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Abstract

We present a comprehensive analysis of the processes that lead to quasilinear pitch-angle-scattering loss of electrons from the L <

4 region of the Earth’s inner magnetosphere during geomagnetically quiet times. We consider scattering via Coulomb collisions,

hiss waves, lightning-generated whistler (LGW) waves, waves from ground-based very-low frequency (VLF) transmitters, and

electromagnetic ion cyclotron (EMIC) waves. The amplitude, frequency, and wave normal angle spectra of these waves are

parameterized with empirical wave models, which are then used to compute pitch-angle diffusion coefficients. From these

coefficients, we estimate the decay timescales, or lifetimes, of 30 keV - 4 MeV electrons and compare the results with timescales

obtained from in-situ observations. We demonstrate good quantitative agreement between the two over most of the L and

energy range under investigation. Our analysis suggests that the electron decay timescales are very sensitive to the choice of

plasmaspheric density model. At L < 2, where our theoretical lifetimes do not agree well with the observations, we show that

including Coulomb energy drag (ionization energy loss) in our calculations significantly improves the quantitative agreement

with the observed decay timescales. We also use an accurate model of the geomagnetic field to provide an estimate of the effect

that the drift-loss cone has on the theoretically-calculated electron lifetimes, which are usually obtained using an axisymmetric

dipole field.

1



manuscript submitted to JGR: Space Physics

Quantifying radiation belt electron loss processes at1

L < 42

S. G. Claudepierre1, Q. Ma1,2, and J. Bortnik1
3

1Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, California, USA4
2Center for Space Physics, Boston University, Boston, Massachusetts, USA5

Key Points:6

• Coulomb energy drag is an important electron loss process at L ≤ 2 and should7

not be neglected in theoretical and numerical treatments8
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Abstract13

We present a comprehensive analysis of the processes that lead to quasilinear pitch-14

angle-scattering loss of electrons from the L < 4 region of the Earth’s inner magneto-15

sphere during geomagnetically quiet times. We consider scattering via Coulomb colli-16

sions, hiss waves, lightning-generated whistler (LGW) waves, waves from ground-based17

very-low frequency (VLF) transmitters, and electromagnetic ion cyclotron (EMIC) waves.18

The amplitude, frequency, and wave normal angle spectra of these waves are parame-19

terized with empirical wave models, which are then used to compute pitch-angle diffu-20

sion coefficients. From these coefficients, we estimate the decay timescales, or lifetimes,21

of 30 keV - 4 MeV electrons and compare the results with timescales obtained from in-22

situ observations. We demonstrate good quantitative agreement between the two over23

most of the L and energy range under investigation. Our analysis suggests that the elec-24

tron decay timescales are very sensitive to the choice of plasmaspheric density model.25

At L < 2, where our theoretical lifetimes do not agree well with the observations, we26

show that including Coulomb energy drag (ionization energy loss) in our calculations sig-27

nificantly improves the quantitative agreement with the observed decay timescales. We28

also use an accurate model of the geomagnetic field to provide an estimate of the effect29

that the drift-loss cone has on the theoretically-calculated electron lifetimes, which are30

usually obtained using an axisymmetric dipole field.31

1 Introduction32

The high-energy tail of the plasma in near-Earth space is trapped by the geomag-33

netic field, forming the Van Allen radiation belts that encircle the Earth. Various phys-34

ical processes can rapidly accelerate these charged particles to prodigious energies, in ex-35

cess of one megaelectron volt (MeV), on timescales of one day or less (Li & Hudson, 2019,36

and references therein). Particles are removed from the belts on similar timescales via37

drift to the magnetopause and through interactions with the rich variety of plasma waves38

that populate the inner magnetosphere and precipitate the particles into the atmosphere39

(Ripoll et al., 2020, and references therein). The state of the belts at any instant in time40

is thus a balance between the numerous competing source and loss processes.41

At the outset of strong geomagnetic disturbances and/or after the arrival of solar42

wind transient structures, both rapid source (e.g., in-situ local acceleration via whistler-43

mode chorus waves) and rapid loss (e.g., loss to the compressed magnetopause) processes44

become enhanced. These processes can dramatically alter the global configuration of the45

belts on timescales on the order of a few minutes or less. Outside of these rapid changes,46

the quiescent state of the belts is largely determined by two competing processes, inward47

radial transport, which acts as a source, and pitch-angle scattering, which removes par-48

ticles from the belts and precipitates them into the Earth’s upper atmosphere. Both of49

these processes are usually described with a quasilinear Fokker-Planck diffusion equa-50

tion and are mediated by resonant wave-particle interactions. Ultralow frequency waves,51

∼mHz fluctuations in the inner magnetospheric electric and magnetic fields, are the pre-52

dominant driver of the inward radial diffusion (Lejosne & Kollmann, 2020). In this work,53

we focus our attention on the slow, steady particle decays that are the hallmark signa-54

ture of pitch-angle diffusion.55

In our previous work (Claudepierre et al., 2020b), we identified exponential decays56

in Van Allen Probe (Mauk et al., 2013) radiation belt electron flux measurements, from57

which we computed mean decay (e-folding) timescales as a function of the McIlwain L58

parameter (L ∼ 1−6) and energy (∼30 keV - 4 MeV). In a companion paper (Claudepierre59

et al., 2020a), we compared the observed decay timescales with theoretical expectations60

for pitch-angle diffusion from plasmaspheric hiss waves, ground-based very-low frequency61

(VLF) transmitter waves, electromagnetic ion cyclotron (EMIC) waves, and Coulomb62

collisions with neutral particles in the Earth’s upper atmosphere and charged particles63
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in the ionosphere. Good qualitative agreement was found between the observed decay64

timescales and our theoretical estimates. However, quantitative agreement was lacking65

in some portions of L-energy space, particularly in the inner zone (L < 2.5) where cal-66

culated lifetimes from pitch-angle diffusion were ∼1 order of magnitude larger than the67

observed decay timescales. Several known shortcomings in our treatment and approach68

were described in Claudepierre et al. (2020a), which we revisit in what follows.69

The remainder of this paper is structured as follows. In Section 2, we describe the70

theory and methods that we use, along with the pitch-angle scattering processes that are71

included in our theoretical calculations. In particular, we provide an updated treatment72

of scattering via VLF and low frequency (LF) transmitter waves that is based on recent73

work (Ma et al., 2022; Gu et al., 2021; Meredith et al., 2019). We also describe the ex-74

plicit incorporation of lightning-generated whistler (LGW) waves into our scattering cal-75

culations, which was ad-hoc in our original treatment. We compare these revisions to76

our earlier work in Section 3.1, where we also provide a rough calculation of the effect77

that the drift loss cone has on electron decay timescales in the inner radiation belt re-78

gion. In Section 3.2, we explore the sensitivity of the lifetime calculations to the choice79

of plasmspheric density model. The importance of ionization energy loss, sometimes re-80

ferred to as “Coulomb energy drag,” in producing loss in the inner belt has been empha-81

sized recently by Albert et al. (2020) and we investigate this in Section 3.3. Here, 2D82

(pitch angle and momentum) Fokker-Planck simulations are used as a tool for analysis.83

A brief discussion of the findings is presented in Section 4 and concluding remarks are84

given in Section 5.85

2 Theory and Methods86

2.1 1D Pitch-Angle Diffusion87

Pitch-angle diffusion is described by the modified Fokker-Planck equation (e.g., Lyons88

& Thorne, 1973):89

∂f

∂t
=

1

G

∂

∂α

(
DααG

∂f

∂α

)
(1)

where f is the distribution function (phase space density), α is the equatorial pitch an-90

gle, and Dαα is the bounce-averaged pitch-angle diffusion coefficient. The Jacobian fac-91

tor, G, for transforming from adiabatic invariant coordinates is given by G = T (α) sin(2α),92

where T ≈ 1.30 − 0.56 sinα is a term that approximates the pitch-angle dependence93

of the normalized bounce time along a dipole field line.94

Under the assumption that the solution to Equation (1) is separable, i.e., that f(α, t) =95

g(α)h(t), and that the time dependence follows exponential decay (h(t) ∼ exp(−t/τ)),96

we obtain a 1D ordinary differential equation (ODE) for the evolution in pitch angle:97

1

G

d

dα

(
DααG

dg

dα

)
= −1

τ
g (2)

When considered over the pitch-angle interval from the loss cone angle (αL) up to 90◦98

and formulated with the usual boundary conditions, e.g.,:99

g = 0 at α = αL and
dg

dα
= 0 at α = π/2, (3)

this second-order linear ODE is of the “Sturm-Liouville” type (Powers, 1999). The fam-100

ily of solutions is described in terms of eigenfunctions, g(α), and the associated eigen-101

values, λ = 1/τ . Under modest continuity assumptions on the diffusion coefficient, Dαα,102
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Sturm-Liouville theory guarantees that the eigenvalues (λ1, λ2, λ3, . . .) that correspond103

to each eigenfunction (g1, g2, g3, . . .) are real and ordered, such that λ1 < λ2 < λ3 <104

· · · . Initially, the solution to Equation (1) will consist of the superposition of multiple105

different eigenmodes. However, once this initial transient behavior subsides, the long-106

term evolution will be that of exponential decay of the lowest order eigenmode, g1(α),107

on the longest timescale τ1 = 1/λ1. In what follows, we will omit the subscript 1 and108

refer to this lowest-order solution, g(α) = g1(α), uniquely as the “slowest decaying eigen-109

mode” (SDE) of the pitch-angle diffusion process, which decays with the e-folding timescale110

τ = τ1. An approximate solution for this decay timescale of the SDE, or “lifetime,” is111

given by the explicit integral (Albert & Shprits, 2009):112

τ ≈
∫ π/2

αL

1

2Dαα tanα
dα (4)

2.2 Pitch-Angle Diffusion Coefficients113

One of the primary goals of this work is to consider several mechanisms that pro-114

duce quasilinear pitch-angle diffusion, calculate the decay timescales associated with each115

process, and compare the results with observed decay timescales. Solving for the decay116

timescale, τ , from either Equation (2) (subject to the indicated boundary conditions)117

or Equation (4), requires the specification of the pitch-angle diffusion coefficient, Dαα.118

We obtain these coefficients in the usual manner following the methods described119

in our previous work (Claudepierre et al., 2020a). Briefly, we use the Full Diffusion Code120

(Ni et al., 2008) to calculate the bounce-and-drift-averaged diffusion coefficients in a dipole121

field using the plasma density model of Ozhogin et al. (2012) at L < 4. For the scat-122

terings due to wave-particle interactions, we specify the amplitudes, frequency spectra,123

and wave normal angle spectra from various empirical wave models (see below). The magnetic-124

latitudinal range for the interactions is assumed to be ±45◦ for hiss and EMIC waves,125

and from the equator to the altitude of 800 km for the transmitter and LGW waves. Res-126

onant harmonics between ±10 are considered and the calculations are performed on a127

grid in L from 1 to 4 (∆L = 0.1), energy from 0.1 keV to 10 MeV (in 71 logarithmically-128

spaced channels), and equatorial pitch angle from 1◦ to 89.5◦ (∆α = 2◦). For the scat-129

terings due to Coulomb collisions, we follow the methodology of Abel and Thorne (1998),130

obtaining the atmospheric neutral species (N2, O2, Ar, He, O, H, N) from the MSIS90131

empirical model (Hedin, 1991) and the charged species (e−, NO+, O+, O+
2 , H

+, He+,132

N+) from the IRI2016 model (Bilitza et al., 2017).133

There are several wave modes that are known to be important for scattering elec-134

trons in pitch angle in the inner radiation belt and slot region (L < 4). Hiss is a broad-135

band (f ≈ 100 Hz - 1 kHz), incoherent whistler mode wave that occurs primarily in the136

high density plasmasphere. Wave amplitudes vary with geomagnetic activity, with typ-137

ical values in the 10-100 pT range, and are most intense on the dayside. Lightning gen-138

erated whistler (LGW) waves are waves injected into the L < 4 region from the tro-139

posphere following lightning strikes. The waves reflect within the plasmaspheric cavity140

and eventually migrate to a preferred L-shell region dictated by the local lower-hybrid141

resonance frequency. LGW waves are typically discrete, impulsive events with wave fre-142

quencies on the order of a few kHz and amplitudes in the ∼1-10 pT range. VLF trans-143

mitter waves are whistler mode waves that are injected into the L < 3 region from high-144

powered, ground-based radio wave transmitters. These waves, with amplitudes of sev-145

eral pT, are essentially monochromatic and propagate at the transmitting frequency of146

the station (typically ∼15-25 kHz). Both LGW and VLF transmitter waves have a strong147

asymmetry in magnetic local time (MLT), with more intense amplitudes on the night-148

side due to collisional damping in the D-region ionosphere.149
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Table 1. Summary of Wave Models and Scattering Calculations Used to Define Each Lifetime

Model

Lifetime τ τ LC Hiss LGW VLF Coulomb EMIC
Model (LM) Method Assumption Model Model Model Model Model

LM0a Approx.b Dipole A n/ad A A A
LM1 Exactc Dipole A n/ad A A A
LM2 Exactc Dipole A n/ad B A A
LM3 Exactc Dipole B B B A A
LM4 Exactc DLC/IGRF B B B B A

aThe setup used in Claudepierre et al. (2020a)
bCalculated from Equation (4)
cObtained via shooting method on Equation (2)
dAd-hoc incorporation into hiss model A (see text)

2.3 Empirical Wave and Scattering Models150

Table 1 organizes the scattering models and calculation characteristics that we will151

use in the present study. For example, “lifetime model 0” (LM0) represents the empir-152

ical wave models and assumptions that were used in Claudepierre et al. (2020a). Each153

subsequent row in the table corresponds to a different lifetime model that we will con-154

sider, making progressive refinements to the baseline model, LM0. The second column,155

“τ Method,” indicates whether the approximate formula (Equation (4)) is used to com-156

pute the lifetime, or whether the exact solution is obtained. The exact calculation is per-157

formed by solving the 1D ODE (Equation (2)) for τ and the equilibrium eigenfunction,158

g, via a shooting method (e.g., Albert, 1994; Albert et al., 2020). The third column in159

the table, “τ LC Assumption,” indicates whether the dipole field loss cone (LC) angle160

is used when calculating τ from Equation (2) or Equation (4), or whether the drift-loss161

cone angle (DLC) from the International Geomagnetic Reference Field (IGRF; Alken162

et al. (2021)) model is used. The subsequent columns in Table 1 (Hiss, LGW, . . .) de-163

note the scattering models as either “Model A,” our original baseline empirical wave and164

Coulomb models from Claudepierre et al. (2020a), or “Model B,” which represent refine-165

ments of each Model A.166

Hiss model A is defined using the statistical wave frequency spectrum obtained in167

Li et al. (2015), along with the statistical amplitudes and their dependence on Kp from168

Spasojevic et al. (2015), and the wave normal angle spectrum from (Ni et al., 2013). In169

Claudepierre et al. (2020b), we extrapolated the hiss spectrum from 4 to 7 kHz as an ap-170

proximate way to incorporate lightning generated whistler (LGW) waves into our cal-171

culations. Thus, there is no model A for LGW in Table 1. Model B for LGW waves uses172

the statistical wave database of Green et al. (2020), who parameterized LGW waves from173

Van Allen Probe measurements at L < 4, carefully distinguishing them from hiss waves174

in the overlapping frequency range. Hiss model B is identical to hiss model A, except175

that the extrapolation of the spectrum from 4 to 7 kHz has been removed.176

VLF model B represents a reformulation of the empirical VLF model A (Ma et al.,177

2017) and is described in greater detail in Ma et al. (2022). The most notable differences178

are that the statistical database was extended in time from 2016 to the end of the Van179

Allen Probes mission in 2019, that the dependence on geomagnetic activity was removed,180

and that the frequency range was extended from 30 kHz up to 200 kHz to account for181

non-negligible transmitter wave power observed at these higher frequencies. In addition,182

both the wave normal angle variation with latitude and the power ratio between ducted183

and unducted wave intensity were changed to follow recent work from Gu et al. (2021).184
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This study found that unducted propagation dominates over ducted propagation in both185

the occurrence and intensity of the waves.186

In the present study, the EMIC model is not changed from that used in Claudepierre187

et al. (2020b) and is only mentioned in passing since the focus of this work is on loss timescales188

at L < 4. In this region in the empirical wave model, the EMIC wave amplitudes are189

small and only reach appreciable levels for high geomagnetic activity. In addition, the190

EMIC waves from the empirical model mainly affect higher energy electrons than the191

energy range (30 keV - 4 MeV) under consideration in this study.192

Finally, Coulomb model B is identical to Coulomb model A, except that the drift-193

loss cone (DLC) angle is used instead of the dipole loss cone angle in the diffusion co-194

efficient calculations. Figure 1 compares these two angles (in red and cyan curves, re-195

spectively) indicating that there can be significant differences at L ≲ 2.5. Thus, we an-196

ticipate that this should have an effect on the lifetimes in this region. We note that the197

wave scattering models (hiss, LGW, VLF, and EMIC) are not changed when the DLC198

angle is used in place of the dipole angle since, when computing the diffusion coefficients,199

the choice of loss cone angle is only relevant for Coulomb scattering. Thus, there is no200

model C for hiss, LGW, VLF, or EMIC; model B can be used when the DLC effects are201

considered below. Although the magnetic field lines at different longitudes in the IGRF202

model are considered in Coulomb model B, the neutral and charged particle density pro-203

files are the same between Coulomb models A and B, because each field line in the IGRF204

model will pass through different MLTs over time.205

Figure 1. Comparison of the equatorial loss cone angle in a dipole field (cyan) with the

bounce and drift loss cone angles obtained from the IGRF model. The black curve shows the

BLC averaged over all longitudes, the grey curve shows the minimum value over all longitudes,

and the red curve shows the maximum value over all longitudes i.e., the DLC angle.

3 Results206

In this section, we begin by comparing the observed lifetimes with the various re-207

visions to our lifetime models under 1D pitch angle diffusion. In Section 3.2, we exam-208

ine the role of the plasmspheric density in controlling the lifetimes, and we compare our209

lifetimes with Albert et al. (2020), who present similar lifetime calculations but treat LGW210

and VLF waves using a different approach. Finally, in Section 3.3, we analyze the Coulomb211

energy drag process using 2D simulations.212
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3.1 Comparison of the Different Lifetime Models Under 1D Pitch An-213

gle Diffusion214

Figure 2 compares the observed decay timescales obtained in Claudepierre et al.215

(2020b) with those calculated from the theoretical lifetime models (LMs) described above216

(i.e., Table 1). Before we make the comparisons, we remark on a couple apparent dif-217

ferences between the results present in Figure 2 and those presented in Claudepierre et218

al. (2020b). First, we note that the curves from the five LMs are less smooth than those219

in shown in Claudepierre et al. (2020a) because in our previous work we interpolated the220

theoretical lifetimes to the observed energy and L bins. In the present study, there is no221

interpolation and the nearest energy bins are used (the L resolution is the same, 0.1L).222

The energy channel labels shown in the figure are taken from the observations, but the223

channels that were used in the diffusion coefficient/lifetime calculations are quite close,224

typically within <5% of the observed channel. Aside from these distinctions, the blue225

curve for LM0 and the observed lifetimes shown in Figure 2 are the same as presented226

in Claudepierre et al. (2020a).227

Figure 2. Comparison of observed decay timescales (black/grey) with theoretical calculations

(colors) for Kp = 0 and 5 different lifetime models (LMs; see Table 1). Each panel shows the

lifetime profiles versus L at a fixed energy, and the 5 lifetime models are summarized as follows:

LM0: Claudepierre et al. (2020a); LM1: Exact lifetime calculation (shooting method); LM2: Re-

vision of VLF transmitter scattering; LM3: Explicit inclusion of scattering due to LGW waves;

and LM4: Use of the IGRF drift-loss cone angle when computing the lifetime.

As described in Claudepierre et al. (2020b), the qualitative trends in Figure 2 are228

consistent between the theoretical calculation using LM0 and the observed lifetimes. For229

example, the longest lifetimes are found in the inner zone at L < 2, and the lifetimes230

generally decrease with increasing L at L > 2. At fixed L in the inner zone, say L =231

1.5, both the theoretical lifetimes from LM0 and the observed lifetimes increase with in-232

creasing energy. Similarly, in the slot region at fixed L, say L = 3, both the theoreti-233

cal and observed lifetimes display a local minimum near 500 keV. In contrast to this good234

qualitative agreement, the quantitative agreement between LM0 and the observed de-235

cay timescales is poor in many regions of L-energy space, where order-of-magnitude (or236

greater) differences are noted at L < 3 across all energies.237
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As a first iteration on our baseline calculation, LM0, we highlight LM1 as the or-238

ange curves in Figure 2. In LM1, the lifetimes are calculated exactly via a shooting method239

on Equation (2), rather than with the approximate formula (Equation (4)) that was used240

for the calculations in LM0. Comparing LM0 with LM1, we see an overall reduction in241

lifetimes by a factor of ∼2 across all L and energy (E) bins. (Note that in some L/E242

bins, the orange curve is not always distinguishable from other curves that may over-243

lap it.) This indicates that the approximate formula derived by Albert and Shprits (2009)244

results in lifetimes larger than the exact calculation by a factor of ∼2x, on average. In245

all subsequent calculations, we use the exact formulation to compute lifetimes from the246

pitch-angle diffusion coefficients.247

As an iteration on LM1, we now consider the revisions to our VLF transmitter wave248

empirical model described in Section 2.3. Comparing the theoretical lifetimes from LM1249

(orange curves) with this iteration, LM2 (green curves), reveals that the impact of the250

revisions is minimal, especially at lower energy (E < 100 keV; panel (a)). The only ap-251

preciable differences are at higher energies (panel (b)) between L ≈ [1.3, 1.8], where the252

lifetimes in LM2 are reduced relative to LM1.253

This reduction in electron lifetimes is mainly due to the more accurate wave nor-254

mal angle distributions, and partly due to the inclusion of the LF (30 - 200 kHz) trans-255

mitter waves. We consider the L shell and latitude dependencies of wave normal angles256

for unducted transmitter waves in LM2 based on ray-tracing results (Gu et al., 2021; Ma257

et al., 2022). The LF transmitter waves could resonate with electrons at lower energies258

or higher pitch angles than the waves at frequencies below 30 kHz, although the LF trans-259

mitter wave power is much weaker.260

More pronounced changes are seen when comparing LM2 (green curves) with LM3261

(purple curves), where the LGW waves are explicitly incorporated into the scattering262

calculations. For example, at 102 keV, we see that the LGW waves reduce the lifetimes263

by nearly an order of magnitude at L ≈ 2.5 and generally reduce the lifetimes across264

a broad spatial region from L ≈ 2 to 3.5. Similar lifetime reductions relative to LM2265

are seen at both lower and higher energies, with the spatial region of influence moving266

progressively earthward with increasing energy. This is in accordance with the roughly267

L−6 scaling of the minimum energy expected for cyclotron resonance with whistler mode268

waves for the magnetic field and plasma density models used here (Mourenas et al., 2012;269

Ma et al., 2016; Claudepierre et al., 2020a).270

The incorporation of the LGW waves into LM3 produces another interesting ef-271

fect relative to LM0. As described in Claudepierre et al. (2020a), the local minimum in272

the LM0 lifetimes near L ≈ 2 at the lower energies (panel (a)) is due to scattering from273

the VLF transmitter waves, which produces a bifurcation in the inner belt (see also Hua274

et al. (2020)). When the LGW waves are explicitly included in LM3, the second local275

maxima in the lifetimes (the one at higher L) is reduced, so that the “valley” produced276

by the local minimum is less pronounced in LM3 relative to LM0. This leads to a bet-277

ter agreement between LM3 and the observed lifetimes, where the local minimum due278

to VLF wave scattering is observed but is less pronounced than in LM0. In general, the279

inclusion of the electron scattering from LGW waves has the largest impact of the ef-280

fects considered in Figure 2 and brings our theoretical calculations into better agreement281

with the observed decay timescales.282

As a final iteration, we consider the influence that the drift loss cone can have on283

the decay timescales in the low L region (i.e., Figure 1). By definition, an electron that284

is pitch-angle scattered into the bounce loss cone will be lost from the belts in one-quarter285

bounce time, whereas an electron that is scattered into the drift loss cone will be lost286

within one drift period. Since we are considering drift-and-bounce-averaged electron dy-287

namics and decays that occur over multi-day timescales, the drift loss cone angle is the288
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more relevant loss cone angle for scattering losses (i.e., the electron drift periods are much289

less than the multi-day timescales in question).290

Lifetime model 4 (LM4) in Figure 2 shows the effect of using the IGRF drift loss291

cone angle in place of the dipole loss cone angle when computing the lifetimes. While292

the exact shooting calculation is used here, a consideration of the integral in Equation (4)293

immediately illustrates the effect: Using the DLC angle in place of the BLC angle in the294

integration limits will result in reduced lifetimes. Indeed, this is borne out in the calcu-295

lated lifetimes shown in Figure 2. The largest differences are at L ≲ 1.5, since this is296

where the BLC and DLC angles differ most significantly. Here, the lifetimes are reduced297

in LM4 relative to LM3 by a factor of ∼2-5 at L = [1.4, 1.6], and by an order of mag-298

nitude or more at L ≤ 1.3. At higher L > 1.7, the lifetimes are reduced by a smaller299

amount, ∼20% or less.300

It is interesting to note that while the differences between LM3 and LM4 trend with301

L as one might expect based on the differences between the DLC and BLC angles shown302

in Figure 1, this behavior is not seen consistently across all energies shown. For exam-303

ple, comparing LM3 and LM4 at 102 keV, there is little difference in the lifetimes at L >304

3, while at 1.54 MeV there are clear differences at L > 3. While the only distinction305

between LM3 and LM4 is the choice of loss cone angle, there are other more subtle fac-306

tors that may lead to this peculiarity. For example, the relative effectiveness of the var-307

ious scattering mechanisms (e.g., hiss vs LGW) near the loss cone is different at differ-308

ent energies.309

It is clear that the lifetimes obtained from LM3/LM4 represent an improvement310

on LM0, as we have obtained better quantitative agreement with the observations. Thus,311

we proceed with LM3 as our new “baseline” model for further analysis and comparisons.312

While the effect of the drift loss cone demonstrated in LM4 is important, particularly313

at L < 1.5, LM3 is most readily compared with previous works in this area since nearly314

all such efforts use the dipole-field loss cone angle when computing lifetimes. It is also315

important to acknowledge and emphasize that the improved agreement demonstrated316

between the observed decay timescales and those from LM3 should not be interpreted317

to mean that LGW waves are more important than the other scattering mechanisms in318

the L < 4 region. Their impact is obvious in Figure 2 relative to the other effects con-319

sidered because LGW waves were absent from our earlier work.320

3.2 Lifetime Sensitivity to Plasma Density and Comparisons with Al-321

bert et al. (2020)322

Albert et al. (2020) and Starks et al. (2020) have taken a different approach to an-323

alyzing the role of LGW and VLF transmitter waves in inner zone lifetimes. Rather than324

use statistically-averaged empirical wave models, as we have done here, they model the325

waves from their ground sources to 660 km altitude using a full-wave code, and then use326

raytracing to propagate the waves into the L < 4 region. Given these contrasting tech-327

niques, it is instructive to compare the theoretical lifetimes from our approach with theirs,328

all relative to the observed decay timescales.329

The Albert et al./Starks et al. calculation provides profiles of the LGW and VLF330

wave electric and magnetic fields organized by L, from which they compute diffusion co-331

efficients using the single-wave formulation of Albert (2010). For the plasmaspheric den-332

sity model, they use a relatively full (“dens-high”) and a relatively empty version (“dens-333

low”) of the diffusive equilibrium model of Angerami and Thomas (1964). Figure 3 com-334

pares these two density models with the one used in this study (Ozhogin et al., 2012),335

alongside the Hartley et al. (2018) model, which was constructed using plasmaspheric336

hiss measurements. Since the prevalence of ducting due to field-aligned plasmaspheric337

density enhancements/depletions is not well constrained (Gu et al., 2021), Albert et al.338

(2020) calculate ducted solutions by setting the wave normal angle to 0◦ and restrict-339
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ing to strict parallel propagation (unducted solutions are obtained without any restric-340

tions on the propagation). Their models of hiss and Coulomb scattering are similar to341

what we have used.342

Figure 3. Comparison of the electron density model used in this study (Ozhogin et al. (2012);

red curve) with those used in Albert et al. (2020) (black/grey curves) and the hiss-inferred val-

ues from the empirical model of Hartley et al. (2018). The dashed portion of the Ozhogin et al.

(2012) profile is an extrapolation of the model below its region of validity (to altitudes <2000

km). The Hartley et al. (2018) curve is the median over all magnetic latitudes (their Figure 6d).

Figure 4 compares the lifetimes obtained in Albert et al. (2020) (henceforth, “A20”)343

with our lifetime model 3 (LM3). For the A20 lifetimes obtained using their dens-low344

plasmasphere model (left column, panels (a)-(d)), we see that our theoretical calcula-345

tions are similar to theirs below L = 1.5, in terms of both the maximum lifetime and346

the shape of the profile in L. Note that the theoretical lifetimes calculated in this region347

disagree significantly with the observed values, larger by factors ∼5-10 for both LM3 and348

A20. As L increases, we see that the agreement between our theoretical calculations and349

A20 begins to diverge, with the A20 values larger than our computed lifetimes in the L =350

2−3 region. This disparity may be due to combination of effects, such as the differences351

in how the LGW and VLF waves are treated and/or the use of different plasmspheric352

models. For example, larger electron densities produce smaller lifetimes, all other effects353

being equal, and we see that the electron densities from the dens-low model are some-354

what lower than those from the Ozhogin et al. (2012) model at L ≳ 1.5 (Figure 3). This355

may lead to larger lifetimes from the A20 calculations relative to ours in this region. At356

the higher L values (L > 3), where the hiss wave scattering begins to be the dominant357

scattering mechanism, the A20 lifetimes generally agree with ours since both approaches358

use the same hiss model. We emphasize that the boundaries of the L regions described359

here (i.e., L < 1.5, L = 2 − 3, L > 3) are notional and in reality are energy depen-360

dent, due to the L−6 dependence to the cyclotron resonance condition noted above.361

Comparing the left and right columns in Figure 4 illustrates the sensitivity of the362

theoretical lifetime calculations to the assumed electron density model. First, above L =363

1.5, note that the densities from the dens-low and dens-high models only differ from one364

another by a factor of ∼2-3 (Figure 3), yet the A20 lifetimes can differ by factors on the365

order of 5-10 depending on L. In particular, we see that at L < 1.5, where our LM3366

disagrees significantly with the observed lifetimes, the A20 dens-high lifetimes are in much367

better agreement with the observed values (Figure 4, right column). It is clear that this368

improved agreement over dens-low (and LM3) is solely due to the choice of the density369
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Figure 4. Comparisons with the lifetimes calculated in Albert et al. (2020) for their low

plasmaspheric density model (“dens-low,” (a)-(d)) and their high density model (“dens-high,”

(e)-(h)) at four different energies plotted. The Albert et al. calculations are shown as colored

curves with each of the four curves representing different combinations of ducted (“d”) and un-

ducted (“u”) propagation for LGW (“L”) and VLF (“T”) waves. The observed lifetimes are

shown with black circular symbols and our lifetime model 3 (LM3) is shown in grey with the

shaded region indicating the range of lifetimes for different activity levels, Kp=0-2.

model, since this is the only thing that is different between the left and the right columns370

in Figure 4.371

We emphasize that at L < 1.5, the electron densities from the dens-high model372

are considerably larger than the other density models shown in Figure 3. In particular,373

dens-high begins to diverge from the Ozhogin et al. (2012) empirical model near L =374

2 and is similarly inconsistent with the model of Hartley et al. (2018) at L < 2. At L <375

1.5, we see that the hiss-inferred densities from Hartley et al. (2018) are significantly lower376

than dens-high and are in much better agreement with dens-low. We thus argue that the377

dens-high model densities may be unrealistically large at L < 1.5 and could lead to in-378

accurate lifetime calculations in this region. While the dens-high vs dens-low differences379
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could potentially be appropriate for accounting for day/night asymmetries in the den-380

sity at low L due to the ionosphere, existing experimental evidence cannot confirm such381

a paradigm. Reliable electron density measurements are sparse in this region and there382

are very few data sources with which to compare. Future work using new observations383

will be necessary to fully characterize the appropriateness of the dens-high model at L <384

2. Assuming that the dens-high plasmspheric density model is indeed inaccurate at L <385

2, we thus seek an alternative mechanism to reconcile the disagreement between the ob-386

served lifetimes near L = 1.5 and those calculated from theory.387

3.3 Coulomb Energy Drag Effects388

In addition to their physics-based approach for modeling VLF and LGW wave prop-389

agation and scattering, Albert et al. (2020) also examined how ionization energy loss in-390

fluences electron lifetimes at low L. This consideration necessarily requires the reformu-391

lation of the problem from pure (1D) pitch angle diffusion into a 2D diffusion equation392

in momentum and pitch angle, along with a term that models the Coulomb drag pro-393

cess. Following Albert et al. (2020), we write this equation as:394
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∂t
=

1

G

∂

∂α

[
G

(
Dαα

∂f

∂α
+Dαp

∂f

∂p

)]
+

1

G

∂

∂p

[
G

(
Dαp

∂f

∂α
+Dpp

∂f

∂p

)]
+

1

γp

∂

∂E

[
γp

dE

dt
f

]
(5)

where p is the relativistic momentum, γ is the relativistic factor, E is the electron ki-395

netic energy, and all other variables have been previously defined. We note that the Ja-396

cobian factor, G, for the coordinate transformation in this equation is different from the397

one in the 1D pitch angle diffusion equation (Equation (1)) by a factor of p2 and its def-398

inition is omitted here for brevity. The Coulomb energy drag rate is first calculated at399

different longitudes in the IGRF magnetic field model following the method in Albert400

et al. (2020). Then, the Coulomb energy drag, dE/dt, is obtained as the average of the401

drag rate over all longitudes.402

To solve Equation (5), we follow the computational approach of Albert et al. (2020),403

using the same initial and boundary conditions, which were inferred from Van Allen Probe-404

measured energy spectra and angular distributions. The bounce-and-drift averaged mo-405

mentum (Dpp) and mixed (Dαp) diffusion coefficients are calculated in the same man-406

ner as described above for our pitch angle diffusion coefficients, Dαα. These coefficients407

are specified using lifetime model 3 (LM3) and we conduct a separate simulation at four408

different L values: 1.6, 2.0, 2.4, and 3.1. The simulations are conducted using an energy409

grid with 151 logarithmically-space values between 10 keV to 10 MeV, a pitch-angle grid410

with resolution of 1◦, and a simulation time step of 30 sec. The electron phase space den-411

sities are assumed to be constant at the lower- and upper-energy boundaries. The pitch412

angle boundary conditions are Dαα
∂f
∂α +Dαp

∂f
∂p = 0 at α = 90◦, and f = 0 inside the413

loss cone. The simulation is performed for 4000 days, which is longer than the electron414

lifetimes of interest in this study.415

To investigate the decay timescales associated with the combined effects of quasi-416

linear diffusion and Coulomb energy drag, we carry out simulations as described above.417

Unlike in the 1D pitch angle diffusion case analyzed in Sections 3.1 and 3.2, the long-418

term particle dynamics described by Equation (5) are not that of exponential decay in419

a single eigenmode. Thus, we must use a different approach to define and characterize420

decay timescales the in the simulated fluxes, in order to make meaningful comparisons421

with the observed timescales.422
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3.3.1 Calculating the Decay Timescales from the 1D Simulations423

In the 1D pitch angle diffusion case, obtaining this decay timescale is well-defined424

and straightforward since, by definition, the phase space density will eventually settle425

into the slowest-decaying eigenmode. Figure 5a shows the solution to Equation (5) with426

only the pitch angle diffusion term (Dαα) retained. The simulated phase space density427

is converted to flux (= fp2) and is plotted for the first 700 days of the 4000 day sim-428

ulation for 465 keV electrons at L = 1.6. Aside from the transient behavior at the be-429

ginning of the simulation, it is clear that the fluxes are decaying exponentially at all pitch430

angles over the time interval shown.431

Figure 5. Summary of the results from the 1D ((a) - (c)) and 2D ((d) - (i)) simulations

for 465 keV electrons at L = 1.6. The top row shows the simulated flux plotted against time

with different colored curves for each equatorial pitch angle ((a), (d), and (g)). The middle row

shows the decay timescale, τn, at each time step, n, for all pitch angles ((b), (e), and (h)). The

mean of τn over pitch angle is shown in black. The bottom row shows the mean relative error in

τn expressed as a percentage ((c), (f), and (i)). This error is defined as the standard deviation

of τn (σ(τn)) divided by the mean of τn over all pitch angles, with the 1% error level indicated in

panel (c). In panels (b) and (c), the time in the simulation when the slowest decaying eigenmode

has been reached, Tsde, is indicated. The right column is simply an expanded view of the time

range shown in the middle column.

We can calculate timescale of the slowest-decaying eigenmode from the simulation432

as follows. Following Ni et al. (2013), we define the decay timescale, τn, at each time step,433

tn, of the simulation as:434

τn = − tn+1 − tn
ln[jn+1(α)]− ln[jn(α)]

for n = 1, 2, . . . , 4000 (6)

where jn is the simulated flux at time tn. Panel (b) shows this quantity plotted versus435

simulation time for all equatorial pitch angles. Initially, different pitch angles are decay-436

ing at different rates over a wide range of timescales, ∼200-600 days. Around day 300437

in the simulation, we see that the decay timescales at each pitch angle start to converge438

to the single value of τn ≈ 380 days. We can determine the time it takes to reach this439
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equilibrium state quantitatively by using the mean relative error of the τn values, which440

is plotted in panel (c). This quantity reaches the 1% level at day 439 in the simulation,441

which we define as “Tsde,” the time in the simulation when the slowest decaying eigen-442

mode has been reached.443

We use this 1% level on the mean relative error in τn to obtain the decay timescale444

(τ) and Tsde from the 1D simulations at all energies and at the four L values under in-445

vestigation. These calculations are shown in Figure 6 with the darker red curves. In panel446

(a), the decay timescale obtained from the simulation using this method is shown in dark447

red and labeled “1D sim (eigen)” to indicate that it is the eigenvalue of the pitch-angle448

diffusion operator. For comparison, we also show the values obtained from the shoot-449

ing method on Equation (2) (i.e., the values plotted in Figure 2). These are labeled as450

“1D shoot (eigen)” and are shown with a dashed line in lighter red. The near perfect agree-451

ment between the result obtained from the simulation and the result obtained from the452

shooting method validates our technique of identifying the decay timescales by using the453

mean relative error on τn. Panel (e) shows Tsde in red, where we see that the time to reach454

the equilibrium eigenstate generally increases with increasing energy at this L. The sub-455

sequent columns in Figure 6 (panels (b) & (f), panels (c) & (g), and panels (d) & (h))456

show the same calculations at the other three L values under consideration.457

Figure 6. (a) - (d): A comparison of the decay time scales computed from the 1D pitch-

angle diffusion simulations (“sim”) and those computed directly from the diffusion coefficient

via the shooting method (“shoot”). The curves labeled “eigen” represent the timescales for the

slowest decaying eigenmode, while the curves labeled “initial” represent the timescales obtained

during the initial part of the decay/simulation. (e) - (h): A comparison of the time step in the

simulation at which each state has been reached, either the eigenstate, Tsde, or the end of the of

the initial part of the decay, Tend.

3.3.2 Calculating the Decay Timescales from the 2D Simulations458

We now return to Figure 5 and the question of how to compute decay timescales459

from the 2D simulations. Panel (d) shows the simulated fluxes from the 2D simulation460

without Coulomb energy drag, i.e., the solution to Equation (5) with the last term on461

the right-hand side omitted. The fluxes are again plotted for the first 700 days of the462

simulation, as in panel (a), and we see similar behavior as in the 1D simulation. Dur-463

ing the initial part of the simulation (up to day ∼100), the fluxes at different pitch an-464
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gles are all decaying on different timescales. As the simulation progresses, the fluxes be-465

gin to settle into a single decay timescale of τn ≈ 500 days, reminiscent of the eigen-466

mode in panel (b). However, when viewed on a longer timescale (panels (g) and (h)),467

we see that, while all pitch-angles have collapsed into a single decay timescale, this value468

is time dependent. Thus, one cannot assign a single timescale or lifetime to the decay-469

ing fluxes in the 2D simulations, as alluded to above. Also, note that in this 2D simu-470

lation at this L and energy, the flux decays proceed more slowly than in the 1D case sub-471

ject only to pitch angle diffusion. The additional processes of momentum and cross dif-472

fusion act to inhibit the decay.473

At this point, we turn to the observations as a guide, since we are ultimately try-474

ing to use theory to understand what the measurements show. Deep in the inner zone475

near L ≈ 1.5, the decay timescales observed by the Van Allen Probes are long and the476

fluxes decay over long time intervals (∼100 days), since the decay dynamics are only in-477

terrupted by very strong events like the March 2015 and June 2015 geomagnetic storms.478

However, even with these caveats, it is rare for the fluxes measured in the inner zone to479

decay in isolation for ∼450 days, as the value of Tsde shown in Figure 6 suggests. It is480

really the timescale during the “initial” portion of the decay that we are interested in,481

since this is what is measured. Moreover, this initial portion of the decay is dominated482

by pitch angle diffusion, since this is the fastest process in the 2D simulation. Thus, we483

use this guidance from the observations and our theoretical expectations to extract the484

decay timescales during the initial portions of the simulation, as follows.485

First, at each L and energy bin, we average the simulated flux over the equatorial486

pitch angle range from 70◦ to 90◦. We do so because the observed decay timescales were487

computed using fluxes averaged over roughly this same pitch angle range (Claudepierre488

et al., 2020b). (We note that the decay timescales obtained from the simulations are not489

particularly sensitive to this choice of pitch-angle range; not shown here). Next, we find490

the first time in the simulation in which this averaged flux is decreasing for all subse-491

quent days. This value, denoted T0, is typically within the first ∼10 days of the simu-492

lation and marks the beginning of the time interval that we use to calculate the decay493

timescale. If T0 is found to be less-than-or-equal to day 3, we impose T0 = 3 has a hard494

lower limit, so as to avoid the very initial part of the simulation. The end of this time495

interval, which we denote as Tend, is defined as T0 plus the observed decay timescale (rounded496

up to the next integer day). The reason for using the observed decay timescale to spec-497

ify the upper limit of the time interval is to ensure that we are capturing the decay dur-498

ing the portion of the simulation that is most representative of the time interval over which499

the decay is observed. In the inner zone, the observed decay timescales are less than ∼200500

days, so that the time interval that we use to calculate the decay timescale from the sim-501

ulation, [T0, Tend], is some subinterval of the first ∼200 days of the simulation. If a value502

of Tend is found such that the length of [T0, Tend] is less than 5 days, we increase Tend503

so that the interval length is 5 days. Finally, we fit an exponential to the simulated flux504

over the time interval [T0, Tend] and retain the e-folding time as the decay timescale. If505

the r2 of the fit is less than 0.95, we discard the decay timescale and deem it to be un-506

defined. This situation is only encountered in a few bins of L-energy space. It usually507

arises when the flux is roughly constant and only slightly decaying during the initial part508

of the time interval, after which time the decay rate increases so that there are effectively509

two decay timescales within the time interval (and the fit is thus poor).510

The technique just described will be used in what follows to calculate the decay511

timescales from the 2D simulations. Before we do so, we use the 1D pitch angle diffu-512

sion simulations to evaluate how the timescales obtained with this technique compare513

to those of the equilibrium eigenstate. The top row in Figure 6 (panels (a)-(d)) shows514

the decay timescales obtained from the initial portion of the simulation, [T0, Tend], with515

the label “1D sim (initial)” (green curves). We see that, although the fluxes have not516

settled into the slowest decaying eigenmode, the timescales obtained from the initial por-517
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tion of the simulation are quite similar to the eigenstate timescales of pure pitch angle518

diffusion (the red curves labeled “eigen”). The bottom row in Figure 6 (panels (e)-(h))519

compares the time in the simulation in which the eigenstate is reached (Tsde) with the520

end of the time interval over which the “initial” decay timescale is computed (Tend). We521

see that Tend is typically less than Tsde, confirming that the calculated decay timescales522

are obtained from a time interval before the eigenstate is reached. This “initial time in-523

terval” method, demonstrated here on the 1D simulations, is used in what follows to com-524

pute the decay timescales from the 2D simulations.525

3.3.3 2D Simulation Results with and without Coulomb Energy Drag526

Figure 7 shows the electron decay timescales from the 2D simulations with and with-527

out Coulomb energy drag (magenta and purple curves, respectively). For comparison,528

the decay timescales from the 1D pitch angle diffusion simulations are also shown (green529

curves), which are the same green curves shown in Figure 6. Note that, as demonstrated530

in Figure 6a-d, these decay timescales obtained during the initial portion of the simu-531

lations are a good proxy for the pitch-angle diffusion eigenmode timescales. This allows532

us to link back and compare with the results shown in Sections 3.1 and 3.2 (i.e., the eigen-533

mode timescales shown in Figure 2). The theoretical timescales shown in Figure 7 are534

calculated using the “initial time interval” method described above, with the diffusion535

coefficients from lifetime model 3 (LM3). The top row shows the timescales obtained us-536

ing the Kp = 0 diffusion coefficients, while the bottom row shows those obtained from537

the Kp = 4 coefficients. The observed decay timescales are shown in black in each panel,538

with grey shading to indicate the 1σ error bars on the means.539

Figure 7. Comparison of the electron decay timescales obtained from 2D simulations with

and without Coulomb energy drag (magenta and purple, respectively). Each panel shows the

timescales as a function of energy at a fixed L value. The top row shows timescales from simula-

tions with Kp = 0 diffusion coefficients ((a) - (d)), while the bottom row shows timescales from

simulations with Kp = 4 coefficients ((e) - (h)). The timescales from the 1D pitch-angle diffu-

sion simulations are also shown, for comparison (green curves). The mean observed timescales are

shown with dotted black curves and the grey shaded regions indicate the 1σ error on the means.
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At L = 1.6 in the top row (panel (a)), we see that the best agreement with the540

observed decay timescales is achieved in the 2D simulation where Coulomb energy drag541

is included. The timescales predicted from 1D pitch-angle diffusion (green) and from 2D542

momentum/pitch-angle diffusion (purple) are both much longer than the observed timescales.543

Note that this is the L region identified above where we found the most significant dis-544

agreement between the observed lifetimes and those from our 1D pitch angle diffusion545

lifetime models. The results with energy drag included match well with the observed life-546

times, both in terms of the absolute timescale and its energy dependence. At L = 2.0547

(panel (b)), a similar result is found, where the incorporation of energy drag modifies548

the energy dependence such that it is in better agreement with the observed decay timescales.549

Specifically, by comparing the purple and magenta curves, we see that the influence of550

the energy drag is more pronounced at lower energies relative to higher energies. This551

brings the theoretical calculations with Coulomb drag into better agreement with the552

observed timescales at lower energy. This is consistent with our theoretical expectations,553

since lower energy electrons will participate in more interactions with free and bound554

electrons due to their lower velocities, and thus be subject to greater ionization energy555

loss in the inner region. Collectively, the results shown in panels (a) and (b) suggest that556

Coulomb energy drag is an important loss process in the L < 2 region and should not557

be neglected in theoretical and numerical treatments of inner zone electrons.558

At higher L (L = 2.4, panel (c)), we see that the influence that Coulomb energy559

drag has on the decay timescales is less important than at L ≤ 2, and only apprecia-560

ble at energies less than ∼100 keV. At L = 3.1 (panel (d)), Coulomb energy drag is unim-561

portant across nearly the entire energy range shown. We note that the timescales from562

the 2D simulations (purple and magenta) above 1.5 MeV fail the r2 goodness-of-fit test563

described, which is why the curves abruptly end there. Also, in panel (d), the scale on564

the energy axis is extended to 4 MeV, beyond the ∼1 MeV value used for the upper lim-565

its in panels (a)-(c). This is because, at this L, there are valid observed decay timescales566

at energies in excess of 1 MeV with which we can compare.567

While Coulomb energy drag clearly becomes less important at higher L, as expected,568

there are some unexpected features in the 2D simulations. For example, at L = 2.4 (panel569

(c)), we see that the lifetimes from 1D pitch angle diffusion are lower than those found570

in the 2D simulations across all energies shown. This suggests that there is enhanced mo-571

mentum diffusion in the 2D simulations that opposes the losses from pitch angle diffu-572

sion, which results in longer lifetimes. A similar result is noted at L = 3.1 (panel (d))573

across most of the energy range displayed. Also, at this L, the decay timescales in the574

2D simulations diverge significantly from both the observed values and those from pure575

pitch angle diffusion. One potential explanation for this behavior could be that enhanced576

hiss wave activity, such as that which occurs during more geomagnetically-active times,577

is needed to counterbalance the momentum diffusion that suppresses the losses from pitch578

angle diffusion. For example, at L = 3.1 where hiss wave amplitudes reach their max-579

imum values, the statistical hiss wave amplitudes used to calculate our diffusion coef-580

ficients are twice as large during active times (Kp = 4) versus quiet times (Kp = 0;581

Claudepierre et al. (2020a)). Moreover, at this L, the observed decay timescales are in582

the ∼1-10 day range, and we find that these rapid decays generally occur during more583

active times (not shown here). Thus, one might argue that the Kp = 0 diffusion co-584

efficients are not entirely applicable in this L region and that the observed decays are585

subject to a greater influence from enhanced hiss wave activity.586

We can test this hypothesis by performing an additional set of simulations using587

the Kp = 4 diffusion coefficients. We note that, of the scattering mechanisms consid-588

ered in this work, only the hiss wave scattering has a Kp dependence (our EMIC wave589

model also has geomagnetic activity dependence, but at L ≤ 3.1, the resonance energy590

of EMIC waves is generally higher than 4 MeV, and their statistical wave power is weak).591

The results from the new simulations are shown in the bottom row of Figure 7. At L =592
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1.6 (panel (e)), we see that the decay timescales from the Kp = 4 simulations are es-593

sentially unchanged relative to the Kp = 0 results shown in panel (a). This is expected594

since scattering from hiss waves is negligible at this L due to the small hiss wave am-595

plitudes, and since other scattering processes are more effective here (i.e., Coulomb col-596

lisions and VLF transmitter waves). At L = 2.4 (panels (c) and (g)), we see that the597

Kp = 0 and Kp = 4 theoretical decay timescales are similar at lower energy, whereas598

at higher energy they are reduced in the Kp = 4 case, which brings them into better599

agreement with the observed. This is due to the enhanced hiss wave scattering, which600

preferentially affects the higher energy electrons at this L.601

At L = 3.1 (panels (d) and (h)), the decay timescales at lower energy (< 200 keV)602

are in better agreement with the observations in the Kp = 4 case. Again, this is due603

to the enhanced hiss wave scattering, which influences the entire range of energies at this604

L. However, the calculation of the decay timescales in the 2D simulations in the Kp =605

4 case is complicated by the fact that butterfly distributions begin to form early in the606

simulation at this L (not shown here), due to the presence of momentum diffusion (Albert607

et al., 2016). Our method to calculate the decay timescales from the simulated fluxes,608

which uses fluxes averaged over pitch angles from 70◦ to 90◦, is not well suited for this609

case. In the initial portion of the simulation, the fluxes near 90◦ pitch angle are decay-610

ing, while the fluxes near 70◦ pitch angle are increasing, forming the butterfly distribu-611

tion. Because of this, and the averaging over this pitch angle range, the decay timescales612

computed at energies >200 keV are likely not accurate. Moreover, at energies >700 keV,613

the exponential fits fail the r2 test because of how the butterfly distributions complicate614

the analysis. Further work will be necessary to investigate this case, which will require615

comparisons with observed decay timescales at fixed pitch angle. This is beyond the scope616

of the current study.617

The results from the simulations with the Kp = 4 diffusion coefficients suggest618

that enhanced wave scattering during more active times could potentially explain the619

anomalous features at L = 2.4 an L = 3.1 in the 2D simulations. However, we em-620

phasize that this argument is only intended to be suggestive, since it is unrealistic for621

Kp to be elevated to 4 for the duration of a decay that proceeds with a characteristic622

timescale of 10-100 days. In spite of these difficulties in interpreting the 2D simulation623

results at L > 2, we emphasize that the importance of Coulomb energy drag at L <624

2 has clearly been demonstrated.625

4 Discussion626

The results presented in the previous section are complementary and build upon627

the work of Albert et al. (2020). We have confirmed their result that Coulomb energy628

drag is an important scattering process at L < 2. An important distinguishing feature629

between their work and ours is that we make direct comparisons with the observed de-630

cay timescales that were obtained in Claudepierre et al. (2020b). In addition, we explic-631

itly calculate decay timescales from the 2D simulations with and without Coulomb drag632

for comparisons with the observations. This allows for a more comprehensive evaluation633

of the influence that Coulomb energy drag has on inner belt electron loss timescales, with634

the observed timescales serving as the ground truth.635

However, there are a number of important caveats in our approach to modeling Coulomb636

drag. For example, we did not simulate a specific event, and simple functional forms were637

chosen for the initial conditions: ∼sin2α for the pitch angle distribution and an expo-638

nential for the energy dependence. While these are reasonable choices guided by obser-639

vations, the Coulomb energy drag term in Equation (5) is sensitive to the parameters640

used to specify these functional forms. The initial condition on the angular distributions641

strongly affects the dynamics during the first several days of the simulation and how quickly642

the distribution approaches and evolves into the lowest eigenmode. Strong injections into643
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the inner zone may be more isotropic than the sin2α distribution used here and differ-644

ent dynamics will result. Similarly, the gradients in energy in the distribution function645

(∼ ∂f/∂E) control the overall strength of the Coulomb drag term and the efficiency of646

momentum diffusion in Equation (5). Future work will be necessary to explore this pa-647

rameter space on the initial conditions and simulate specific events to fully quantify the648

role of Coulomb energy drag on inner zone electron dynamics. It is also important to ac-649

knowledge the differences in the methodology used here versus that used in Albert et al.650

(2020). The most notable differences are (1) that we use statistically-averaged empir-651

ical models for the LGW and VLF waves, while they used a physics-based calculation,652

and (2) that we use a plasmasphere density model derived from observations, while they653

used one based on the theoretical consideration of diffusive equilibrium.654

When comparing with the observed timescales, Figure 4 suggests that the unducted655

propagation mode may be a poor assumption for the LGW waves (for either density model).656

Albert et al. (2020)’s lifetimes obtained for ducted LGW propagation agree better with657

the observed lifetimes when their “dens-high” plasmaspheric model is used. At L > 2,658

this density model is in agreement with the Ozhogin et al. (2012) model that we used,659

and we find good agreement between the Albert et al. (2020) lifetimes, those obtained660

in our lifetime model 3 (LM3), and the observed lifetimes. This indicates that we ob-661

tain similar results for VLF and LGW wave scattering despite the two different approaches662

(empirical vs physics-based), assuming ducted propagation for the LGW waves in the663

Albert et al. (2020) results.664

At L < 2, where we find the largest disagreement between our theoretical calcu-665

lations (LM3) and the observed decay timescales, we demonstrated that the Albert et666

al. (2020) lifetimes agree better with the observations. However, we showed that their667

“dens-high” plasmaspheric model is inconsistent with both the Ozhogin et al. (2012) den-668

sity model and the model of Hartley et al. (2018) at L < 2. We thus argue that the agree-669

ment in lifetimes was solely due to the choice of plasmaspheric density model, which may670

be artificially large in this region. While the plasmasphere does not typically erode be-671

low L = 2, some variability in the electron density may be expected based on day/night672

asymmetries related to the ionosphere. Further work will be needed to fully character-673

ize the electron densities at L < 2 and their very important role in controlling electron674

scattering loss.675

It is also important to acknowledge that the equilibrium pitch-angle diffusion eigen-676

mode state may never be reached in observed electron flux decays in the inner regions677

(L < 4). At lower L (L < 2), where the decay timescales are long (>100 days) and678

the decays often proceed uninterrupted, the results presented here suggest that the eigen-679

mode timescale is approached in the observations. However, in the slot region, the de-680

cays proceed rapidly, with characteristic timescales on the order of a few days. This may681

not be of sufficient duration to reach the lowest order eigenmode of the pitch-angle dif-682

fusion operator. We attempted to account for this when calculating the decay timescales683

from our simulations by only looking at the decay during the initial portion of the sim-684

ulation. This again highlights the need to carry out event-specific simulations and com-685

pare the observed decay timescales with those simulated to fully assess whether true equi-686

librium eigenstates are ever realized in inner belt decays.687

5 Summary688

We investigate the factors that contribute to electron precipitation loss in the Earth’s689

radiation belts using the most up-to-date wave models and simulation techniques. In our690

previous work (Claudepierre et al., 2020a, 2020b), we examined electron decay timescales,691

or lifetimes, in the radiation belt region (L = 1.3 to 6). We demonstrated good quali-692

tative agreement between the decay timescales observed by the Van Allen Probes and693

theoretical calculations based on quasilinear pitch-angle diffusion. We considered sev-694
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eral wave and scattering mechanisms in our diffusion calculations: Scattering from hiss,695

EMIC, and VLF transmitter waves, and scattering from Coulomb collisions with neu-696

tral and charged particles in the atmosphere and ionosphere. While good qualitative agree-697

ment was found, quantitative agreement was lacking, particularly in the inner region (L <698

2.5), where the theoretical decay timescales were found to be roughly an order of mag-699

nitude larger than the observed.700

In the current study, we have incorporated lightning-generated whistler (LGW) waves,701

revised our treatment of VLF transmitter wave scattering, considered the role of the drift702

loss cone, and evaluated the impact of Coulomb energy drag. The primary findings of703

this work are summarized as follows:704

1. Coulomb energy drag (ionization energy loss) is an important electron loss pro-705

cess in the L ≤ 2 region and should not be neglected in theoretical and numer-706

ical treatments of inner zone electrons. Including energy drag in our decay timescale707

calculations significantly improves the quantitative agreement with the observed708

timescales at L = 1.6 and L = 2.0.709

2. Electron decay timescales in the L < 4 region are very sensitive to the choice of710

plasmaspheric density model (e.g., Ozhogin et al., 2012; Hartley et al., 2018; Al-711

bert et al., 2020). For example, theoretical decay timescales at L < 1.5 can be712

brought into quantitative agreement with the observed timescales, without invok-713

ing an additional process like Coulomb energy drag, by using a model with elec-714

tron densities that are a factor of 5-10 larger than the Ozhogin et al. (2012) model715

at L < 1.5.716

3. Explicitly incorporating LGW waves into our theoretical lifetime calculations sig-717

nificantly improves the quantitative agreement with the observed electron lifetimes718

at L ≈ [1.8, 3.2], relative to what was presented in Claudepierre et al. (2020a).719

4. When the drift loss cone is taken into consideration, lifetimes are reduced by ∼20%720

at L = [1.7, 4.0], by a factor of ∼2-5 at L = [1.4, 1.6], and by an order of mag-721

nitude or more at L ≤ 1.3. This was demonstrated with a simple calculation us-722

ing the IGRF drift loss cone angle in place of the dipole bounce loss cone angle723

in our theoretical scattering and lifetime calculations.724

5. The lifetimes calculated from our statistically-averaged empirical models of LGW725

and VLF transmitter waves are similar to those obtained using the physics-based726

approach of Albert et al. (2020) and Starks et al. (2020).727

6. The approximate formula derived by Albert and Shprits (2009) to calculate life-728

times from pitch angle diffusion coefficients produces values ∼2x larger than the729

exact calculation.730

7. The inclusion of LF transmitter wave power in our VLF wave scattering calcu-731

lations had a minimal impact on the theoretical lifetimes.732

The work presented here furthers our understanding of the processes that are rel-733

evant for electron loss in the Earth’s inner radiation belt region (L < 4). These find-734

ings will be relevant for future numerical modeling efforts and observations obtained in735

this important region of geospace.736
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Hartley, D. P., Kletzing, C. A., Santoĺık, O., Chen, L., & Horne, R. B. (2018). Sta-794

tistical properties of plasmaspheric hiss from van allen probes observations. J.795

Geophys. Res., 123 (4), 2605-2619. doi: 10.1002/2017JA024593796

Hedin, A. E. (1991). Extension of the msis thermosphere model into the middle797

and lower atmosphere. J. Geophys. Res., 96 (A2), 1159-1172. doi: 10.1029/798

90JA02125799

Hua, M., Li, W., Ni, B., Ma, Q., Green, A., Shen, X., . . . Reeves, G. D. (2020,800

September). Very-Low-Frequency transmitters bifurcate energetic electron belt801

in near-earth space. Nat. Comm., 11 , 4847. doi: 10.1038/s41467-020-18545-y802

Lejosne, S., & Kollmann, P. (2020, February). Radiation Belt Radial Diffusion at803

Earth and Beyond. Space Sci. Rev., 216 (1), 19. doi: 10.1007/s11214-020-0642804

-6805

Li, W., & Hudson, M. (2019). Earth’s Van Allen Radiation Belts: From Discovery to806

the Van Allen Probes Era. J. Geophys. Res., 124 (11), 8319-8351. doi: 10.1029/807

2018JA025940808

Li, W., Ma, Q., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., . . .809

Nishimura, Y. (2015). Statistical properties of plasmaspheric hiss derived810

from van allen probes data and their effects on radiation belt electron dynam-811

ics. J. Geophys. Res., 120 (5), 3393-3405. doi: 10.1002/2015JA021048812

Lyons, L. R., & Thorne, R. M. (1973, May). Equilibrium structure of radiation belt813

electrons. J. Geophys. Res., 78 , 2142-2149. doi: 10.1029/JA078i013p02142814

Ma, Q., Gu, W., Claudepierre, S. G., Li, W., Bortnik, J., Hua, M., & Shen, X.-C.815

(2022). Electron scattering by very-low-frequency and low-frequency waves816

from ground transmitters in the earth’s inner radiation belt and slot region. J.817

Geophys. Res., 127 (n/a), e2022JA030349. doi: 10.1029/2022JA030349818

Ma, Q., Li, W., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., &819

Hospodarsky, G. B. (2016, Jan). Electron scattering by magnetosonic820

waves in the inner magnetosphere. J. Geophys. Res., 121 (1), 274-285. doi:821

10.1002/2015JA021992822

Ma, Q., Mourenas, D., Li, W., Artemyev, A., & Thorne, R. M. (2017). Vlf waves823

from ground-based transmitters observed by the van allen probes: Statistical824

model and effects on plasmaspheric electrons. Geophys. Res. Lett., 44 (13),825

6483-6491. doi: 10.1002/2017GL073885826

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy,827

A. (2013, November). Science Objectives and Rationale for the Ra-828

diation Belt Storm Probes Mission. Space Sci. Rev., 179 , 3-27. doi:829

10.1007/s11214-012-9908-y830

Meredith, N. P., Horne, R. B., Clilverd, M. A., & Ross, J. P. J. (2019, Jul).831

An Investigation of VLF Transmitter Wave Power in the Inner Radia-832

tion Belt and Slot Region. J. Geophys. Res., 124 (7), 5246-5259. doi:833

10.1029/2019JA026715834

Mourenas, D., Artemyev, A. V., Ripoll, J.-F., Agapitov, O. V., & Krasnoselskikh,835

V. V. (2012). Timescales for electron quasi-linear diffusion by parallel836

and oblique lower-band chorus waves. J. Geophys. Res., 117 (A6). doi:837

10.1029/2012JA017717838

Ni, B., Bortnik, J., Thorne, R. M., Ma, Q., & Chen, L. (2013). Resonant scattering839

and resultant pitch angle evolution of relativistic electrons by plasmaspheric840

hiss. J. Geophys. Res., 118 (12), 7740-7751. doi: 10.1002/2013JA019260841

Ni, B., Thorne, R. M., Shprits, Y. Y., & Bortnik, J. (2008). Resonant scattering of842

plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auro-843

ral precipitation. Geophys. Res. Lett., 35 (11). doi: 10.1029/2008GL034032844

Ozhogin, P., Tu, J., Song, P., & Reinisch, B. W. (2012). Field-aligned dis-845

tribution of the plasmaspheric electron density: An empirical model de-846

rived from the image rpi measurements. J. Geophys. Res., 117 (A6). doi:847

10.1029/2011JA017330848

–22–



manuscript submitted to JGR: Space Physics

Powers, D. (1999). Boundary Value Problems. Academic Press; 4th edition.849

Ripoll, J.-F., Claudepierre, S. G., Ukhorskiy, A. Y., Colpitts, C., Li, X., Fennell,850

J. F., & Crabtree, C. (2020). Particle dynamics in the earth’s radiation belts:851

Review of current research and open questions. J. Geophys. Res., 125 (5),852

e2019JA026735. doi: 10.1029/2019JA026735853

Spasojevic, M., Shprits, Y. Y., & Orlova, K. (2015). Global empirical models of854

plasmaspheric hiss using van allen probes. J. Geophys. Res., 120 (12), 10,370-855

10,383. doi: 10.1002/2015JA021803856

Starks, M. J., Albert, J. M., Ling, A. G., O’Malley, S., & Quinn, R. A. (2020).857

Vlf transmitters and lightning-generated whistlers: 1. modeling waves858

from source to space. J. Geophys. Res., 125 (3), e2019JA027029. doi:859

https://doi.org/10.1029/2019JA027029860

–23–


