originally used to simulate fluid flows (as the name suggests), it provides a151

prescription for simulating almost any set of (coupled) partial differential equations (PDEs) and152

has been applied to a much larger class of phenomena since its conception. In contrast to methods153

that use approximate derivatives (e.g., a finite-difference) of continuum fields, SPH uses exact154

derivatives of approximate fields. Importantly, SPH is a meshless particle-based approach, and as155

such, can accommodate the time-varying boundaries of melting snowflakes— a crucial component156

that makes SPH a viable candidate for the present application. However, melting snowflakes with157

SPH has many challenges, especially the simulation of thin layers of meltwater. In section a, a158

brief description of SPH is given that introduces the particle interpretation of SPH, key concepts,159

and the notation used throughout the paper, while in section b, issues related to the simulation of160

thin layers of meltwater are discussed along with the approach used in this work.161

a. A Brief Introduction to SPH162

SPH is most intuitively understood as a particle-based approach in which fluids, gases, and163

solids are represented as a system of interacting point-particles or SPH-particles. However, its164

mathematical formulation is based on the use of an interpolating kernel to approximate continuum165

fields that evolve according to the underlying dynamics being simulated. As a result, SPH is most166

naturally described as an interpolating method, from which the particle interpretation follows as a167

consequence of formulating a suitable numerical algorithm. The aim of this section is to introduce168

the concepts required to formulate the microphysical processes described in section 3. A more169

in-depth introduction to SPH can be found in, e.g., Monaghan (1992).170

The fundamental approximation in SPH is the use of an interpolation kernel to define interpolated171

or “smoothed" approximations of correspondingfields. As an example, the SPH-field for the density172

is given by173

⟨𝜌(r)⟩ =
∫
𝑉

𝜌(r′)W(∥r− r′∥, ℎ) 𝑑𝑉 ′ , (1)
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whereW(|r− r′|, ℎ) denotes the smoothing kernel, and ⟨·⟩ has been used to indicate a smoothed174

field. The smoothing kernel is assumed to be positive, radially centered at r, and monotonically175

decreasing with |r− r′| with a characteristic smoothing length, ℎ, which determines the resolution176

of the SPH simulation. As the smoothing length vanishes, to recapture the original field, the177

smoothing kernel should have the property178

lim
ℎ→0

W(∥r− r′∥, ℎ) = 𝛿3(r− r′) . (2)

Perhaps the most natural choice is the Gaussian kernel,179

W(∥r− r′∥, ℎ) = 1
𝜋3/2ℎ3 exp

(
−𝑟2

ℎ2

)
, (3)

which is well known to satisfy this condition and was the original choice made by Gingold and180

Monaghan (1977) and Lucy (1977). The form of the smoothing kernel is important for both181

computational and numerical reasons, and a significant amount of work has gone into the design182

of “good" kernels. In this work, we follow the recommendation of Dehnen and Aly (2012) and183

employ the Wendland C2 kernel; see appendix A.184

To evaluate (numerically) the integral in Eq. (1), the smoothing kernel is truncated after an185

appropriate distance depending on how rapidly the kernel falls off. For the Wendland C2 kernel,186

it is sufficient to approximate the integral with support out to one smoothing length. The density187

field in Eq. (1) then becomes188

⟨𝜌(r)⟩ ≈
∫
Ω

𝜌(r′)W(∥r− r′∥, ℎ) 𝑑𝑉 ′ , (4)

where Ω denotes the ball 𝐵ℎ (∥r− r′∥) = {∥r− r′∥ : ∥r− r′∥ ≤ ℎ}. This integral can now be189

approximated by the finite sum,190

⟨𝜌⟩𝑖 =
∑︁
𝑗∈Ω

𝜌 𝑗W𝑖 𝑗 Δ𝑉 𝑗 , (5)

where the positions for r and r′ have been replaced with r𝑖 and r 𝑗 , respectively, and the notation191

⟨·⟩𝑖 is used to indicate a finite-sum approximation of an SPH-field. To simplify the notation, the192
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density field, 𝜌(r𝑖), and smoothing kernel,W(∥r− r′∥, ℎ), are written as 𝜌𝑖 andW𝑖 𝑗 . Noticing193

𝜌 𝑗 Δ𝑉 𝑗 equals the mass contained in the volume Δ𝑉 𝑗 , the density can be expressed as194

⟨𝜌⟩𝑖 =
∑︁
𝑗∈Ω

𝑚 𝑗W𝑖 𝑗 . (6)

This form implies the particle interpretation of SPH.Namely, the interpolating points are considered195

to be point-mass particles or SPH-particles with fields, such as the density field, computed by196

taking an average over nearby SPH-particles. Here we have used the density field as an example.197

In general, SPH-fields are approximated by,198

⟨ 𝑓 ⟩𝑖 =
∑︁
𝑗∈Ω

𝑓 𝑗W𝑖 𝑗 Δ𝑉 𝑗 , (7)

and their derivatives can be computed analytically in terms of the derivatives of the smoothing199

kernel (see appendix A).200

In SPH, the dynamics of the system are determined by prescribing SPH-particle interactions201

derived from the underlying equations of the physical processes being simulated. In section 3, the202

formulation of the dynamics of SnowMeLT is described in detail.203

Fig. 1. Depiction of the SPH averaging volume (Ω) and surface (𝑑Ω) in the interior and at the free surface.
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b. Thin Layers of Meltwater and Free-Surface Flows204

One of the challenges of using SPH to melt snowflakes is simulating the free-surface flow of205

thin layers of meltwater. Free-surface flows are characterized by the presence of an evolving206

interface between liquid and air where there are no surface-parallel stresses. Imposing boundary207

conditions and maintaining an accurate interpolation near a free surface is difficult in SPH. In many208

applications, for example dam break simulations, the free surface has little effect on the overall209

dynamics since the surface of the fluid is comparatively small, and as a result, as long as the surface210

dynamics are not of particular interest, it is not a significant concern. However, free-surface flows211

are critical when simulating the movement of thin layers of meltwater on the ice structures of212

melting precipitation. The main difficulty arises from the absence of SPH-particles on one side213

of the surface that leads to poor interpolations when standard approaches are used; see Figure (1).214

To mitigate these effects, SnowMeLT incorporates recent advances that provide a more accurate215

treatment of the free surface. In the following, we discuss these effects and describe the approach216

presently used in SnowMeLT. A more in-depth discussion on this topic is given by Colagrossi217

et al. (2009). We also note that there are alternative approaches other than the one presented here.218

Notably, the use of additional “ghost" SPH-particles to account for the missing SPH-particles; see,219

e.g., Schechter and Bridson (2012).220

To see the effect of missing SPH-particles, we consider a constant density field and write221

⟨𝜌⟩𝑖 ≈ 𝜌0
∑︁
𝑗∈Ω

W𝑖 𝑗 Δ𝑉 𝑗 , (8)

where 𝜌0 denotes the reference value of the density. In the interior where there is no deficiency of222

SPH-particles, Ω has support over the entire ball, 𝐵ℎ (∥r− r′∥), and in light of the normalization223

condition, the RHS reproduces the correct value for the density; see appendix A. However, at the224

free surface Ω ≠ 𝐵ℎ (∥r− r′∥), and the sum on the RHS evaluates to approximately the fraction225

of Ω occupied by SPH-particles. As a result, Eq. (8) significantly underestimates the density and226

produces artificial density gradients near the surface that result in spurious pressure forces. To227
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mitigate this effect in SnowMeLT, the Shepard kernel is used to compute the density, viz.228

≺ 𝜌(r) ≻𝑖 =
∑︁
𝑗∈Ω

𝑚 𝑗

W𝑖 𝑗

Γ𝑖
, (9)

where229

Γ𝑖 =
∑︁
𝑗∈Ω

W𝑖 𝑗 Δ𝑉 𝑗 , (10)

is the Shepard normalization constant, and ≺ · ≻ is used to indicate its use as a correction. It is230

straightforward to verify that Eq. (9) now produces the correct density both in the interior and at231

the free surface.232

The use of Eq. (9) for the density is important for getting the meltwater dynamics correct.233

However, it requires knowledge of the time evolution of the SPH-particle volumes. In SnowMeLT,234

the evolution of the SPH-paticle volumes are defined using the volumetric strain rate as,235

𝑑 (Δ𝑉)
𝑑𝑡

= Δ𝑉 ∇ ·v . (11)

To evaluate this expression, a smoothed divergence is defined as236

⟨∇ ·v(r)⟩ =
∫
Ω

∇′ ·v(r′)W(∥r− r′∥, ℎ) 𝑑𝑉 ′ . (12)

To evaluate Eq. (12) in SPH, the gradient is first moved on to the kernel using237

⟨∇ ·v(r)⟩ =
∫
Ω

v(r′) · ∇W(∥r− r′∥, ℎ) 𝑑𝑉 ′+
∫
𝑑Ω

W(∥r− r′∥, ℎ)v(r′) ·n𝑑𝑆′ . (13)

The volume integral can be evaluated readily, but surface integrals are not easily computed in SPH.238

In the interior, this difficulty can be avoided since 𝑑Ω coincides with the surface of 𝐵ℎ (∥r− r′∥)239

where the kernel vanishes. However, at a free surface this is not the case, and dropping the surface240

term leads to large errors, even for a constant field and vanishing smoothing length. A better choice241

for the divergence can be formulated, and is commonly used (Monaghan 2005)), by first subtracting242
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the identity243

v(r) ·
(∫

Ω

∇W(∥r− r′∥, ℎ)𝑑𝑉 ′+
∫
𝑑Ω

W(∥r− r′∥, ℎ) ·n𝑑𝑆′
)
= 0 , (14)

and dropping the surface term to produce244

⟨∇ ·v(r)⟩ =
∫
Ω

(v(r′) −v(r)) · ∇W(∥r− r′∥, ℎ) 𝑑𝑉 ′ . (15)

This form of the divergence now produces the correct value for a constant field, and in the more245

general case converges at the free surface (Colagrossi et al. 2009), but it still has errors at finite246

resolution. To account for this, Grenier et al. (2009) proposed the normalized divergence,247

≺ ∇ ·v ≻𝑖 = −
∑︁
𝑗∈Ω

v𝑖 𝑗 ·
∇W𝑖 𝑗

Γ𝑖
Δ𝑉 𝑗 , (16)

which is the form adopted, presently. We also note that this form of the divergence is not specific248

to the velocity and can be used for any vector field. Similarly, the gradient of an SPH-field can be249

written as250

⟨∇ 𝑓 ⟩𝑖 = −
∑︁
𝑗∈Ω

𝑓𝑖 𝑗∇W𝑖 𝑗 Δ𝑉 𝑗 , (17)

and corrected using251

≺ ∇ 𝑓 ≻𝑖 = −
∑︁
𝑗∈Ω

𝑓𝑖 𝑗
∇W𝑖 𝑗

Γ𝑖
Δ𝑉 𝑗 , (18)

where 𝑓𝑖 𝑗 denotes the difference 𝑓𝑖 − 𝑓 𝑗 . To formulate the microphysics of SnowMeLT, an SPH252

approximation of the Laplacian is also required and is provided in appendix B.253

3. Microphysics254

Presently, the microphysics of SnowMeLT includes heat conduction, phase changes and latent255

heating, surface tension, contact forces, and viscous weakly-compressible flow. While this captures256

most of the important processes in the melting of ice hydrometeors, there are, of course, other257
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important processes, e.g., riming and sublimation, that are left for future work. In addition, some258

simplifying assumptions have been made. Perhaps the most significant is that the distribution of259

unmelted ice is held fixed in space. Simulating the motion of solid objects within a fluid using SPH260

is complex, however , methods do exist (e.g., Liu et al. (2014)) and will be included in the next261

version of SnowMeLT. This restriction leads to an unrealistic collapse of the snowflakes during262

the final stages of melting, making the results unreliable for meltwater fractions around 75% or263

larger. In addition, to avoid the prohibitive cost of simulating the atmosphere with SPH, an analytic264

approximation for heat transfer from the environment is employed, here, based on steady-state265

transfer within the environment and the assumption of a uniform air temperature immediately266

surrounding the snowflake. In the following, the microphysics is discussed and developed in some267

detail.268

a. Fluid Dynamics269

The meltwater in SnowMeLT is represented as a weakly-compressible viscous fluid subject to270

surface tension and contact forces. The momentum equation takes the form271

𝜌
𝑑v
𝑑𝑡

= −∇𝑝 + fvisc + fsurf , (19)

where fvisc and fsurf denote the viscosity and surface-tension force densities. The SPH formulation272

of this equation is the topic of the following sections. In addition to the momentum equation, an273

interface boundary condition between meltwater and ice is required and is discussed in section (4).274

1) Weakly-Compressible Viscous Flow275

To simulate a weakly-compressible fluid in SPH, the density and pressure of an SPH-particle is276

related by an equation-of-state (EOS). There are a few popular variants in the literature. In the277

current work, we use the Newton-Laplace EOS,278

𝑝𝑖 =
(
≺ 𝜌 ≻𝑖 − 𝜌0

)
𝑐2 , (20)

where 𝜌0 and 𝑐 denote the rest density and speed-of-sound in the fluid, respectively. In the above,279

the speed-of-sound determines how quickly the pressure responds to density variations in the280
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fluid. It is impractical (and unfeasible) to simulate at the physical value of the speed-of-sound.281

Instead, 𝑐 is chosen large enough to keep the density variations sufficiently small, typically < 0.1%.282

Following Grenier et al. (2009), the pressure gradient in the momentum equation is derived from283

the Principle of Virtual Work for an isentropic fluid which states284 ∫
Ω

∇𝑝 · 𝛿w𝑑𝑉 = −
∫
Ω

𝑝∇ · 𝛿w𝑑𝑉 , (21)

where 𝛿w is the displacement due to the virtual work. To derive an SPH expression for Eq. (21)285

that includes a free surface correction, the divergence in Eq. (16) is used, from which it follows,286

∑︁
𝑖∈Ω

≺ ∇𝑝 ≻𝑖 · 𝛿w𝑖Δ𝑉𝑖 = −
∑︁
𝑖∈Ω

𝑝𝑖

Γ𝑖


∑︁
𝑗∈Ω

(𝛿w 𝑗 − 𝛿w𝑖) · ∇W𝑖 𝑗 Δ𝑉 𝑗

 Δ𝑉𝑖 . (22)

Re-arranging the sum on the RHS leads to287

≺ ∇𝑝 ≻𝑖 =
∑︁
𝑗∈Ω

(
𝑝𝑖

Γ𝑖
+
𝑝 𝑗

Γ 𝑗

)
∇W𝑖 𝑗 Δ𝑉 𝑗 , (23)

which is the form of the pressure gradient given in Grenier et al. (2009) and used in the current288

development. It preserves momentum and, importantly, the factors of Γ𝑖 and Γ 𝑗 make a correction289

at the free surface.290

Finally, the viscous force is derived from the viscosity equation of an incompressible fluid,291

fvisc = ∇ · (`∇v) . (24)

In appendix C, the derivation of a few variants of SPH viscosity terms are discussed, including the292

one proposed by Grenier et al. (2009), which is used in the present study. It takes the form293

≺ fvisc ≻𝑖 =
∑︁
𝑗∈Ω

8`𝑖` 𝑗

`𝑖 + ` 𝑗

(
1
Γ𝑖

+ 1
Γ 𝑗

) v𝑖 𝑗 · r𝑖 𝑗
𝑟2
𝑖 𝑗

∇W𝑖 𝑗 Δ𝑉 𝑗 , (25)

where r𝑖 𝑗 denotes the difference r𝑖 − r 𝑗 . This is a modified version of the viscosity proposed by294

Monaghan (2005) that provides a correction at the free surface through the factor (Γ−1
𝑖

+Γ−1
𝑗
). It295
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preserves both angular and linear momentum, however, as discussed in appendix C, it does not296

converge to Eq (24), and in this sense, it is an artificial viscosity.297

2) Surface Tension298

The formulation of surface tension in SnowMeLT is derived from the continuum surface force299

model. In this model, the surface tension is given by,300

Fsurf = 𝜎^n̂ , (26)

where 𝜎 is the surface-tension force per unit length, ^ is the curvature, and n̂ is the unit vector301

normal to the surface. To make this suitable for SPH, Brackbill et al. (1992) formulated Eq. (26)302

as a force density303

fsurf (r) = 𝜎^n̂𝛿 (n̂ · (r− r𝑠)) , (27)

where r𝑠 denotes the corresponding position on the surface. They introduced a color (characteristic)304

function,305

𝑐(r) =


1 in fluid 1 ,

0 in fluid 2 ,
1
2 at the interface ,

(28)

to define a smoothed surface normal,306

⟨n(r)⟩ = ⟨∇𝑐(r)⟩ (29)

and delta function307

⟨𝛿 (n̂ · (r− r𝑠))⟩ = ∥⟨∇𝑐(r)⟩∥ , (30)
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that are suitable for SPH and converge for any reasonable smoothing kernel. Using the SPH308

surface-normal, the curvature can be computed as309

⟨^(r)⟩ = ⟨−∇ · n̂(r)⟩ , (31)

which leads to310

⟨fsurf (r)⟩ = 𝜎 ⟨^(r)⟩ ⟨n(r)⟩ , (32)

for the SPH surface-tension force.311

To implement Eq. (32) requires some care because of the use of normalized surface-normals. In312

particular, the surface normals become “small" with greater displacements from the surface and313

incur large (relative) numerical errors that when normalized lead to poor estimates of the curvature.314

To deal with this issue, we follow the approach of Morris (2000). In this approach, the smoothed315

color-function is defined in the usual way as,316

⟨𝑐⟩𝑖 =
∑︁
𝑗∈Ω

𝑐 𝑗W𝑖 𝑗 Δ𝑉 𝑗 . (33)

The surface normals are evaluated using Eq. (17) as317

⟨n⟩𝑖 =
∑︁
𝑗∈Ω

(
⟨𝑐⟩ 𝑗 − ⟨𝑐⟩𝑖

)
∇W𝑖 𝑗 Δ𝑉 𝑗 , (34)

and the curvature is evaluated using Eq. (16) (without Shepard normalization) as,318

⟨∇ · n̂⟩𝑖 = −
∑︁
𝑗∈Ω

⟨n̂⟩𝑖 𝑗 · ∇W𝑖 𝑗 Δ𝑉 𝑗 , (35)

where ⟨n̂⟩𝑖 𝑗 is the difference, ⟨n̂⟩𝑖 − ⟨n̂⟩ 𝑗 , of the unit normals ⟨n̂⟩𝑖 = ⟨n⟩𝑖 /∥⟨n⟩𝑖∥. To avoid the319

errors associated with small normals, Morris (2000) proposed to include only the normals that320
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satisfy ∥⟨n⟩𝑖∥ > 0.01/ℎ in Eq. (35) and normalize the curvature by321

b𝑖 =
∑︁
𝑗∈Ω𝑛

W𝑖 𝑗 Δ𝑉 𝑗 , (36)

whereΩ𝑛 denotes the subset of normals inΩ that meet this criteria. The final form of the curvature322

is323

⟨^⟩𝑖 =

∑
𝑗∈Ω𝑛

⟨n̂⟩𝑖 𝑗 · ∇W𝑖 𝑗 Δ𝑉 𝑗

b𝑖
, (37)

which can be combined with Eq. (34) to evaluate the SPH surface-tension force.324

3) Contact Forces325

While the surface tension just described can be used to simulate the dynamics of the air-meltwater326

interface, additional contact forces are required to reproduce the wetting behaviour of water on327

the ice surface. To achieve this, we follow Trask et al. (2015) and impose Young’s Equation by328

enforcing the equilibrium constraint,329

n̂eq = n̂𝑡 sin\𝑒𝑞 + n̂𝑝 cos\𝑒𝑞 , (38)

on the fluid normals near to the ice/air/liquid boundary. In the above, n̂𝑝 is the normal to the ice330

boundary approximated using Eq. (34) with the sum being carried out over Ωice, the subset of331

SPH-particles in Ω that are ice, and n̂𝑡 is the fluid normal projected tangent to the ice boundary332

computed using333

〈
n̂𝑡

〉
𝑖
=

⟨n̂⟩𝑖 − (⟨n̂⟩𝑖 · ⟨n̂𝑝⟩𝑖) ⟨n̂𝑝⟩𝑖
∥⟨n̂⟩𝑖 − (⟨n̂⟩𝑖 · ⟨n̂𝑝⟩𝑖) ⟨n̂𝑝⟩𝑖∥

, (39)

where ⟨n̂⟩𝑖 is the fluid normal approximated using Eq. (34) over Ωwat, the subset of SPH-particles334

in Ω that are water. The equilibrium contact angle, \eq, is then prescribed to achieve the desired335

wetting effect. Setting the fluid normals according to Eq. (38) ensures the SPH surface-tension will336

apply a force that continually works towards restoring the correct equilibrium behavior. Following337
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Trask et al. (2015), we define a transition function338

𝑓𝑖 =


𝜒𝑖 𝜒𝑖 ≥ 0 ,

0 𝜒𝑖 < 0 ,
(40)

in terms of a generalized distance,339

𝜒𝑖 = 2
Γwat
𝑖

Γ𝑖
−1 , (41)

which provides a measure of how close a fluid SPH-particle is to the ice boundary. In Eq. (41),340

Γwat
𝑖
is computed using Eq. (10) over Ωwat, and the ratio, Γwat

𝑖
Γ−1
𝑖
, is used as a measure of the341

fraction of volume in Ω occupied by fluid SPH-particles. The fluid normals are then transitioned342

across a displacement of roughly one smoothing length from the boundary by defining a new unit343

normal,344

⟨n̂′⟩𝑖 =
𝑓𝑖 ⟨n̂⟩𝑖 − (1− 𝑓𝑖) ⟨n̂eq⟩𝑖

∥ 𝑓𝑖 ⟨n̂⟩𝑖 − (1− 𝑓𝑖) ⟨n̂eq⟩𝑖∥
, (42)

and replacing Eq. (32) with345

⟨fsurf⟩𝑖 = 𝜎 ⟨^′⟩𝑖 ⟨n̂′⟩𝑖 ∥⟨n⟩𝑖∥ , (43)

where ⟨^′⟩𝑖 is the curvature computed using ⟨n̂′⟩𝑖, and we have retained the surface delta function346

∥⟨n⟩𝑖∥.347

4) Adhesion and the Boundary Between Water and Ice348

As a snowflake melts, a boundary between meltwater and ice is formed, and boundary conditions349

must be enforced to prevent overlap of the two phases and to provide an appropriate slip condition350

for the flow of meltwater on the ice. Unlike the environmental air, the ice is simulated with351

SPH-particles, and these particles can be used as “dummy" boundary particles to enforce boundary352

conditions. In SnowMeLT, we follow the approach of Adami et al. (2012) which imposes a force353
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balance,354

𝑑v 𝑓

𝑑𝑡
= −∇𝑝

𝜌 𝑓

+g = ab , (44)

at the boundary, where here 𝑓 denotes the fluid (meltwater), g the gravitational acceleration, and355

a𝑏 the acceleration of the ice boundary. Integrating Eq. (44) along the line connecting a fluid and356

ice SPH-particle, we find357

𝑝𝑏 = 𝑝 𝑓 + 𝜌 𝑓 (g−a𝑏) · r𝑏 𝑓 , (45)

which is used to extrapolate a value for the dummy pressure from nearby fluid SPH-particles. An358

SPH average is then formed in the usual way using the smoothing kernel to give359

≺ 𝑝𝑏 ≻𝑖 =

∑
𝑗∈Ωwat

𝑝 𝑗W𝑖 𝑗 Δ𝑉 𝑗 + (g−a𝑏) ·
∑

𝑗∈Ωwat

𝜌 𝑗r𝑖 𝑗W𝑖 𝑗 Δ𝑉 𝑗

Γwat
𝑖

. (46)

Presently, in SnowMeLT there is neither gravity nor movement of the ice, and the above equation360

reduces to361

≺ 𝑝𝑏 ≻𝑖 =
∑︁
𝑗∈Ωwat

𝑝 𝑗

W𝑖 𝑗

Γwat
𝑖

Δ𝑉 𝑗 . (47)

In addition, the density and volume of dummy SPH-particles are determined using Eq. (20) as362

𝜌𝑏 =
≺ 𝑝𝑏 ≻− 𝜌0𝑐

2

𝑐2 and 𝑑𝑉𝑏 =
𝑚𝑖

𝜌𝑏
, (48)

where 𝑚𝑖 is the mass of the fluid SPH-particle interacting with the dummy particle, and the363

subscript “b" is used to indicate a dummy quantity assigned to an ice SPH-particle for the purpose364

of enforcing a boundary condition. With Eq. (48), the pressure gradient near the boundary can be365

evaluated over Ω using dummy values for the ice SPH-particles.366
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A boundary condition for the viscosity is also required. Following Adami et al. (2012), an367

average velocity is computed using nearby fluid SPH-particles as368

≺ ṽ ≻𝑖 =
∑︁
𝑗∈Ωwat

v 𝑗

W𝑖 𝑗

Γwat
𝑖

Δ𝑉 𝑗 , (49)

and the dummy velocity is set to369

≺ v𝑏 ≻𝑖 = 2vice −≺ ṽ ≻𝑖 , (50)

where vice is the velocity of the ice boundary. Again, since the ice is held fixed this reduces to370

≺ v𝑏 ≻𝑖 = −≺ ṽ ≻𝑖 . (51)

In contrast to the pressure which keeps the ice and meltwater separated, the viscosity determines371

how much the meltwater “sticks" to the ice. To enforce a free-slip boundary condition, we set the372

dummy viscosity to zero, and to set a no-slip boundary condition, a relatively large viscosity is373

used. At this scale, the no-slip boundary layer is small compared to ℎ, and as a result, a free-slip374

boundary condition is employed. However, we also need to account for adhesion between the375

meltwater and ice surface. To do this, the projection of the dummy velocity along the boundary376

normal perpendicular to the ice surface is used to replace Eq. (51) with377

≺ v𝑏 ≻𝑖 = − (≺ v ≻𝑖 · ⟨n̂𝑝⟩) ⟨n̂𝑝⟩ . (52)

Using the projected velocities has the effect of “sticking" the meltwater along the direction normal378

to the ice surface while allowing it to flow freely across it. The value of the dynamic viscosity of379

dummy ice SPH-particles then plays the role of an adhesion strength parameter. In this work, we380

set it equal to the fluid viscosity, which gives reasonable results.381

b. Thermodynamics382

The thermodynamics of SnowMeLT includes heat conduction, phase changes and associated383

latent heating. Evaporation of meltwater is not simulated in the present formulation of SnowMeLT.384
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If the environment of the hydrometeor is subsaturated, evaporation could consume sensible heat and385

significantly reduce the rate of melting, but in remote sensing applications, for example, the melt386

fraction and geometry of the particle are the most critical factors for calculating single-scattering387

properties, and 1D thermodynamic models have been used to separately calculate the melt fractions388

of snowflakes of different masses; see, e.g., Olson et al. (2001) and Liao et al. (2009). Evaporation389

and other microphysical processes will be considered in future updates of SnowMeLT.390

The heat conduction is implemented following the approach of Cleary and Monaghan (1999)391

which is derived from the incompressible heat equation392

𝑑𝑈

𝑑𝑡
=

1
𝜌
∇ · (^∇𝑇) , (53)

where viscous dissipation effects are assumed to be negligible. In the above, 𝑈 and ^ denote393

the energy density [J/g] and conductivity [W/(m-◦C)], respectively. To convert Eq. (53) to an394

SPH-equation, Cleary and Monaghan (1999) used a Taylor Series approximation of the Laplacian395

(see appendix B) and enforced heat-flux continuity across material interfaces to derive396 〈
𝑑𝑇

𝑑𝑡

〉
𝑖

=
4

𝑐a,𝑖𝜌𝑖

∑︁
𝑗∈Ω

^𝑖^ 𝑗

^𝑖 + ^ 𝑗
(
𝑇𝑖 −𝑇𝑗

)
𝐹𝑖 𝑗 Δ𝑉 𝑗 , (54)

where the relationship between temperature and energy density is taken as 𝑈 = 𝑐a𝑇 with 𝑐a,𝑖397

denoting the specific heat. Important for this work, they showed through a series of numerical398

experiments that Eq. (54) can accurately simulate discontinuities in the conductivity of up to three399

orders of magnitude which is sufficient for simulations with air, ice, and water.400

The evaluation of Eq. (54) is straightforward except at the boundary between the hydrometeor401

and surrounding environment. To simulate the transfer of heat from the surrounding environment, a402

method is required to transfer heat across the hydrometeor-atmosphere interface that includes a far-403

field temperature boundary condition and does not require simulating air SPH-particles explicitly.404

To do this, we make the assumption that the surrounding air temperature near to the surface, 𝑇air,405

is uniform. According to Eq. (54), the contribution from air is406 〈
𝑑𝑇air

𝑑𝑡

〉
𝑖

=
4

𝑐a,𝑖𝜌𝑖

^𝑖^air

^𝑖 + ^air
(𝑇𝑖 −𝑇air)

∑︁
𝑗∈Ωair

𝐹𝑖 𝑗 Δ𝑉 𝑗 . (55)
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Fig. 2. Depiction of the heat transfer from the surrounding environment using a uniform air temperature, 𝑇air,

within a minimally circumscribing sphere and a radially-symmetric steady-state solution as a boundary condition

with a far-field temperature, 𝑇∞.

423

424

425

The sum on the RHS cannot be evaluated explicitly without simulating air SPH-particles, but it can407

be evaluated indirectly which follows from the fact that ⟨𝐹 (r)⟩ can be determined analytically over408

Ω; see appendix D. We note that this sum is a purely geometric term which can be thought of as a409

shape factor that takes into account the amount of nearby surrounding air. In areas where the surface410

is more exposed, this term becomes larger causing extremities to melt faster. The heat conduction at411

the boundary is then computed by evaluating Eq. (54) and adding the result of Eq. (55). Importantly,412

Eq. (55) vanishes in the interior and can safely be added regardless of whether the SPH-particle413

being updated lies on the surface or not. This avoids the need to identify surface SPH-particles414

which is difficult and error prone. To impose a far-field temperature boundary condition, the415

melting snowflake is first enclosed by a minimally circumscribing sphere; see Figure (2). The416

temperature field outside the sphere is derived as a radially-symmetric, analytical solution of the417

steady-state heat equation, with a temperature 𝑇air on the circumscribing sphere and a temperature418

𝑇∞ at some large radial distance serving as boundary conditions; see Mason (1956). Continuity is419

imposed between the "exterior" heat equation solution and the "interior" solution from SPH (with420

a uniform near-surface air temperature, 𝑇air), by setting the radial transfer of thermal power from421

both solutions equal at the radius of the circumscribing sphere; see appendix D.422
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While the assumption of a uniform air temperature allows for an efficient SPH-based approach to426

transfer heat from the surrounding environment, it neglects the insulating effects of the snowflake427

structure. In particular, interior regions shielded by extremities should be exposed to a cooler air428

temperature and melt more slowly than the extremities. In the case of single dendrites and simple429

aggregates, this effect may not be that significant, but in the larger more complex aggregates, it430

is expected to be non-negligible. The approximation therefore leads to an unrealistically uniform431

distribution of meltwater in the early stages of melting; see Section d. However, as meltwater432

forms and flows into the crevices and towards the center of the snowflake, it insulates the interior433

and causes the extremities to melt more rapidly than the interior. In the later stages of melting, the434

interior is filled with meltwater, and the snowflake approaches a water drop. In these later stages,435

the primary insulating effect will be due to the meltwater, and the effects associated with the ice436

structure should become negligible.437

Lastly, to take into account latent heat, we use an internal (thermal) energy parameter that is438

initialized to zero. For ice SPH-particles, the internal energy is updated using the energy-density439

form of Eq. (54). Once the internal energy of an SPH-particle surpasses 𝐿f× SPH-particle mass,440

where 𝐿f is the latent heat of fusion, the ice SPH-particle becomes a fluid SPH-particle, and its441

temperature is updated according to Eq. (54).442

4. Numerical Examples443

To test SnowMeLT, a series of numerical experiments are conducted using synthetic snowflakes444

available from the NASA OpenSSP database. The database includes pristine dendritic crystals445

of different shapes generated using the algorithm of Gravner and Griffeath (2009), as well as446

aggregates created using a randomized collection process (Kuo et al. 2016). In the present study,447

snowflakes with maximum dimensions up to ∼ 1 cm are melted; Larger snowflakes will require448

the use of hardware accelerators which are not currently implemented in SnowMeLT. Since the449

snowflakes in the database are already defined on a regular grid, it is straightforward to ingest450

them into SnowMeLT. Here, the initial grid spacing (𝑑𝑥) and SPH-particle mass are set to 15 `𝑚451

and 𝜌iceΔ𝑉 = 3.1𝑥10−9 g. The value of the simulation parameters used in all of the examples are452

listed in Table (1), and with exception of the speed-of-sound, gravity, and viscosity, are set to their453

physical values. The speed-of-sound was tuned to keep deviations from the rest density at or below454
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Parameter Value Units

𝑑𝑥 (rest distance) 15 `m

ℎ (smoothing length) 45 `m

\ (contact angle) 10 ◦

𝑐sound 2500 cm/s

^water 0.556 W/(m-◦C)

^ice 2.22 W/(m-◦C)

^air 0.0244 W/(m-◦C)

𝑐v,water 4.22 J/(g-◦C)

𝑐v,ice 2.05 J/(g-◦C)

𝜎 0.072 N/m

`ice 0.4 g /(cm-s)

`wat 0.4 g /(cm-s)

g 0 cm/s2

𝑇∞ 1.5 ◦C

𝐿 𝑓 334 J/g

𝜌ice 0.917 g/cm3

𝜌wat 1.0 g/cm3

Table 1. List of the simulation parameters used in this work.

∼ 0.1%, and the fluid viscosity was chosen large enough to maintain numerical stability. The455

simulation is advanced using the kick-drift-kick time integration scheme described in appendix E.456

In section a, simple examples of the deformation of a cube of water are presented as a check of457

the surface tension and contact forces. In section b, ice spheres are melted using both SnowMeLT458

and a multi-shell numerical method to check the consistency of the evolving internal temperature459

and total melt time of the melting spheres. In section c, numerical experiments to determine the460

effect of the thermal vs. fluid timestep on a small pristine snowflake are examined, and in section d,461

the application of SnowMeLT to a set of aggregate snowflakes is presented and discussed.462

a. Deformation of a Cube of Water463

To test the surface tension in SnowMeLT, a cube of water is allowed to deform into a spherical469

water drop. The cube is composed of a collection of ∼132-thousand SPH-particles with a volume470

equal to ∼ 0.75 mm3. Similarly, to test the contact forces, a cube of water composed of ∼36-471

thousand SPH-particles is placed on top of a sheet of ice and allowed to deform for the cases472

\𝑒𝑞 = 30◦ and \𝑒𝑞 = 10◦, which is roughly the range of observed contact angles. The results of both473

tests are shown in Figure (3). Note that the water cube evolves into a nearly perfect water sphere,474
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Fig. 3. An initial cube of water, (a), deforms into a spherical drop, (b), and a cube of water deforms into a

sessile drop on an ice slab, (c) and (d). In (c), cross-sections of the initial state (top) and final states for \𝑒𝑞 = 30◦

(middle) and \𝑒𝑞 = 10◦ (bottom) are shown. The sessile drop curves (red) for the prescribed angles are also

included and show reasonable agreement with the numerical results. In (d), a top-view of the final state for

\𝑒𝑞 = 10◦ is also shown.

464

465

466

467

468

due to the effects of surface tension, and the sessile drops on the ice slabs exhibit contact angles475

close to the prescribed values of \𝑒𝑞, as seen in the figure.476

b. Melting Frozen Spheres477

To provide a check of the thermal processes, pure ice spheres are melted with SnowMeLT and478

a discrete, concentric shell model, and compared. The shell model employs finite-differencing of479

properties between adjacent shells to determine the heat flux between shells, and then raises the480

temperature of a given shell once the internal energy exceeds the total required to melt the entire481

mass of ice in that shell. This alternative approach is a generalization of the “enthalpy method”482

to spherically-symmetric ice particles; see Alexiades and Solomon (1993), who described a one-483

dimensional application. Sensible heat fluxes from the environment are specified using steady air484

temperature solutions of the heat equation, similar to theway heat fluxes are specified usingEq. (54).485

Although the shell model is only approximate and does not represent the flow of meltwater, the486

two methods should exhibit very good agreement. In this comparison, SnowMeLT must realize487

the spherical symmetry of the ice/liquid distributions through the represented physics, and the488
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diameter [mm] total time SPH [s] total time multi-shell [s]

0.25 47.8 44.9

0.50 186.5 179.9

1.00 733.6 720.0

Table 2. Total time to completely melt frozen spheres using SPH and the multi-shell model.

Fig. 4. Thermal profiles of the internal temperatures for the 1 mm diameter frozen sphere using SnowMeLT

(left) and the multi-shell model (right).

501

502

intercomparison of SnowMeLT and the concentric shell model provides a non-trivial check that489

the heat conduction and the proposed thermal boundary condition are working correctly. However,490

it is not possible to infer the error associated with the approximate thermal boundary condition in491

simulations of snowflakes with complex geometries.492

Ice spheres with diameters of 0.25 mm, 0.5 mm, and 1.00 mm are melted using SnowMeLT493

and the shell model. The times of complete ice sphere melting from both models differ between494

about 2% and 6% with a smaller percentages associated with larger radii; see Table (2). The495

time-progression of internal temperatures also show good agreement, and in Figure (4), the results496

for the 1.00 mm diameter sphere are presented. The undulations of the temperature contours in497

the multi-shell simulation are due to the constant temperature within the outermost icy shell as the498

ice melts, followed by the rapid increase of temperature in that shell as the temperature comes to a499

new quasi-equilibrium after the ice melts completely.500
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c. Varying the Thermal Timestep of a Dendritic Pristine Snowflake503

Using the simulation parameters in Table (1) to determine the constraints given in appendix E504

leads to a fluid timestep about three orders of magnitude smaller than the timestep required for505

thermal processes. This is not surprising — the meltwater response to surface-tension forces at506

this scale and temperature occur much more rapidly than the internal energy/melting response to507

heat transfer. From a computational perspective, incrementing the simulation at the fluid timestep508

would require on the order of 1010 steps for the largest snowflakes listed in Table (3). This is not509

feasible even on large supercomputers. It is therefore necessary to increase the thermal timestep510

as much as possible to reduce the computational burden (the thermal timestep dictates the physical511

simulation time), while incrementing the fluid changes at the much smaller timestep. This dual512

timestepping is possible because of the rapid response of the meltwater to structural changes in the513

ice.514

To determine an appropriate increase, a pristine snowflake with a diameter of 1.3 mm was515

melted with a thermal timestep 125, 250, 500, 1000, and 2000 times larger than the fluid timestep.516

The images of the crystal at different melt stages are shown in Figure (5). For the case of the517

largest scale factor there is limited pooling in the snowflake crevices and a relatively thick layer518

of meltwater coating the arms. As the scale factor decreases, the meltwater has more time to519

move along the surface of the crystal in a given thermal timestep, and as expected from surface520

tension considerations, we see increased pooling towards the center of the flake and more exposed521

extremities. From scaling factors of 500 to 125, we see very little change, indicating the former522

is a reasonable choice for increasing the thermal timestep — at least for this particular snowflake.523

As a result of this test, all of the aggregate snowflakes presented in this study are melted using a524

thermal timestep equal to the fluid timestep scaled by a factor of 500. In spite of the increased525

thermal timestep, numerical simulations of the largest snowflake require millions of timesteps526

and run continuously for about two months using ∼ 800 compute cores on the NASA Discover527

supercomputer.528

d. Melting Aggregate Snowflakes531

As a demonstration of the general applicability of SnowMeLT, a set of eleven aggregate535

snowflakes are melted, ranging in size from 2-10.5 mm in maximum dimension. In Table (3), we536
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Fig. 5. Snapshots of a pristine snowflake with the thermal timestep scaled by 2000, 1000, 500, 250, and 125

(top-to-bottom) at melt stages of 20%, 40%, 60%, and 80% (left-to-right).

529

530

list the corresponding name, size, mass, number of SPH-particles used, total number of timesteps537

required, as well as the total time simulated. The aggregates are composed of different numbers of538
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name diameter [mm] total mass [mg] # SPH-particles time-steps total time [s]

01_0013_013 10.4 6.872 2,220,518 15,072,000 929

01_0012_022 10.5 6.429 2,077,299 13,984,000 866

01_0033_017 8.51 4.342 1,482,991 11,008,000 686

01_0011_010 7.83 3.692 1,192,808 10,432,000 650

01_0030_005 6.10 2.251 727,289 8,576,000 530

01_0033_008 6.11 2.111 682,020 7,904,000 490

01_0032_007 5.35 1.490 481,504 6,624,000 411

01_0030_003 4.61 0.856 276,650 4,768,000 313

01_0014_003 3.21 0.495 159,957 3,840,000 238

01_0074_010 2.80 0.367 118,534 3,232,000 200

01_0072_013 2.08 0.184 59,600 2,144,000 133

Table 3. A list of the properties for the 11 snowflakes melted with SnowMeLT. The columns from left-to-right

correspond to the NASA openSSP database name, diameter of the (initial) minimally circumscribing sphere,

total mass, number of SPH-particles simulated, and total time-steps and time to melt.

532

533

534

pristine dendritic crystals, with 22 crystals being the largest number. The snowflake with the largest539

mass is represented by 2,220,518 SPH-particles and requires over 15 million timesteps to com-540

pletely melt. Images of the aggregates at different stages of melting are presented in Figures (6-8)541

at mass melt fractions of 30%, 50%,70%,90% and 100% (top-to-bottom).542

From the figures, it is evident that at 30% melted the snowflakes are lightly coated with a layer543

of meltwater and exhibit some slight pooling of liquid in the crevices between ice structures. At544

50% melted, more collecting and pooling of meltwater in the cervices is seen. Focusing in on the545

individual crystals that make up the aggregates, two distinguishing behavioral types are observed:546

Crystals with fine-scale filaments and ice "spikes" protruding from the arms and crystals without547

these structures . In the former type, meltwater tends to be distributed more on the arms, where it548

gets held up by surface tension in the crevices between the fine-scale structures. In crystals without549

fine-scale structures, the water is able to flow more easily towards the crystal centers, leading to550

the formation of a central water drop; see for example, Figure (8), column two). These behaviors551

were previously observed in laboratory grown and melted dendritic arms and plates by Oraltay and552

Hallett (2005). At 50% melted, water collecting in the junctions between the individual crystals553

can also be seen. At 70% melted, elongated water drops cover the crystal arms, large water drops554

bulge over the centers of the crystals, and crevices and gaps between the crystals are largely filled.555

At 90% melted, the component crystals are mostly engulfed by meltwater, though the aggregates556
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still generally retain a coarse ice frame. At this stage, the effects of keeping the ice SPH-particles557

fixed in space become evident. For example, in the first column of Figure (7), we see the presence558

of small, detached ice chunks that would have otherwise been drawn inwards. The artificial bridges559

of water between the main ice structures and these small ice chunks create large surface tension560

forces that “snap" the liquid abruptly once a particular ice chunk fully melts. This energetic release561

leads to an eruption of minute water droplets, as seen in the figure. As a result, the final collapse562

of the aggregates (meltwater fractions ≳ 75%) tends to be unrealistic for the larger aggregates. For563

the aggregates of crystals with more plate-like arms, this phenomenon does not occur, and we see564

a more realistic collapse of the aggregate into a water droplet; see Figure (8), column three.565
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Fig. 6. Snapshots of the snowflakes 1-3 listed in Table (3) at 30%, 50%, 70%, 90%, and 100% melted

(top-to-bottom).

566

567
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Fig. 7. Snapshots of the snowflakes 4-7 listed in Table (3) at 30%, 50%, 70%, 90%, and 100% melted

(top-to-bottom).

568

569
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Fig. 8. Snapshots of the snowflakes 8-11 listed in Table (3) at 30%, 50%, 70%, 90%, and 100% melted

(top-to-bottom).

570

571
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5. Concluding Remarks572

An SPH approach for computationally melting ice-phase hydrometeors is presented along with573

applications to a variety of synthetic snowflakes retrieved from the NASA OpenSSP database. The574

microphysics of the approach is derived directly from continuum physics conservation equations575

with the exception of the adhesive force between water and ice, and recent advances in free-surface576

flows are employed that are important for simulating the movement of thin layers of meltwater. To577

manage the computational cost, controlled approximations and some simplifications are used: One578

approximation is that the thermal (physical) timestep is effectively increased relative to the fluid579

dynamics timestep, because the rate of meltwater flow and other processes are relatively fast and580

respond to ice geometry changes very quickly. The much shorter fluid timestep, consistent with581

the Courant-Friedrichs-Lewy and other stability citeria given in appendix E, can therefore be used582

to increment meltwater flow while maintaining the integrity of the simulation. Here, the thermal583

timestep inflation is chosen based on trials of the melting of a single pristine snowflake, and a more584

thorough study of timestepping effects should be conducted for a variety of snowflake shapes and585

sizes. This more thorough study will become more practical with the use of hardware accelerators.586

Another modification is that the heat exchange with the environment is approximated assuming587

a steady-state transfer of sensible heat to a sphere enclosing the snowflake. The air temperature588

within the sphere and near the snowflake’s surface is assumed to be homogeneously-distributed.589

Although the air temperature is assumed to be the same near the surface of the snowflake, the590

heat transfer is distributed heterogeneously across the surface of the snowflake according to the591

local air exposure, surface temperature, and water phase, and therefore the boundary specification592

is still expected to reasonably capture the ambient heat transfer. Finally, the ice is not allowed to593

move, and in most but not all cases this leads to a significant distortion of the final collapse of the594

snowflake into a water drop. What results is an ice morphology in the latter stages of melting that595

is unrealistic, but there exist SPH approaches that can be used to remove this constraint (e.g., Liu596

et al. (2014)), and these approaches will be investigated in the next generation of SnowMeLT.597

For remote sensing applications, a substantial number of melting hydrometeors and their scat-598

tering properties will be required to define the average properties of hydrometeors of a given599

mass, meltwater fraction, habit, etc. Perhaps the most significant obstacle to producing a large600

collection of melted hydrometeors with the SPH approach is the computational cost. The current601
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implementation requires about two months on 800 compute cores to melt the largest aggregate602

snowflake described here; see Table (3). Snowflakes at least two to three times larger can be603

found in stratiform rain systems, and to melt them will require a boost in computing power. It is604

already well established that SPH performs well on Graphical Processing Units (GPUs), and it is605

anticipated that they will be able to provide this boost. With the large number of available GPU606

resources, both in the cloud and at supercomputing centers, it should be possible to generate a607

diverse collection of partially-melted synthetic snowflakes in the near future for remote sensing608

applications.609
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APPENDIX A618

The Wendland C2 Kernel619

In this work, we Dehnen and Aly (2012) and employ the Wendland 𝐶2 kernel,620

Wwend(∥r∥, ℎ) =
21

2𝜋ℎ3


(1− 𝑟/ℎ)4 (1+4𝑟/ℎ) 0 ≤ 𝑟 < ℎ ,

0 otherwise ,
(A1)

with normalization,621 ∫
Wwend(∥r∥, ℎ) 𝑑𝑉 = 1 , (A2)

is used. The gradient of this kernel is given by622

∇Wwend(∥r∥, ℎ) = −210
𝜋ℎ5


(1− 𝑟/ℎ)3 r 0 ≤ 𝑟 < ℎ

0 otherwise
. (A3)

Writing the kernel in terms of the relative position between SPH-particles r = r′− r′′, the gradient623

with respect to individual coordinates is given by624

∇′W(∥r′− r′′∥, ℎ) = ∇W(∥r∥, ℎ) and ∇′′W(∥r′− r′′∥, ℎ) = −∇′W(∥r′− r′′∥, ℎ) . (A4)

2https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp.
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The integral of the gradient over Ω = 𝐵ℎ ( |r− r′|),625 ∫
Ω

∇W(∥r− r′∥, ℎ) 𝑑𝑉 ′ =

∫
𝑑Ω

W(∥r− r′∥, ℎ)n̂′ = 0 , (A5)

vanishes since 𝑑Ω coincides with the surface of the ball where the kernel support vanishes. It is626

also common to write the kernel gradient in the form (e.g., Cleary and Monaghan (1999))627

∇W(∥r∥, ℎ) = 𝐹 (𝑟) r , (A6)

with628

𝐹 (𝑟) = −210
𝜋ℎ5


(1− 𝑟/ℎ)3 0 ≤ 𝑟 < ℎ ,

0 otherwise .
(A7)

For the Wendland 𝐶2 kernel,629 ∫
Ω

𝐹 (𝑟) 𝑑𝑉 = −14
ℎ2 , (A8)

which is used to compute the environmental heat transfer, c.f. Eq. (D5).630

APPENDIX B631

Smoothed Approximation of the Laplacian632

To derive an SPH approximation of the Laplacian, a Taylor Series expansion is applied to a633

generic field as634

𝑓 (r′) − 𝑓 (r) = ∇ 𝑓 (r) · (r′− r) +
∑︁
𝑖, 𝑗

1
2
𝜕2 𝑓 (r)
𝜕𝑟𝑖𝜕𝑟 𝑗

(r′− r)𝑖 (r′− r) 𝑗 +O
(
|r′− r|3

)
. (B1)

Multiplying this by the term,635

(r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 , (B2)
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dropping the higher order terms, and integrating over r′ produces636 ∫
Ω

( 𝑓 (r′) − 𝑓 (r)) (r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 𝑑𝑉 ′ = (B3)

∇ 𝑓 (r)·
∫
Ω

(r′− r) (r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 𝑑𝑉 ′ (B4)

+
∑︁
𝑖, 𝑗

1
2
𝜕2 𝑓 (r)
𝜕𝑟𝑖𝜕𝑟 𝑗

∫
Ω

(r′− r)𝑖 (r′− r) 𝑗
(r− r′) · ∇W(∥r− r′∥)

∥r− r′∥2 𝑑𝑉 ′ . (B5)

By noticing the first term on the RHS is odd, we immediately see it vanishes. Similarly, the637

off-diagonal elements of the second order term vanish leaving only the terms638

∑︁
𝑖

1
2
𝜕2 𝑓 (r)
𝜕𝑟2

𝑖

∫
Ω

(r′− r)2
𝑖

(r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 𝑑𝑉 ′ . (B6)

To evaluate the integrals, we take r′′ = r− r′ and look at the 𝑧′′ term639 ∫
Ω

𝑧′′2
r′′ · ∇W(∥r′′∥

∥r′′∥2 𝑑𝑉 ′′ =

∫
𝑑Ω

𝑧′′2
W(∥r′′∥)
∥r′′∥2 r′′ · n̂𝑑𝑆′′−

∫
∇ ·

(
𝑧′′2

∥r′′∥2 r′′
)
W(∥r′′∥)𝑑𝑉 ′′ .

(B7)

SinceW(∥r′′∥) = 0 on 𝑑Ω the surface integral vanishes (though, not at a free surface), and the640

remaining term evaluates to641 ∫
∇ ·

(
𝑧′′2

∥r′′∥2 r′′
)
W(∥r′′∥)𝑑𝑉 ′′ = 1 . (B8)

The same follows for the 𝑥 and 𝑦 terms, and we find642

〈
∇2 𝑓 (r)

〉
= 2

∫
Ω

( 𝑓 (r) − 𝑓 (r′)) (r− r′) · ∇W(∥r− r′∥)
∥r− r′∥2 𝑑𝑉 ′ , (B9)

as a smoothed approximation for the Laplacian (see, Cleary and Monaghan (1999)) and643

〈
∇2 𝑓

〉
𝑖
= 2

∑︁
𝑗∈Ω

(
𝑓𝑖 − 𝑓 𝑗

) r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 , (B10)

for the discrete form.644
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APPENDIX C645

On the Formulation of Viscosity in SnowMeLT646

The viscosity for an incompressible fluid is given by the vector Laplacian equation647

fvisc = ∇ · (`∇v) , (C1)

which in Cartesian coordinates reduces to a regular Laplacian for each component. We consider648

the 𝑥-component and expand the product to get649

fvisc,𝑥 = ∇ · (`∇v𝑥) =
1
2

(
∇2(`v𝑥) −v𝑥∇2`+ `∇2v𝑥

)
. (C2)

Using Eq. (B10) and collecting terms produces650

〈
fvisc,𝑥

〉
𝑖
=

∑︁
𝑗∈Ω

(
`𝑖 + ` 𝑗

)
v𝑥,𝑖 𝑗

r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 , (C3)

from which it follows651

⟨fvisc⟩𝑖 =
∑︁
𝑗∈Ω

(
`𝑖 + ` 𝑗

)
v𝑖 𝑗

r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 . (C4)

To ensure flux continuity across discontinuities in the viscosity, Cleary and Monaghan (1999)652

showed the above formula should be replaced with653

⟨fvisc⟩𝑖 =
∑︁
𝑗∈Ω

4`𝑖` 𝑗

`𝑖 + ` 𝑗

v𝑖 𝑗
r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 . (C5)

To take into account the free surface Grenier et al. (2009) modified Eq. (C5) as654

≺ fvisc ≻𝑖 =
∑︁
𝑗∈Ω

2`𝑖` 𝑗

`𝑖 + ` 𝑗

(
1
Γ𝑖

+ 1
Γ 𝑗

)
v𝑖 𝑗

r𝑖 𝑗 · ∇W𝑖 𝑗

𝑟2
𝑖 𝑗

Δ𝑉 𝑗 . (C6)

In the interior where Γ𝑖 and Γ 𝑗 are ∼ 1, it is easy to verify Eq. (C6) reproduces Eq. (C5), and655

therefore the modification only provides a correction at a free surface. This form of the viscosity656
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preserve linear momentum but not angular momentum. If we decompose Eq. (C5) as657

⟨fvisc⟩𝑖 =
∑︁
𝑗∈Ω

4`𝑖` 𝑗

`𝑖 + ` 𝑗

(
v𝑖 𝑗 · r𝑖 𝑗
𝑟2
𝑖 𝑗

∇W𝑖 𝑗 + r𝑖 𝑗 × (v𝑖 𝑗 ×∇W𝑖 𝑗 )
)
Δ𝑉 𝑗 , (C7)

the first term in parenthesis conserves both linear and angular momentum while the second only658

conserves the former. If we keep only the first term, we reproduce the artificial viscosity proposed659

by Monaghan (2005)660

⟨fvisc⟩𝑖 =
∑︁
𝑗∈Ω

16`𝑖` 𝑗

`𝑖 + ` 𝑗

v𝑖 𝑗 · r𝑖 𝑗
𝑟2
𝑖 𝑗

∇W𝑖 𝑗 Δ𝑉 𝑗 , (C8)

where a factor of 16 (rather than 4) was argued for the leading coefficient. As before, Grenier et al.661

(2009) propose the modification,662

≺ fvisc ≻𝑖 =
∑︁
𝑗∈Ω

8`𝑖` 𝑗

`𝑖 + ` 𝑗

(
1
Γ𝑖

+ 1
Γ 𝑗

) v𝑖 𝑗 · r𝑖 𝑗
𝑟2
𝑖 𝑗

∇W𝑖 𝑗 Δ𝑉 𝑗 , (C9)

to provide a correction at the free surface. In this work, we chose to preserve angular momentum663

and employ Eq. (C9) for the viscosity.664

APPENDIX D665

Heat Conduction and the Transfer of Heat from the Environment666

The heat conduction equation,667

𝑑𝑈

𝑑𝑡
=

1
𝜌
∇ · (^∇𝑇) , (D1)

involves the scalar Laplacian, and the derivation is identical to the viscosity. We therefore have668 〈
𝑑𝑈

𝑑𝑡

〉
𝑖

=
1
𝜌𝑖

∑︁
𝑗∈Ω

4^𝑖^ 𝑗
^𝑖 + ^ 𝑗

(𝑇𝑖 −𝑇𝑗 )𝐹𝑖 𝑗 Δ𝑉 𝑗 , (D2)

where the identity in Eq. (A6) has been used to replace the gradient term to match the form given669

in Cleary and Monaghan (1999).670
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As discussed in Section b, to transfer heat to the snowflake from the surrounding environment671

requires the evaluation of672 ∑︁
𝑗∈Ωair

𝐹𝑖 𝑗 Δ𝑉air , (D3)

without explicitly simulating air SPH-particles. To do this, we use the identity673 ∫
Ωair

𝐹 (∥r− r′∥) 𝑑𝑉 ′ =

∫
Ω

𝐹 (∥r− r′∥) 𝑑𝑉 ′−
∫
Ω/Ωair

𝐹 (∥r− r′∥) 𝑑𝑉 ′. (D4)

The first term on the RHS can be compute analytically, and we find674 ∫
Ω

𝐹 (∥r− r′∥) 𝑑𝑉 = −
〈
∥r− r′∥−2〉 . (D5)

The result for the Wendland C2 kernel is given in Eq. (A8). The second term can be approximated675

as an SPH sum, since it is over the non air SPH-particles giving the desired result,676

∑︁
𝑗∈Ωair

𝐹𝑖 𝑗 Δ𝑉air ≈ −©«
〈
∥r− r′∥−2〉 + ∑︁

𝑗∈Ω/Ωair

𝐹𝑖 𝑗 Δ𝑉 𝑗
ª®¬ . (D6)

To impose continuity between the interior SPH solution and exterior boundary condition, we solve677

4𝜋^𝑟min(𝑇∞−𝑇air) =
∑︁

all particles
𝑚

〈
𝑑𝑈

𝑑𝑡

〉
(D7)

for 𝑇air which results in,678

𝑇air =

𝜋^air𝑟min𝑇∞ +∑
𝑖

^𝑖^air
^𝑖+^air

(〈
∥r− r′∥−2〉 + ∑

𝑗∈Ω/Ωair

𝐹𝑖 𝑗 Δ𝑉 𝑗

)
𝑇𝑖Δ𝑉𝑖

𝜋𝑟min^air +
∑
𝑖

^𝑖^air
^𝑖+^air

(〈
∥r− r′∥−2

〉
+ ∑

𝑗∈Ω/Ωair

𝐹𝑖 𝑗 Δ𝑉 𝑗

)
Δ𝑉𝑖

, (D8)

where the sum over 𝑖 is taken over all simulated SPH-particles.679

APPENDIX E680
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Time Integration681

To advance the simulation the kick-drift-kick approach proposed by Monaghan (2005) is used.682

Specifically, the velocities are “kicked" first as683

v𝑡+ 1
2
= v𝑡 +a𝑡

(
Δ𝑡

2

)
, (E1)

and the positions are drifted as684

r𝑡+1 = r𝑡 +v𝑡+ 1
2
Δ𝑡 , (E2)

where a𝑡 is the SPH-particle acceleration computed in the previous step. The density, volume685

strain rate, and forces are computed using the new positions and velocities, and the final kick is686

computed as687

v𝑡+1 = v𝑡+ 1
2
+a𝑡+1

Δ𝑡

2
, (E3)

as well as the thermal and volume updates688

Δ𝑉𝑡+1 = Δ𝑉𝑡 +Δ𝑉𝑡≺ ∇ ·v ≻Δ𝑡 , (E4)

𝑇𝑡+1 = 𝑇𝑡 +
〈
𝑑𝑇

𝑑𝑡

〉
Δ𝑡 , (E5)

𝑈𝑡+1 =𝑈𝑡 +
〈
𝑑𝑈

𝑑𝑡

〉
Δ𝑡 . (E6)
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To set the timestep, following Morris (2000), we use the constraints,689

Δ𝑡 ≤ 0.25
ℎ

𝑐
, (E7)

Δ𝑡 ≤ 0.25
(
𝜌ℎ3

2𝜋𝜎

)1/2

, (E8)

Δ𝑡 ≤ 0.25
(

ℎ

𝑎max

)1/2
, (E9)

Δ𝑡 ≤ 0.125
𝜌ℎ3

`
, (E10)

Δ𝑡 ≤ 0.15𝜌𝑐aℎ2/^ , (E11)

where 𝑎max is the magnitude of the largest particle acceleration, and the last criteria is the ther-690

mal conduction constraint from Cleary and Monaghan (1999) where ^ is taken as the largest691

conductivity.692
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