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Abstract

El Niño-Southern Oscillation (ENSO) is the most prominent interannual climate variability in the tropics and exhibits diverse

features in spatiotemporal patterns. This paper develops a simple multiscale intermediate coupled stochastic model to capture

the ENSO diversity and complexity. The model starts with a deterministic and linear coupled interannual atmosphere, ocean,

and sea surface temperature (SST) system. It can generate two dominant linear solutions representing the eastern Pacific

(EP) and the central Pacific (CP) El Niños, respectively. In addition to adopting a stochastic model for characterizing the

intraseasonal wind bursts, another simple stochastic process is developed to describe the decadal variation of the background

Walker circulation. The latter links the two dominant modes in a simple nonlinear fashion and advances the modulation of the

strength and occurrence frequency of the EP and the CP events. Finally, cubic nonlinear damping is adopted to parameterize the

relationship between subsurface temperatures and thermocline depth. The model succeeds in reproducing the spatiotemporal

dynamical evolution of different types of ENSO events. It also accurately recovers the strongly non-Gaussian probability density

function, the seasonal phase locking, the power spectrum, and the temporal autocorrelation function of the SST anomalies in all

the three Niño regions (3, 3.4 and 4) across the equatorial Pacific. Furthermore, both the composites of the SST anomalies for

various ENSO events and the strength-location bivariate distribution of equatorial Pacific SST maxima for the El Niño events

from the model simulation highly resemble those from the observations.
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Abstract18

El Niño-Southern Oscillation (ENSO) is the most prominent interannual climate variability19

in the tropics and exhibits diverse features in spatiotemporal patterns. This paper develops20

a simple multiscale intermediate coupled stochastic model to capture the ENSO diversity21

and complexity. The model starts with a deterministic and linear coupled interannual at-22

mosphere, ocean, and sea surface temperature (SST) system. It can generate two dominant23

linear solutions representing the eastern Pacific (EP) and the central Pacific (CP) El Niños,24

respectively. In addition to adopting a stochastic model for characterizing the intraseasonal25

wind bursts, another simple stochastic process is developed to describe the decadal variation26

of the background Walker circulation. The latter links the two dominant modes in a simple27

nonlinear fashion and advances the modulation of the strength and occurrence frequency of28

the EP and the CP events. Finally, cubic nonlinear damping is adopted to parameterize the29

relationship between subsurface temperatures and thermocline depth. The model succeeds30

in reproducing the spatiotemporal dynamical evolution of different types of ENSO events.31

It also accurately recovers the strongly non-Gaussian probability density function, the sea-32

sonal phase locking, the power spectrum, and the temporal autocorrelation function of the33

SST anomalies in all the three Niño regions (3, 3.4 and 4) across the equatorial Pacific.34

Furthermore, both the composites of the SST anomalies for various ENSO events and the35

strength-location bivariate distribution of equatorial Pacific SST maxima for the El Niño36

events from the model simulation highly resemble those from the observations.37

Plain Language Summary38

El Niño-Southern Oscillation (ENSO) is the most prominent interannual climate vari-39

ability in the tropics and exhibits diverse spatiotemporal characteristics. Developing a40

dynamical model with intermediate complexity to simulate the ENSO diversity and com-41

plexity facilitates the understanding and predicting of the ENSO and the global climate.42

To this end, a multiscale model is developed here. It starts with a coupled linear and deter-43

ministic interannual atmosphere, ocean, and sea surface temperature (SST) system. Then44

suitable stochastic processes, nonlinearity, and seasonal synchronization are incorporated,45

connecting the interannual components with the intraseasonal wind bursts and the decadal46

variation of the background Walker circulation. The model can simulate different eastern47

and central Pacific ENSO events with realistic spatiotemporal patterns, strength, and fre-48

quency. It also accurately recovers the strongly non-Gaussian probability density function,49

the seasonal phase locking, the power spectrum, and the temporal autocorrelation function50

of the SST anomalies in all the three Niño regions (3, 3.4 and 4) across the equatorial Pacific.51

Furthermore, both the composites of the SST anomalies for various ENSO events and the52

strength-location bivariate distribution of equatorial Pacific SST maxima for the El Niño53

events from the model simulation highly resemble those from the observations.54

1 Introduction55

El Niño-Southern Oscillation (ENSO) is the most prominent interannual variability in56

the tropics. It also affects the global climate, ecosystem, and socioeconomic development57

through atmospheric teleconnections (Ropelewski & Halpert, 1987; McPhaden et al., 2006).58

Therefore, understanding and predicting ENSO is a central problem with significant soci-59

etal impacts. Bjerknes (1969) first suggested that ENSO is the product of tropical air-sea60

interaction. Since then, considerable achievements have been made in its simulation and61

prediction abilities (Latif et al., 1998; Neelin et al., 1998).62

From the traditional point of view, El Niño is defined as the anomalous warm sea63

surface temperature (SST) in the equatorial eastern Pacific (EP) region. Zebiak and Cane64

(1987) developed the first coupled ocean-atmosphere model of intermediate complexity that65

successfully characterizes and predicts these EP warming events. Several deterministic and66

linear conceptual models were also proposed to explain the slow physics of ENSO. Among67
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these models, the delayed oscillator (Schopf & Suarez, 1988) describes the delayed effects68

of oceanic wave reflection at the ocean’s western boundary on the EP SST anomalies. In69

contrast, the recharge-discharge oscillator (F.-F. Jin, 1997a) combines SST dynamics and70

ocean adjustment dynamics into a coupled basinwide recharge oscillator that relies on the71

non-equilibrium between the zonal mean equatorial thermocline depth and wind stress.72

With the continuously improved understanding of nature, the spatiotemporal diversity73

and complexity of the ENSO have been progressively highlighted (Capotondi et al., 2015;74

Timmermann et al., 2018). In particular, the observational data shows that the center of75

anomalous SST is mainly located in the EP from 1980 to 2000. In contrast, it lies more76

towards the central Pacific (CP) after 2000 (Ashok et al., 2007; Kao & Yu, 2009; Kim et al.,77

2012). See Panel (b) of Figure 1. The emergence of these different ENSO events is called the78

El Niño diversity (Capotondi et al., 2015). It suggests the existence of at least two types of79

El Niños, which are named the EP and the CP El Niños, when the peak of the SST anomaly80

locates in the cold tongue and near the dateline region, respectively (Larkin & Harrison,81

2005; Yu & Kao, 2007; Ashok et al., 2007; Kao & Yu, 2009; Kug et al., 2009). It is essential82

to notice that the shift of the warming center can cause significant differences in the air-sea83

coupling over the equatorial Pacific, which changes the way ENSO affects the global climate84

and brings severe challenges to its prediction (D. Chen & Cane, 2008; E. K. Jin et al., 2008;85

Barnston et al., 2012; Z.-Z. Hu et al., 2012; Zheng et al., 2014; Fang et al., 2015; Sohn et86

al., 2016; Santoso et al., 2019). In addition to these two major categories, individual ENSO87

events further exhibit diverse characteristics in spatial pattern, peak intensity, and temporal88

evolution, known as the ENSO complexity (Timmermann et al., 2018). Thus, developing89

effective dynamical models that capture the ENSO complexity is of practical importance, not90

only for improving the understanding of the formation mechanisms of ENSO but advancing91

the prediction of different ENSO events and the associated varying climatic impacts as well.92

The main physical mechanisms of the EP and the CP El Niños are very different. Due93

to the strong zonal asymmetry of the tropical Pacific air-sea system, the thermocline, a thin94

layer that separates the upper warm water from the cold water in the lower layer, is deep95

in the western Pacific (WP) while shallow in the EP region. Such a structure is consistent96

with the easterly trade wind. As a result, the SST in the EP is more susceptible to the97

oceanic vertical processes, i.e., the thermocline feedback. On the other hand, the background98

mean state suggests that the CP is the region with the most significant zonal SST gradient.99

Consequently, the anomalous zonal current can significantly affect the local SST variations,100

which means the development of the CP type of ENSO is primarily influenced by the zonal101

advective feedback (Kug et al., 2009, 2010; Ham & Kug, 2012; Kug et al., 2012; N. Chen102

& Majda, 2016; Fang & Mu, 2018; Fang & Zheng, 2018). It is worthwhile to point out103

that, since the state-of-the-art coupled general circulation models (CGCMs) in general have104

difficulties in accurately describing the mean state of the tropical Pacific (e.g., the unrealistic105

westward extension of the cold tongue), the simulations often contain biases in reproducing106

the equatorial SST gradient and the relevant zonal advective feedback (Lin, 2007; Fang107

& Zheng, 2018; Xie & Jin, 2018; Planton et al., 2021). Such an issue is one of the main108

reasons that result in significant challenges for the CGCMs to simulate the El Niño diversity109

correctly (Wittenberg, 2009; Ham & Kug, 2012; Capotondi et al., 2015).110

In addition to the interannual state variables, it is essential to consider several other vital111

variabilities belonging to different temporal scales in the modeling procedure to generate the112

ENSO complexity realistically. On the one hand, the intraseasonal atmospheric variability,113

e.g., the westerly wind burst (WWB) (Harrison & Vecchi, 1997; Vecchi & Harrison, 2000;114

Tziperman & Yu, 2007) and the Madden-Julian oscillation (MJO) (Hendon et al., 2007;115

Puy et al., 2016), has been understood as one of the primary sources that lead to the ENSO116

irregularity and extreme events. Specifically, WWBs can influence ENSO development by117

stimulating eastward-propagating oceanic Kelvin waves, generating surface zonal currents,118

and weakening evaporation. Many modeling works have been attempted to incorporate119

semistochastic parameterization for the WWBs (Gebbie et al., 2007; Tziperman & Yu,120
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2007; Gebbie & Tziperman, 2009; Levine et al., 2016; Thual et al., 2016, 2017) and suggest121

that the coupled feedbacks between the interannual SST and the intraseasonal WWBs is122

sufficient to transfer a damped system to a semi-regular self-sustained oscillator. Likewise,123

in light of an intermediate coupled model (ICM), Lian et al. (2014) found that the WWBs124

are responsible for the existence of the irregularity and intensity of El Niño. The associated125

specific characteristics depend on the timing of the WWBs relative to the phase of the126

recharge–discharge cycle. On the other hand, ENSO is also modulated by the decadal127

variation of the background mean state. Notably, McPhaden et al. (2011) and Xiang et al.128

(2013) revealed the changes in the equatorial Pacific around the 2000s, i.e., a La Niña-like129

background state with enhanced trade winds and a more tilted thermocline, is in favor of130

the occurrence of more frequent CP El Niño events. This is consistent with the findings131

in Capotondi and Sardeshmukh (2015), which highlighted the importance of a La Niña-132

like initial/background state based on results from a linear inverse model. Power et al.133

(2021) also emphasizes the role of decadal variability in affecting the equatorial Pacific. In134

addition, by extending the original recharge oscillator into a three-region (i.e., WP, CP,135

and EP) conceptual model that contains a set of 6 stochastic ordinary differential equations136

and includes both the thermocline and zonal advective feedbacks, N. Chen et al. (2022)137

demonstrated that the decadal variability plays a crucial role in modulating the occurrence138

of the CP and EP El Niños.139

The conceptual model in N. Chen et al. (2022) captures many desirable large-scale fea-140

tures of the ENSO complexity. It thus provides an essential theoretical basis for developing141

a more sophisticated dynamical model, namely an ICM, that aims to reproduce detailed142

spatiotemporal patterns of the ENSO complexity realistically. Unlike the conceptual mod-143

els, the ICMs have the unique advantage of incorporating more elaborate underlying physics144

and spatially-extended dynamics into the model development that facilitate the understand-145

ing and prediction of nature. The ICMs also serve as a bridge that connects the low-order146

conceptual models and the more complicated CGCMs with a relatively low computational147

cost.148

To this end, a stochastic ICM for the ENSO complexity is developed in this paper.149

The dynamical core of this new stochastic ICM is deterministic and linear, which involves150

a coupled interannual atmosphere, ocean, and SST system that drives the essential ENSO151

dynamics in a simple fashion. Here, the latent heating proportional to the SST is depleted152

from the ocean and forces an atmospheric circulation. In turn, the resulting zonal wind153

stress forces ocean dynamics that provide feedback to the SST through the thermocline154

depth anomalies and the ocean zonal advection. The coupled linear and deterministic inter-155

annual starting model can generate two dominant linear solutions representing the EP and156

the CP El Niños, respectively, which are essential for simulating the ENSO complexity. The157

interannual components are coupled with the intraseasonal and the decadal variabilities,158

described by suitable stochastic processes. The former is the main contributor to the ENSO159

irregularity and extreme events. At the same time, the latter links the two dominant modes160

in a simple nonlinear fashion and advances the modulation of the strength and occurrence161

frequency of the EP and the CP events. Seasonal synchronization is further incorporated162

into the model, facilitating the ENSO events to tend to peak in boreal winter. Finally, cubic163

nonlinear damping is adopted to parameterize the relationship between subsurface temper-164

atures and thermocline depth. See Panel (a) of Figure 1 for a schematic illustration of the165

model structure and the key components. Note that the originally pioneering Zebiak and166

Cane (1987) ICM was not designed to characterize the ENSO complexity. A recently devel-167

oped revised version captures certain diversity features of the ENSO (Geng & Jin, 2022).168

Nevertheless, the new simple ICM to be developed in this paper differs significantly from169

the Zebiak and Cane (1987) model and its revised version. The new model highlights the170

interactions between variabilities at different time scales, where only a minimum nonlinear-171

ity is adopted to maintain the model in a simple fashion. The model also exploits suitable172

stochastic processes to effectively characterize the dynamical properties and accurately re-173

produce the non-Gaussian statistics of the ENSO complexity in different Niño regions across174
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Figure 1. Panel (a): A schematic illustration of the multiscale model developed here. Panel (b):

The observational SST anomaly from 1980 to 2020 (unit: oC). It is based on the GODAS dataset

(Behringer & Xue, 2004) and is computed by averaging over 5oS to 5oN followed by removing the

monthly mean climatology of the entire period.

the equatorial Pacific. The latter is particularly crucial to simulate various ENSO events175

realistically. It is an essential prerequisite for the unbiased statistical forecast of the ENSO176

complexity as well (Majda & Chen, 2018; Fang & Chen, 2022).177

The rest of the paper is organized as follows. Section 2 presents the details of the simple178

stochastic ICM, including the deterministic and linear interannual components, the stochas-179

tic intraseasonal parameterization, the stochastic decadal process, the seasonal synchroniza-180

tion, and the nonlinearly coupled multiscale system. Section 3 contains the observational181

datasets and the definitions of different types of ENSO events. The model simulations are182

presented in Section 4 and are compared with the observations. In addition to showing183

the spatiotemporal patterns of different ENSO events, the skill of reproducing several key184

statistics in different Niño regions and the composite analysis are also highlighted in this185

section. Finally, Section 5 contains the conclusions and discussion.186

2 The Simple Stochastic ICM187

2.1 The starting deterministic and linear interannual model188

The starting interannual model is a deterministic and linear coupled atmosphere-ocean-189

SST system:190
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Atmosphere:

− yv − ∂xθ = 0

yu− ∂yθ = 0

− (∂xu+ ∂yv) = Eq/(1−Q)

(1)

Ocean:

∂tU − c1Y V + c1∂xH = c1τx

Y U + ∂YH = 0

∂tH + c1(∂xU + ∂Y V ) = 0

(2)

SST:

∂tT = −c1ζEq + c1η1H + c1η2U. (3)

The coupled system (1)–(3) consists of a non-dissipative Matsuno–Gill type atmosphere191

model (Matsuno, 1966; Gill, 1980), a simple shallow-water ocean model (Vallis, 2016) and192

an SST budget equation (F.-F. Jin, 1997b). Here, the state variables u and v are the zonal193

and meridional wind speeds, θ is the potential temperature, U and V are the zonal and194

meridional ocean currents, H is the thermocline depth, and T is the SST. All of them are195

anomalies. For the coordinate variables, t is the interannual time coordinate, x is the zonal196

coordinate, while y and Y are the meridional coordinates for the atmosphere and ocean197

components, respectively. The reason for adopting two distinct meridional axes is that the198

atmosphere and ocean deformation radii are different. In these equations, Eq = αqT is199

the latent heat with Q a constant representing the background vertical moisture gradient200

(Majda & Stechmann, 2009), τx = γu is the wind stress, ζ is the latent heating exchange201

coefficient, η1 and η2 are the strengths of the thermocline and zonal advective feedback,202

respectively. Here, η1 is stronger in the EP due to the shallower thermocline, while η2 is203

stronger in the CP because of the more significant zonal gradient of the background SST204

in that region. The constant c1 is related to the ratio between the ocean and atmosphere205

phase speeds. The atmosphere extends over the entire equatorial belt 0 ≤ x ≤ LA with206

periodic boundary conditions, namely u(0, y, t) = u(LA, y, t), and similar for other atmo-207

spheric variables. The Pacific Ocean extends over 0 ≤ x ≤ LO with reflection boundary208

conditions
∫

∞

−∞
U(0, Y, t) dY = 0 and U(LO, Y, t) = 0 (Cane et al., 1981; F.-F. Jin, 1997b).209

The detailed parameter values are listed in Appendix.210

The above model retains a few essential ingredients that couple the interannual at-211

mosphere, ocean, and SST components and drive the critical ENSO dynamics in a simple212

fashion. Specifically, the latent heating Eq proportional to the SST T is removed from the213

ocean and forces an atmospheric circulation. The resulting zonal wind stress τx, in turn,214

forces ocean dynamics that provide feedback to the SST through the thermocline depth215

anomalies H and the zonal current U . See the dashed box in Panel (a) of Figure 1 that216

depicts the interannual components.217

To facilitate the computation of the model solution, a meridional projection and trun-218

cation are applied to the coupled system, which is known to have meridional basis functions219

in the form of parabolic cylinder functions (Majda, 2003; Thual et al., 2016). To develop220

a simple ICM, only the leading basis function is kept for the atmosphere and the ocean,221

denoted by φ0(y) and ψ0(Y ), respectively. Both φ0(y) and ψ0(Y ) have Gaussian profiles and222

are centered at the equator, but the meridional span of φ0(y) is more significant than that223

of ψ0(Y ). The details of these basis functions are included in Appendix. The meridional224

truncations trigger atmosphere Kelvin, Rossby waves KA, RA, and ocean Kelvin, Rossby225

waves KO, RO. Once the system (1)–(3) is projected to the leading meridional basis func-226

tions, the dependence of y and Y are eliminated. The resulting system is only a function of227

t and x. It reads:228
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Atmosphere:

∂xKA = −χAEq(2− 2Q̄)−1

− ∂xRA/3 = −χAEq(3− 3Q̄)−1

(B.C.) KA(0, t) = KA(LA, t)

(B.C.) RA(0, t) = RA(LA, t)

(4)

Ocean:

∂tKO + c1∂xKO = χOc1τx/2

∂tRO − (c1/3)∂xRO = −χOc1τx/3

(B.C.) KO(0, t) = rWRO(0, t)

(B.C.) RO(LO, t) = rEKO(LO, t)

(5)

SST:

∂tT = −c1ζEq + c1η1(KO +RO) + c1η2(KO −RO), (6)

where rW and rE are the reflection coefficients associated with the ocean reflection boundary
conditions (B.C.). The constants χA and χO are the meridional projection coefficients
with χA =

∫

∞

−∞
φ0(y)φ0(y/

√
c)dy and χO =

∫

∞

−∞
ψ0(Y )ψ0(

√
cY )dY . Once these waves are

solved, the physical variables can be reconstructed,

u = (KA −RA)φ0 + (RA/
√
2)φ2

θ = −(KA +RA)φ0 − (RA/
√
2)φ2

U = (KO −RO)ψ0 + (RO/
√
2)ψ2

H = (KO +RO)ψ0 + (RO/
√
2)ψ2

(7)

where φ2 and ψ2 are the third meridional bases of atmosphere and ocean, respectively.229

Note that T , τ and Eq in (4)–(6) stand for the variables after the meridional projection.230

Despite adopting the same notation, they differ from the original variables in (1)–(3). In231

addition, the reflection coefficients rW and rE are calculated by using the boundary con-232

ditions:
∫

∞

−∞
U(0, Y, t)dY = 0 at the western boundary and U(LO, Y, t) = 0 at the eastern233

boundary. The former integrates U in (7) and gives rW = 0.5. The latter implies U is zero234

at different latitude points. In other words, it requires the projected velocity field to each235

meridional basis function to be zero. Thus, the velocity projected to the leading basis ψ0236

leads to KO = RO or rE = 1. It is also worth remarking that the equations (4)–(6) are237

projected only to the leading meridional basis function while the reconstruction in (7) also238

includes the third one. This is due to the use of the so-called raising and lowering operators239

in deriving the truncated equations, which connect the nearby meridional basis functions.240

See Majda (2003); Biello and Majda (2006); Stechmann and Majda (2015) for more tech-241

nical details. It is worth remarking that the higher order meridional basis functions would242

include off-equatorial contributions to the equatorial dynamics, which could be essential to243

account for the negative feedback associated with off-equatorial Rossby waves (Kirtman,244

1997; Capotondi et al., 2006) or the effect of off-equatorial influences, for example, the245

north and south Pacific meridional modes (Chiang & Vimont, 2004; Zhang et al., 2014).246

Nevertheless, this work aims to develop a simple ICM that characterizes explicit physics at247

the leading order. The stochastic noise can effectively describe certain statistical feedback248

from the off-equatorial regions.249

After applying a spatial discretization in the x direction, the coupled system (4)–(6)250

is solved numerically via an upwind finite difference scheme. Since the coupled system is251

linear and deterministic, its final solution, after the numerical discretization is applied, can252

be written as a superposition of a set of non-interacting linear modes (the so-called linear253

solutions). Each linear solution is associated with one eigenmode of the system. In the254

numerical discretization here, the entire equatorial band is divided into NA equidistance255
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grids, and there are NO grid points in the Pacific ocean. In the simulations of this paper,256

NA = 128 and NO = 56 are utilized. In other words, the distance between every two257

grid points is 312.5km, as the entire equatorial band and the span of the Pacific ocean are258

40, 000km and 17, 500km, respectively. With an appropriate choice of physical parameters259

(see Appendix), all the eigenvalues have negative real parts, indicating the decaying nature of260

these linear solutions. It is essential to highlight that although the eigenvalues of the strongly261

decaying and fast oscillating small-scale modes may vary by changing the resolution in the262

spatial discretization, the leading two eigenmodes with the slowest decaying rate remain263

almost unchanged as long as the spatial discretization is not too coarse. The leading two264

eigenmodes appear as a pair, and the associated eigenvalues are complex and conjugate,265

where the associated oscillation frequency lies on the interannual time scale. Due to the266

slowest decaying rate, the full solution of the coupled system (4)–(6) is dominated by these267

eigenmodes (see Appendix for details).268

Figure 2 shows the spatiotemporal evolution of the leading two eigenmodes. In this269

figure, the decaying rate is manually set to zero to demonstrate the spatiotemporal pattern of270

such linear solutions. By varying the strength of the zonal advective feedback coefficient η2,271

the dominant eigenmodes can have distinct behavior (see Appendix for the exact parameter272

values). Specifically, if the role of the zonal advection is weakened, then the leading linear273

solution exhibits spatiotemporal patterns with the EP El Niño dominating. See Panel (a).274

In such a situation, the thermocline feedback is the primary mechanism for generating the275

EP events. In addition, the convergence center of the atmospheric wind lies in the eastern276

Pacific. On the other hand, if the zonal advective feedback becomes stronger, then the CP277

El Niño pattern becomes dominant. Correspondingly, the zonal ocean current leads to the278

warming in the CP region, and the associated convergence center of the atmospheric wind279

shifts westward. See Panel (b). In addition, the thermocline is deeper than average during280

the development phase of EP events and steeper than average (La Niña-like) during the281

development phase of CP events, as described in Capotondi and Sardeshmukh (2015). It282

is worth highlighting that the occurrence frequency of the CP events (every 2.5 years) is283

higher than that of the EP events (every 4.5 years) in these dominant linear solutions, which284

is consistent with the observations. Note that these two linear solutions are the necessary285

conditions and mechanisms for the model to capture the ENSO complexity.286

It is worth mentioning that Fedorov and Philander (2001) suggested in their stability287

analysis the EP-like and CP-like linear modes feature eastward and westward SST propa-288

gation, respectively. This is slightly different from the results shown here. In Fedorov and289

Philander (2001), the mean state of the SST is calculated by a simple model with the spec-290

ified mean thermocline depth (H) and the temperature difference across the thermocline291

(△T ). Note that this simple model is proper for the anomalous fields in the tropical Pacific292

but could be too crude to depict the mean state since the latter is much more complicated293

than the former. As a result, the reconstructed mean state of the SST is flat in the central294

Pacific, i.e., with nearly zero zonal gradients. Since the zonal SST gradient of the mean295

state directly determines the strength of the zonal advective feedback (−uT̄x), it is crucial296

for developing the CP type of ENSO event. To this end, a more refined structure function297

η2 is adopted here to represent the strength of the zonal advective feedback (or the zonal298

SST gradient of the mean state), which shows a large center in the central Pacific region.299

2.2 Simple stochastic models for the intraseasonal and decadal variabilities300

As was seen in Section 2.1, the coupled system (4)–(6) can generate basic linear solutions301

that exhibit regular patterns of the EP and CP El Niño events in different situations.302

However, the irregularity and complexity of ENSO require extra mechanisms beyond the303

deterministic and linear dynamics. In particular, the ENSO variability is often triggered or304

inhibited by a broad range of random atmospheric disturbances in the tropics, such as the305

WWBs (Harrison & Vecchi, 1997; Vecchi & Harrison, 2000; Tziperman & Yu, 2007), the306

easterly wind bursts (EWBs) (S. Hu & Fedorov, 2016), as well as the convective envelope307

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. Linear solutions of the coupled system (4)–(6) reconstructed utilizing the leading two

eigenmodes, which have the slowest decaying rate. These two modes appear as a pair of complex

conjugate and therefore the reconstructed spatiotemporal pattern is real-valued. Panel (a) shows

the solution by multiplying a small number to the ocean zonal advective feedback η2 coefficient

to lower its role and thus gives a EP El Niño dominant mode. Panel (b) shows the solution of

the system with a stronger zonal advective feedback and leads to a CP El Niño dominant mode.

In both panels, the four columns present the hovmoller diagrams of the interannual atmosphere

wind u (unit: m/s), the ocean current U (unit: m/s), the thermocline depth H (unit: m) and the

SST T (unit: oC). The detailed parameter values corresponding to the results here are listed in

Appendix. Note that, for the purpose of illustration, the decaying rate is manually set to be zero

in demonstrating the spatiotemporal pattern of such linear solutions here.

of the MJO (Hendon et al., 2007). On the other hand, it has been shown that the EP and308

CP events were alternatively prevalent every 10 to 20 years over the past century (Yu &309

Kim, 2013; Dieppois et al., 2021). For example, the EP events were the dominant ones in310

the 1980s and 1990s, while the CP El Niños more frequently occurred after 2000 (D. Chen311

et al., 2015; Freund et al., 2019). These findings imply that the decadal variability plays a312

crucial role in driving the transitions between the CP- and EP-dominant regimes. Thus, it313

is also essential to incorporate the decadal effect into the coupled ENSO model to link the314

different linear solutions.315

To this end, two stochastic processes are developed and coupled to the starting interan-316

nual model (4)–(6). These two stochastic processes characterize the intraseasonal random317

wind bursts and the decadal variability, respectively. The former is a natural component318

that depicts random atmospheric disturbances. The latter describes the decadal variation319

of the background Walker circulation. It may be related to the climate change scenario and320

plays a vital role in modulating the strength and the occurrence frequency of the EP and321

the CP events (D. Chen et al., 2015; N. Chen et al., 2022).322

First, with the stochastic wind bursts, the wind stress τx now contains two components
τx = γ(u + up), where u remains the same as the atmospheric circulation in (2) while up
is the contribution from the stochastic wind bursts, which is assumed to have the following
structure,

up(x, y, t) = ap(t)sp(x)φ0(y),

where φ0(y) is again the leading meridional basis while sp(x) is a fixed spatial structure
localized in the western Pacific because most of the observed wind bursts are active there
(see Appendix). The time series ap(t) describes the wind burst amplitude and is governed

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

by a simple one-dimensional real-valued stochastic process (Gardiner, 2009)

dap
dt

= −dpap + σp(TC)Ẇp, (8)

where dp is the damping term chosen such that the decorrelation time of the wind is about323

one month. In (8), Ẇp is a white noise source while σp(TC) is its strength. When ap324

is positive and negative, it represents the WWB and EWB, respectively. It is important325

to highlight that the noise strength σp(TC) is state-dependent (the so-called multiplicative326

noise), as a function of the interannual SST from (6) averaged over the western-central327

Pacific, namely Niño 4 region. In the absence of seasonal cycle and decadal influence,328

σp(TC) = 1.6(tanh(TC)+1). The reason for choosing such a state-dependent noise coefficient329

is that wind burst activity is usually more active with warmer SST in the western-central330

Pacific due to the strengthening or eastward extension of the warm pool (Vecchi & Harrison,331

2000; Hendon et al., 2007), which is modeled here in a simple parameterized fashion. This332

also implies that the level of stochastic forcing is larger during El Niño than La Niña events333

(Capotondi et al., 2018). The choice of the hyperbolic tangent function guarantees the334

bounded wind strength even with a very strong SST, which is more realistic than using a335

linear function. Note that the enhanced SST only increases the amplitude of the wind bursts.336

In contrast, the individual wind burst event generated from the stochastic process in (8) does337

not prefer westerly or easterly. This allows an equal chance to create both the WWB and338

the EWB as individual events consistent with the observations. Due to the state-dependent339

noise coefficient, the modeling procedure here indicates that the intraseasonal wind bursts340

not only affect the interannual variability but are also modulated by the latter.341

Next, the decadal variability is driven by another simple stochastic process,

dI

dt
= −λ(I −m) + σI(I)ẆI , (9)

where the damping λ is set to be 5 years−1 representing the decadal time scale. Similar to342

(8), σI(I) and ẆI here are the state-dependent noise strength and the white noise source.343

The reason for adopting a state-dependent noise coefficient, which is a function of I itself,344

is to allow the distribution of I to be non-Gaussian. In particular, the trade wind in the345

lower level of the Walker circulation in the decadal time scale is easterly, which means346

the sign of I should stay the same throughout time, and thus the distribution of I is347

non-Gaussian. This feature can be easily incorporated into the process of I with the state-348

dependent noise coefficient (Averina & Artemiev, 1988; Q. Yang et al., 2021). Based on the349

limited observational data and the theory of inferring the least unbiased maximum entropy350

solution for a distribution, a uniform distribution between [0, 1] is adopted for I in this351

work. Here, a larger I corresponds to a stronger easterly trade wind. The details of the352

maximum entropy solution and the way to determine σI(I) are included in the Appendix.353

Note that the decadal variability I also stands for the zonal SST difference between the354

WP and CP regions that directly determines the strength of the zonal advective feedback.355

It is the primary interaction between decadal and interannual variabilities in the coupled356

system. In fact, in Kang et al. (2020), a Walker circulation strength index is defined as357

the sea level pressure difference over the CP/EP region (160oW-80oW, 5oS-5oN) and the358

Indian Ocean/WP region (80oE-160oE, 5oS-5oN). The monthly zonal SST gradient between359

the WP and CP region is highly correlated with this Walker circulation strength index360

(correlation coefficient being around 0.85), suggesting significant air-sea interaction over the361

equatorial Pacific. Since the latter is more directly related to the zonal advective feedback362

strength over the CP region, the decadal variable mainly illustrates such a feature.363

2.3 Seasonal synchronization364

Seasonal phase locking is one of the remarkable features of ENSO, which manifests in365

the tendency of ENSO events to peak during boreal winter and is mainly related to the366

pronounced seasonal cycle of the mean state (Tziperman et al., 1997; Stein et al., 2014).367
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Seasonal synchronization is incorporated into the multiscale coupled model developed above368

through two simple parameterizations.369

First, the climatological SST in the central-eastern Pacific warms in spring and cools in370

boreal fall. This is partly because of the seasonal motion of the Intertropical Convergence371

Zone (ITCZ), which also modulates the strength of the upwelling and horizontal advection372

processes that influence the evolution of the SST anomalies (Mitchell & Wallace, 1992).373

Since the cool (warm) SSTs corresponds to the decreased (increased) convective activity374

and upper cloud cover, a time-dependent damping term is incorporated into the system375

to describe such a seasonal variation (Thual et al., 2017). It mimics the cloud radiative376

feedback. Specifically, two sinusoidal functions are utilized for parameterizing the otherwise377

constant αq, which appears as Eq = αqT in (6). One sinusoidal function has a period of378

one year that naturally describes the seasonal cycle. The other sinusoidal function has a379

period of half a year that represents a semiannual contribution to the seasonally modulated380

variance, as was suggested by Stein et al. (2014).381

Second, the increased wind burst activity in the western Pacific during the boreal winter382

as a direct response to the increased atmospheric intraseasonal variability, such as the MJO,383

is another primary contributor to the seasonal synchronization (Hendon et al., 2007; Seiki384

& Takayabu, 2007). Therefore, a sinusoidal function with a period of one year is utilized385

for parameterizing the seasonal variation of the wind burst strength coefficient σp in (8).386

2.4 The nonlinearly coupled multiscale system387

The coupled model developed so far is a linear model, despite the state-dependent388

noise. However, the linear nature of the model is insufficient in characterizing some of the389

key observed dynamical and statistical features of the ENSO complexity.390

From the dynamical point of view, at least two major nonlinearities are expected to be
added to the starting linear model. First, the decadal variability determines the strength of
the zonal advective feedback. Therefore, it is natural to treat the modulation of the decadal
variability on the ENSO dynamics as nonlinear, where the decadal variability plays the role
of a multiplicative factor of the zonal advection coefficient. In other words, the decadal
variability I is incorporated into the SST budget equation (6) and appears in front of the
zonal advection coefficient,

∂tT = −c1ζEq + c1η1(KO +RO) + c1Iη2(KO −RO) + c1η2c2, (10)

such that a quadratic nonlinearity is introduced from I(KO − RO) as I and KO, RO are391

both state variables (recall from (7) that KO and RO are the linear combination of H and392

U). This nonlinearity represents the mechanism that strengthening the Walker circulation393

in the decadal time scale will trigger more CP events. It is crucial in simulating the correct394

occurrence frequencies of both the CP and the EP El Niños. One additional small constant395

c2 is added to (10), which guarantees all the variables have climatology with zero mean since396

otherwise, the nonlinearity can cause a slight shift of the mean state.397

Another nonlinearity incorporated here is the damping coefficient in the SST equation.398

Recall that Eq = αqT and therefore −c1ζαq is the damping coefficient. Here αq is parame-399

terized by a nonlinear quadratic function of the CP SST, and the spatial structure of such400

a nonlinear function is concentrated in the CP area. In addition, the symmetric axis of401

this quadratic function has a negative value, which means a stronger damping is imposed402

when the CP SST is positive. This effectively gives a cubic damping in the CP. The reason403

for introducing this nonlinearity is twofold. On the one hand, the relationship between the404

subsurface temperatures and the thermocline depth is more complicated in the CP region405

(Zhao et al., 2021). At the same time, only a simple shallow water model is utilized here.406

Thus, such nonlinear damping is introduced to parameterize the additional relationship be-407

yond the capability of the shallow water model. On the other hand, it is justified from a408

simple statistical analysis of the observational data that a linear relationship between the409
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damping and SST anomaly in the CP region is broken. In contrast, a cubic nonlinearity410

fits the data in a more accurate fashion (N. Chen et al., 2022). The nonzero symmetric axis411

in parameterizing αq is also crucial for recovering the correct non-Gaussian statistics of the412

SST in the CP region.413

3 Observational Data Sets and the Definitions of Different Types of the414

ENSO Events415

3.1 Data416

The monthly SST data is taken from the GODAS dataset (Behringer & Xue, 2004).417

Anomalies are calculated by removing the monthly mean climatology of the entire period.418

The Niño 4, Niño 3.4, and Niño 3 indices are the average SST anomalies over the zonal419

regions 160oE-150oW, 170oW-120oW and 150oW-90oW, respectively, together with a merid-420

ional average over 5oS-5oN.421

3.2 Definitions of different types of the ENSO events422

The definitions of different El Niño and La Niña events for studying the ENSO com-423

plexity follow those in Kug et al. (2009), which are based on the average SST anomalies424

during boreal winter (December–January–February; DJF). When the EP is warmer than425

the CP, and the EP SST is more significant than 0.5oC, it is classified as the EP El Niño.426

Among this, based on the definitions used by Wang et al. (2019), an extreme El Niño event427

corresponds to the situation that the maximum of EP SST anomaly from April to the fol-428

lowing March is more significant than 2.5oC. When the CP is warmer than the EP and429

larger than 0.5oC, the event is defined as a CP El Niño. Finally, when either the CP or EP430

SST anomaly is cooler than −0.5oC, it is defined as a La Niña event.431

4 Model Simulation Results432

The numerical solution of the model is calculated utilizing the forward Euler time433

integration scheme with a time step of 0.5 days for the interannual variabilities. The Euler-434

Maruyama scheme is adopted to compute the stochastic processes of the decadal variability435

and the intraseasonal wind bursts, with a numerical integration time step being 0.5 days436

and 0.05 days, respectively. The monthly averaged model outputs for the interannual and437

decadal variabilities are utilized in presenting the dynamical and statistical results. The438

monthly averaged output has almost no difference from the direct model solution but is439

adopted mainly to be consistent with the monthly averaged observational data. On the440

other hand, the monthly average is not applied to the wind burst data.441

4.1 Model simulation of the ENSO complexity442

Figure 3 shows a 50-year model simulation. With the random and nonlinear components443

in the model, the resulting atmosphere-ocean-SST fields exhibit irregular spatiotemporal444

patterns, mimicking the observed ENSO complexity (Panel (b) of Figure 1). To begin with,445

the model simulation succeeds in reproducing both the realistic CP (e.g., 154, 157, 160)446

and EP (e.g., 163, 175, 192) events as well as some mixed events (e.g., year 188). The two447

different linear solutions presented in Figure 2 are now linked by the decadal variability,448

which directly modulates the strength of the zonal advective feedback. In other words, the449

decadal variability preconditions the model to have a preference towards either the EP or450

the CP mode at each time instant, although the details of each single ENSO event are451

still primarily affected by other stochastic and nonlinear effects. Next, the spatiotemporal452

fields of the interannual atmosphere wind u, ocean current U , thermocline depth H , and the453

SST T in Panels (a)–(d), as well as the wind bursts strength ap in Panel (f), reveal distinct454

formation mechanisms for the CP and EP El Niños. The EP El Niño, especially the extreme455
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EP El Niño, is triggered by the random wind bursts and the thermocline depth plays a vital456

role in the event development. In contrast, the zonal advection is the dominant contributor457

to the CP events. It is worth remarking that while the zonal advective feedback is the458

dominant dynamical feedback in the CP region, the development of anomalous zonal currents459

(for example, forced by anomalous winds) is also essential. A recent study (Capotondi &460

Ricciardulli, 2021) links the occurrence of CP events to extratropical wind precursors related461

to the North and South Pacific meridional modes. These off-equatorial wind anomalies can462

give rise to heat content anomalies in the CP region (Anderson et al., 2013) or lead to463

wind stress anomalies along the equator. The ICM developed here does not explicitly464

take into account the off-equatorial effects. But the stochastic effects may play a role in465

compensating for such effects. In addition to the response of the CP and EP events to466

the zonal advective and thermocline feedbacks, the convergence center of the interannual467

atmosphere wind locates in the CP and EP regions when these two types of events occur,468

respectively. These causal relationships are consistent with observations, and the previous469

findings (Kao & Yu, 2009; Kug et al., 2009; Xiang et al., 2013; Zheng et al., 2014; N. Chen470

et al., 2018). Furthermore, as in the observations, the strength of the CP El Niños is overall471

weaker than that of the EP ones (Zheng et al., 2014). Particularly, extreme El Niño events472

are only observed in the EP region due to the anomalously intense wind bursts. It is also473

noticed that the probability of generating CP events increases as the decadal variability474

becomes stronger. This is again consistent with the observations, for example, the CP475

events becoming more frequent as the strengthening of the Walker circulation in the 21st476

century (McPhaden et al., 2011; Xiang et al., 2013). Nevertheless, regardless of the strength477

of the decadal variability, the model always allows both the CP and the EP events to be478

triggered with a certain chance. Finally, the Niño indices shown in Panel (f) mimic reality,479

where the Niño 4 index has a slightly larger value than Niño 3 at the CP El Niño phases.480

In contrast, the Niño 3 index becomes much more significant than Niño 4 during extreme481

EP events.482

Figure 4 shows a simulation of the SST field for 200 consecutive years, accompanied by483

the associated wind bursts and the decadal variability. To summarize the findings in these484

figures, Table 1 lists examples of different ENSO events belonging to 9 refined categories485

in such a long model simulation and are compared with observations. The results indicate486

the ability of the model to reproduce the realistic ENSO complexity. First, the model can487

simulate various EP El Niño events with different strengths. In addition to the moderate488

EP El Niños, the extreme El Niño events, which appear as a result of the strong WWBs489

generated from the intraseasonal model, are also reproduced by the model. It is worth490

highlighting that the so-called delayed super El Niño, as observed in 2014-2015 (S. Hu &491

Fedorov, 2016; Capotondi et al., 2018; Thual et al., 2019; Xie & Fang, 2020), are realistically492

simulated by the model, for example, during model years 905-906. The model succeeds in493

recovering the associated peculiar westerly-easterly-westerly wind burst structure that is494

the crucial mechanism to trigger such an El Niño event. Here, the initial WWB tends to495

start a strong El Niño, but the subsequent EWB kills the event and postpones it until the496

following year, when another series of strong WWBs occur. Next, the model generates many497

realistic CP El Niño events. In particular, both single-year (e.g., years 764 and 799) and498

multi-year (e.g., years 760-761 and 899-900) CP El Niño events can be reproduced from the499

model. The latter mimics the observed CP episodes, for example, during 2018-2020. In500

addition to those events that belong to either the EP or the CP categories, the model also501

creates some mixed CP-EP events (e.g., years 785 and 939), similar to the observed ones in502

the early 1990s (e.g., the one that occurred in the year 1992). Finally, the La Niña events503

from the model usually follow the El Niño ones as the consequence of the discharge phase.504

Some La Niña events have cold SST in the CP region, while others have cold centers around505

the EP area. The model can also simulate multi-year La Niña events. Namely, a La Niña506

transitioning to another La Niña, such as the one that spans over the years 774-775 and507

902-904, mimicking the observed events 1999-2000 and 1984-1986, respectively. It is also508

worth pointing out that a few multi-year El Niño events (such as years 839-840, 918-919,509
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Figure 3. A 50-year model simulation of different fields. Panels (a)–(d): Hovmoller diagrams of

the interannual atmospheric wind u (unit: m/s), the ocean current U (unit: m/s), the thermocline

depth H (unit: m) and the SST T (unit: oC). The longitude ranges from 120oE (120) to 80oW

(280). Panel (e): time series of the decadal variability I . Panel (f): time series of the intraseasonal

random wind bursts ap (unit: m/s). Panel (g): Niño 4, Niño 3.4 and Niño 3 indices.
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Coarse category Refined category Model (yrs 750-950) Observations (yrs 1980-2020)

EP El Niño
Moderate EP El Niño 792, 897 1987
Super El Niño 752, 862 1998
Delayed super El Niño 918-919, 905-906 2014-2015

CP El Niño
Single-year CP El Niño 764, 799 2005
Multi-year CP El Niño: 760-761, 899-900 2018-2020
CP La Niña 770, 848 1989

Mixed events
Mixed EP-CP El Niño 785, 939 1992

La Niña
Single-year La Niña 798, 802 2006
Multi-year La Niña 774-775, 902-904 1999-2000

Table 1. Examples of different ENSO events in the model simulation (from year 750 to year 950;

showing in Figure 4) and observations (from year 1980 to 2020). Here, two examples from the

model simulation and one example from observations are listed for each type of the ENSO events,

respectively.

935-936) in the model simulation are not directly found in observations. The randomly510

generated wind bursts mainly cause them.511

4.2 Comparison of the statistics between model simulations and observa-512

tions513

In addition to the dynamical properties, the model statistics is another critical mea-514

surement for assessing its skill in reproducing realistic ENSO features. Since the focus is on515

the ENSO complexity, it is essential to study various statistics that represent unique aspects516

of the ENSO characteristics in different Niño regions across the equatorial Pacific. To this517

end, four statistical quantities concerning the SST anomalies of the model simulation are518

compared with those of the observations in Niño 4, Niño 3.4, and Niño 3 regions, respec-519

tively. They are 1) the probability density function (PDF), 2) the seasonal variance, 3) the520

power spectrum, and 4) the autocorrelation function (ACF). Here, the statistics of the ob-521

servations are computed based on the observed SST between 1951 and 2020, which contains522

70 years. On the other hand, a long simulation of 3500 years is utilized for computing the523

model statistics. The total simulation is divided into 50 non-overlapping subperiods, each524

having the same length as the observation. The statistics are then calculated for each of525

these 50 subperiods, the difference among which reflects the uncertainty in calculating these526

statistics.527

Panel (a) of Figure 5 shows that the strong non-Gaussian statistics of the SST anoma-528

lies in all the three Niño regions are accurately recovered by the ICM developed here. In529

particular, the PDF of the Niño 3 SST from observations is highly skewed towards the530

positive direction with a one-sided fat tail. The tail corresponds to the occurrence of the531

extreme EP El Niños events. The state-dependent noise in the wind burst process facilitates532

the model to create such extreme events. Therefore, the model can accurately recover this533

strong non-Gaussian PDF. In contrast, a negative skewness is found in Niño 4 SST from534

observations. In addition, the kurtosis of the associated PDF is less than the standard Gaus-535

sian value, which is 3. These findings indicate the suppression of extreme El Niño events536
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Figure 4. Model simulation: Hovmoller diagram of SST T (unit: oC), time series of the decadal

variability I and time series of the intraseasonal random wind bursts ap (unit: m/s) from year 750

to year 950.

in the Niño 4 region. With the help of the cubic and non-centered damping in the CP537

area, the model can accurately reproduce this skewed and light-tailed PDF. Similarly, the538

model can produce the observed PDF of the Niño 3.4 SST, demonstrating a slight positive539

skewness. It is worth highlighting that, despite the successes in recovering many dynami-540

cal features of ENSO, the CGCMs and many other dynamical models may not always be541

skillful in capturing such highly non-Gaussian PDFs in all the three Niño regions. However,542

recovering these statistics is one of the necessary conditions for reproducing the realistic543

ENSO complexity. Panel (b) of Figure 5 reveals the model’s capability in recovering the544

observed seasonal synchronization of ENSO, which is represented by the monthly variance545

of the SST in different Niño regions. The observed ENSO events usually favor starting in546

spring and peaking in boreal winter. This will also be depicted in Figure 8 by the compos-547

ite analysis for the temporal evolutions of Niño 3.4 SST index for different ENSO events.548

Overall, the model accurately captures these features, especially given that the model only549

exploits simple sinusoidal functions for parameterizing the seasonal effects.550

Next, Panel (a) of Figure 6 shows the power spectrums of the SST. It can be seen551

that the significant signal of the power associated with the Niño 4 SST is between 2 and 4552

years. The power decreases rapidly outside this window but another large power appears at553

lower frequencies, consistent with the presence of a decadal component associated with CP554

events (Sullivan et al., 2016). In contrast, the signal of the Niño 3 (and Niño 3.4) SST has a555

broader range in the interannual time scale; that is, the power remains significant between556

2 and 7 years. All of these features, except the low frequency in the Niño 4 region, are well557

captured by the model simulations, which are the essential requirements for the model to558

generate a similar degree of irregularity in oscillations as in observations. In addition, as559

shown in Panel (b), although the ACF associated with the model decays slightly faster than560

the observations, the model can create very similar ACFs in different Niño 3.4 and Niño561

4 regions as the observations. The results indicate that the model overall has a realistic562

decaying rate and memory, which are consistent with nature in the equatorial Pacific and563

are essential prerequisites for forecasting the ENSO complexity.564

Finally, Figure 7 shows the scatter plot of the equatorial Pacific boreal winter (DJF)565

mean SST maxima for the El Niño events from the model simulation, which is compared566

with the observations. Each point displayed here is a function of the maximum SST and its567
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Figure 5. Comparison of the PDFs (Panel (a)) and the seasonal variances (Panel (b)) of SST

anomalies between the model simulation and the observations in different Niño regions. The ob-

servations are based on the period of 1951-2020, which contains 70 years. Correspondingly, the

model simulation has the length in total 3500 years and is divided into 50 equally long periods,

each of which is 70 years. The blue shading area is the one standard deviation of the statistics

computed from these 50 non-overlapped periods and the blue solid curve is the average value. The

observational statistics is shown in red solid curve.

Figure 6. Similar to Figure 5 but for the spectrums (Panel (a)) and the autocorrelation functions

(ACFs; Panel (b)).
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Bivariate distribution of DJF El Nino SSTA peaks
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Figure 7. Distribution of equatorial Pacific SST maxima for the El Niño events from the model

simulation of 3500 years (blue) and the observations (red). For each of the qualified El Niño events,

the winter-mean SST anomalies are averaged over the equatorial zone (from 5oS to 5oN), and then

the Pacific zonal maximum is located. (a) Distribution of peak SST anomaly longitudes. (b) Scatter

plot of the peak SST anomaly value v.s. the longitude at which it occurs. The blue (red) dots are

for the model results (observations). (c) Distribution of peak SST anomaly values.

corresponding longitude. Panel (a) shows the PDF of the locations of these El Niño events.568

It exhibits a bimodal distribution with two significant centers. One is near the dateline,569

and another is in the eastern Pacific. These two peaks correspond to the CP and EP El570

Niño events, respectively. The finding is consistent with those estimated from different571

observational data sets by Dieppois et al. (2021). The distribution from the simple ICM572

developed here is more accurate than those from many CGCM simulations. As was pointed573

out by Capotondi et al. (2020), many CGCM simulations have biases; for example, the CP574

events are often located too west compared with observations. Another desirable feature to575

highlight is that, despite the bimodality, there remains a relatively large probability of the576

event occurring in the region from the dateline to 120oW (240). This reveals that ENSO577

diversity is not simply composed of events that belong to two separate categories. Instead,578

there are many mixed EP-CP events. In fact, according to Panel (b), there are several579

observed El Niño events (red dots) located in this region, indicating that the distribution580

should be in the form of a continuum rather than two disjoint sets (Johnson, 2013; Capotondi581

et al., 2015). However, this seems different in many CGCM results, as pointed out by582

Capotondi et al. (2015). Next, in terms of strength, the events with CP SST anomaly peaks583

are overall weaker than the corresponding EP ones. While the strongest events are always584

located in the eastern Pacific, the EP events can exhibit a wide range of amplitudes. These585

findings are consistent with physics and observations (F.-F. Jin et al., 2003).586
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El Niño La Niña

EP CP Extreme Multi-year Total Multi-year
Obs 14 10 4 5 24 8
Model 18.2± 3.5 14.7± 3.5 3.1± 2.3 10.5± 1.6 26.1± 4.6 6.9± 2.6

Table 2. Occurrence frequency of different ENSO events per 70 years. The observations are

based on the period of 1951-2020, which contains 70 years. For the model simulation, the mean

value plus and minus one standard deviation computed from the 50 segments is shown for each

case. Note that the counted number of the EP and the CP El Niños contains both single-year and

multi-year events as well as the extreme events. Therefore, the total number of the El Niño events

is simply the summation of the numbers in the first two columns (e.g., 24 in observations).

4.3 Composite analysis587

To provide a more quantitative assessment of the model performance on simulating588

each type of the ENSO events, Table 2 summarizes the occurrence frequency of different589

El Niño and La Niña events (as defined in Section 3.2) per 70 years. For the El Niño590

events, although the occurrence frequency of both the CP and the EP El Niño events from591

the model (18.2 and 14.7) is higher than that from the observations (14 and 10), the gap592

in counting both types of the El Niños between the model and the observations is just593

around one standard deviation of different model simulation segments, which is nevertheless594

within a relatively reasonable range. Such a difference mainly comes from overestimating595

the number of the multi-year El Niño events in the model. Except for this overestimation596

issue, other statistics from the model simulation are similar to those from the observations.597

First, the ratio between the numbers of the EP and the CP El Niño events relative to the598

total number of events from the model simulation (55% v.s. 45%) is almost the same as599

that in the observations (58% v.s. 42%), which indicates the skill of the model in capturing600

the overall El Niño diversity. Second, four extreme El Niño events have occurred since 1951,601

namely 1972–1973, 1982–1983, 1997–1998, and 2015–2016, while a comparable number of602

3.1±2.3 events is found in the model simulations. Third, the occurrence frequency for the603

La Niña events (26.1±4.6) from the model is very close to that in the observations (24). In604

particular, the model and the observations share approximately the same numbers of single-605

year and multi-year La Niña events. It is worthwhile to remark that, as the classification606

of El Niño events in observations is subject to the limited sample size and suffers from607

uncertainties associated with varying datasets (Wiedermann et al., 2016; Capotondi et al.,608

2020), the perfect agreement of the occurrence frequency with observations should not be a609

strict metric on evaluating the model performance. Therefore, it can be concluded that the610

model is skillful in reproducing reasonably accurate numbers of different events.611

Next, Figure 8 exhibits the composites of the DJF mean SST anomalies on the equa-612

torial Pacific for the EP El Niño, the CP El Niño, and the La Niña concerning the spatial613

distribution. Here, all the ENSO events (i.e., during the entire 3500 model years) are com-614

pared with the observations instead of separating them into smaller segments (see Panels615

a and b). It is seen that the composites computed from the model simulation are almost616

identical to those from the observations in terms of both the spatial patterns and the am-617

plitudes. Specifically, the warming center locates in the EP and CP regions for the EP618

and CP El Niños, respectively, although the simulated EP events are closer to the coastline619

of South America. The cooling center of La Niña is located between the warming centers620

of the EP and CP El Niño, which is also in accordance with the observations. Next, the621

model succeeds in recovering the ENSO asymmetry. In other words, the amplitude of the622

EP El Niño is overall stronger than those of the CP El Niño, and the La Niña (Hayashi et623

al., 2020). It should be noticed that accurately reproducing the spatial distributions of the624
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Figure 8. Upper panels: composited winter (DJF) mean SST anomalies (lines) and the corre-

sponding error bars (i.e., shaded by one standard deviation) over the equatorial Pacific for EP El

Niño (black), CP El Niño (red) and La Niña (blue) events. (a) and (b) are for model and observa-

tion, respectively. Lower panels: composited temporal evolution of the Niño 3.4 index for different

types of ENSO events. Year(0) and Year(+1) represent the developing and decaying years of each

event, respectively.

ENSO events and the ENSO asymmetry is still one of the main challenges for the state-625

of-the-art CGCMS (Planton et al., 2021). On the other hand, the model also realistically626

captures the composite results of temporal evolutions of the Niño 3.4 index for different627

types of ENSO events (see Panels c and d). Remarkably, they all show significant seasonal628

phase locking character, consistent with the discussion in Figure 5.629

4.4 Sensitivity analysis630

What remains is to study the role of each critical process in the coupled model, which631

facilitates understanding the model dynamics. To this end, several sensitivity tests are632

carried out in the following.633

Let us begin by investigating the role of decadal variability. In the standard run, I is634

driven by a simple stochastic process (9), and its value of the decadal variability time series635

varies between 0 and 1. In the sensitivity tests, the model simulations with a fixed I of636

either I ≡ 0 or I ≡ 1 are studied. In each trial, the strength of the wind bursts is slightly637

tuned by multiplying a constant such that the variance of the SST remains the same as638

the standard run, which allows a fair comparison of the occurrence frequency in different639

scenarios. Note that the decadal variability may be related to climate change and climate640

projection. Therefore, the interannual variability response due to the decadal variability641

variation is of great interest. First, the decadal variability is set to be zero (i.e., I ≡ 0),642

which corresponds to the situation with a weakened background Walker circulation between643

1980 and 2000 but towards the more extreme case. In such a scenario, the model simulation644

leads to an increase of the El Niño events (from 32.9 to 42.1 per 70 years) and a decrease of645

the La Niña ones (from 26.1 to 19.4). More specifically, among the El Niño events, 65.8%646

events are the EP type while only 34.2% events remain as the CP El Niño. This means647

the scenario with a weakened Walker circulation is more favorable for the EP than the CP648

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

El Niño events, as the zonal advective feedback in this situation is reduced and the role649

played by the thermocline feedback becomes dominant. The CP El Niño events can still650

be generated because of the stochastic noise. Similar to the overall occurrence frequency,651

more multi-year El Niño (from 10.5 to 15.9) and less multi-year La Niña (from 6.9 to 4.6)652

is found in such a case. In addition, about 7.6 extreme El Niño events are produced per 70653

years. This is nearly twice as many as that in the standard run and is in accordance with654

the observations, where 3 out of the total four extreme El Niño events occurred from 1980655

to 2000. Notably, such a result is consistent with the climate projection that an increased656

frequency of extreme El Niño events will appear due to the greenhouse warming since a657

projected surface warming over the EP is faster than that in the surrounding ocean waters658

(Cai et al., 2014). Next, if the decadal variability is set to be I ≡ 1, then the model mimics659

the situation when the Walker circulation and zonal thermocline slope are relatively strong,660

similar to the period after 2000. In such a scenario, more CP El Niño events (from 10 to661

20.6) are found in the model simulation as a natural consequence of the strengthened zonal662

advection feedback. Similarly, less multi-year El Niño (from 10.5 to 9.6) and multi-year La663

Niña (from 6.9 to 5.2) are generated (Iwakiri & Watanabe, 2022). In addition, there remain664

only 1.3 extreme El Niño events per 70 years since the overall occurrence of the EP events665

becomes lower. These findings further indicate that the difference between the positive and666

negative phases of ENSO is weakened. As a result, the PDF of the EP SST becomes closer667

to Gaussian, which is fundamentally different from the observed non-Gaussian PDF with a668

fat tail.669

The next analysis study is about the effect of the multiplicative noise σp(TC) in the670

stochastic wind burst process. The multiplicative noise is one of the main contributors to the671

asymmetry of the EP type of El Niño. If an additive noise (i.e., setting σp as a constant) is672

adopted, the PDF of the simulated EP SST becomes more symmetric and Gaussian. This is673

very different from the observations, where the amplitude of the extreme El Niño is typically674

larger than that of the strongest La Niña.675

Finally, the nonlinear damping in the CP region is crucial to the ENSO dynamics and676

statistics. According to the observations, the asymmetry concerning the SST PDF in the677

CP is reversed compared with that in the EP. That is, the amplitude of the negative phase678

of the CP SST is generally stronger than that of the positive one, which leads to a negative679

skewness of the CP SST PDF. Such a negative skewness is accurately recovered with the680

help of the nonlinear function of αq with the non-zero symmetric axis. On the other hand,681

the nonlinear damping in the CP region also plays a vital role in suppressing the amplitude682

of the strong CP events since the damping becomes more significant as the amplitude of the683

SST anomaly. As a result, the system favors the small and moderate SST anomalies, and a684

reduced kurtosis appears for the CP SST PDF.685

5 Conclusions and Discussion686

This paper develops a simple multiscale stochastic ICM to capture the ENSO diversity687

and complexity. The model highlights the interconnections between intraseasonal, interan-688

nual, and decadal variabilities. It also exploits suitable stochastic processes to facilitate the689

realistic simulation of the ENSO. The model succeeds in reproducing the spatiotemporal dy-690

namical evolution of different types of ENSO events. It also accurately recovers the strongly691

non-Gaussian probability density function, the seasonal phase locking, the power spectrum,692

and the temporal autocorrelation function of the SST anomalies in all the three Niño re-693

gions (3, 3.4 and 4) across the equatorial Pacific. Furthermore, both the composites of the694

SST anomalies for various ENSO events and the strength-location bivariate distribution of695

equatorial Pacific SST maxima for the El Niño events from the model simulation highly696

resemble those from the observations. These desirable features of the model are essential697

for realistically simulating different ENSO events. They are also the prerequisites for the698

unbiased statistical forecast of the ENSO complexity.699
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Variable Unit Unit Value
x zonal axis [y]/δ 15000km

y atmospheric meridional axis
√

cA/β 1500km

Y oceanic meridional axis
√

cO/β 330km
t interannual time axis [t] 34days
u zonal wind speed δcA 5ms−1

v meridional wind speed δ[u] 0.5ms−1

θ potential temperature 15δ 1.5K
Eq latent heating [θ]/[t] 0.45K.day−1

U zonal current speed cOδO 0.25ms−1

V meridional current speed δ
√
c[U ] 0.56cms−1

H thermocline depth HOδO 20.8m
T sea surface temperature [θ] 1.5K
ap wind burst amplitude [u] 5ms−1

Table A1. Model variables, definitions and units.

It is worthwhile to point out that the stochastic ICM developed here shares many com-700

mon features with the conceptual model in N. Chen et al. (2022). Both models include three701

time scales, where the decadal variability modulates the solution that alternates between702

the EP- and the CP-dominant regimes. At the same time, the intraseasonal wind bursts703

trigger most of the irregularities and extreme events. The underlying principles of incorpo-704

rating stochastic wind bursts and the nonlinearity into both models also appear in a similar705

fashion. Nevertheless, the ICM emphasizes more sophisticated physics and includes many706

additional dynamical properties. It also involves spatially-extended structures, which allow707

a better understanding and potentially an improved forecast of the spatiotemporal patterns.708

A few important topics remain as future work. First, the intraseasonal model adopted709

here is a one-dimensional simple stochastic process where the spatial structure is prescribed710

and fixed. A more realistic intraseasonal model can be a spatially-extended (stochastic)711

model for the wind bursts and the MJO; for example, one of the models in D. Yang and712

Ingersoll (2013); Wang et al. (2016); Adames and Kim (2016); Thual et al. (2018). A713

dynamical intraseasonal model allows the wind bursts and the MJO to have realistic spatial714

propagation mechanisms from the Indian Ocean to the WP. Such a coupled model will715

also help us understand the coupling between the MJO and the ENSO. Second, the model716

developed here has a symmetric meridional structure because only the leading meridional717

basis function is utilized in the meridionally truncated system. Yet, both the wind bursts718

and the ENSO have certain meridionally asymmetric features, which could be essential to719

account for the negative feedback associated with off-equatorial Rossby waves (Kirtman,720

1997; Capotondi et al., 2006) or the effect of off-equatorial influences, for example, the721

north and south Pacific meridional modes (Chiang & Vimont, 2004; Zhang et al., 2014).722

Therefore, incorporating additional meridional basis functions into the model is a natural723

extension of the current system. Third, the ICM developed here applies to the forecast of724

different ENSO events. In particular, the ICM can be combined with the conceptual model725

in N. Chen et al. (2022) (and possibly the coupled MJO-ENSO model to be developed as726

well) for the multi-model data assimilation and forecast, which advances the understanding727

of the role of each model and each component in improving the forecast of the ENSO728

complexity.729

Appendix A Variables and Parameters730

The definitions and units of the model variables are listed in Table A1. The parameter731

values are summarized in Table A2.732
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Parameter Value
ǫ Froude number 0.4
δ long-wave scaling 0.1
δO arbitrary constant 0.1
cA atmospheric phase speed 50ms−1
cO oceanic phase speed 2.5ms−1
c ratio of oceanic/atmospheric phase speed 0.05
c1 modified ratio of phase speed 0.15
β beta-plane parameter 2.28 10−11m−1s−1

g′ reduced gravity 0.03ms−2

HO mean thermocline depth 50m
ρO ocean density 1000 kg.m−3

χA atmospheric meridional projection coefficient 0.31
χO oceanic meridional projection coefficient 1.38
LA equatorial belt length 8/3
LO equatorial Pacific length 1.2
Q̄ mean vertical moisture gradient 0.9
T̄ mean SST 16.6 (which is 25oC)
αq latent heating factor αq = qcqe exp(qeT̄ )/τq × β1(T )× β2(t)
β(T ) state dependent component in αq β1(T ) = 1.8− η2/3 + (0.2 + |TC + 0.4| × η2)

2/5
β(T ) seasonal dependent component in αq β2(T ) = 1 + 0.5 sin(2π(t− 1/12)) + 0.1 sin(2πt)η2

−0.0625 sin(4π(t− 3/12))η1
qc latent heating multiplier coefficient 7
qe latent heating exponential coefficient 0.093
τq latent heating adjustment rate 15
γ wind stress coefficient 6.53
rW western boundary reflection coefficient 0.5
rE eastern boundary reflection coefficient 1
ζ latent heating exchange coefficient 8.7
c2 mean correction coefficient 0.1
η profile of thermocline feedback η(x) = 1.3 + (1.1× tanh(7.5(x− LO/3)))
η2 profile of zonal advective feedback η2(x) = max(0, 4 exp(−(x− LO/(7/3))

2/0.1)× 0.9)
dp wind burst damping 1.12 (which is 1mon−1)
sp wind burst zonal structure sp(x) = exp(−45(x− LO/4)

2)
σp(TC) wind burst noise coefficient σp(TC) = 1.6(tanh(TC) + 1)(1 + 0.6 cos(2πt))(1 − 0.75I)
λ damping of decadal variability 0.0186 (which is 5year−1)
m mean of I 0.5

Table A2. Model parameter values.
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Figure A1. Panels (a)–(d): Spatial structure functions of the meridional bases φ0(y), φ2(y),

ψ0(y) and ψ2(y). Panels (e)–(g): Spatial structure functions of sp(x), η1(x) and η2(x).

As was stated in Section 2.1, different parabolic cylinder functions in the ocean and at-733

mosphere were used in the coupled model. Their profiles are shown in Figure A1. The atmo-734

spheric parabolic cylinder functions read φ0(y) = (π)−1/4 exp(−y2/2), φ2(y) = (4π)−1/4(2y2−735

1) exp(−y2/2). The ocean parabolic cylinder functions read ψm(Y ), which have the same736

profiles as the atmospheric ones but depend on the oceanic meridional axis Y .737

To couple the ocean and atmosphere, projection coefficients are introduced, which read738

χA =
∫ +∞

−∞
φ0(y)φ0(y/

√
c) dy and χO =

∫ +∞

−∞
ψ0(Y )ψ0(Y/

√
cY ) dY . The atmosphere uses739

a truncation of the Kelvin and first Rossby atmospheric equatorial waves of amplitude KA740

and RA. The ocean uses a truncation of zonal wind stress forcing to ψ0, τx = τxψ0. This is741

known to excite only the Kelvin and first Rossby oceanic waves of amplitude KO and RO.742

Similarly, for the SST model, a truncation ψ0, T = Tψ0 is utilized. Then, the deterministic743

and linear part of the ENSO model truncated meridionally yields (4)–(6).744

Appendix B Parameters for the Two Different Linear Solutions745

The model starts with a deterministic and linear coupled interannual atmosphere,746

ocean, and SST system. Before the two stochastic processes on the other two time scales747

are further incorporated, confirming that the linear model can generate the basic solutions748

of the two types of ENSO events under different parameter settings is crucial. In addition,749

the potential difference should be as slight as possible for the physical interpretation.750

In this model, the behavior of the leading mode is mainly determined by the relative751

amplitude between the zonal advective feedback and the thermocline feedback, which is752

consistent with the observational analyses. For this purpose, the only change of the setting753

is the strength of the zonal advective feedback, i.e., η2. Specifically, for the linear solution754

corresponding to the CP ENSO regime, η2(x) = max(0, 4 exp(−(x−LO/(7/3))
2/0.05)×0.9)755

is utilized (Panel (b) of Figure 2), while for that corresponding to the EP ENSO regime,756

η2(x) = max(0, 4 exp(−(x − LO/(7/3))
2/0.05)× 0.9)× 0.3 is adopted (Panel (a) of Figure757

2), which is 30% of the one in the CP ENSO regime. Figure B1 illustrates the spectrum of758

the eigenmodes as a function of the frequency and the growth rate. The two panels show759

the EP and CP El Niño dominant cases, corresponding to the two panels in Figure 2.760

Appendix C Stochastic Process with Multiplicative Noise for the Decadal761

Variability762

The decadal variability influences the occurrence frequency of the two types of El Niño
and, thus, the ENSO complexity. A stochastic model is introduced for the decadal variability,
which depicts the strength of the backgroundWalker circulation and affects the related zonal
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Figure B1. The spectrum of the eigenmodes as a function of the frequency (x-axis; unit: year−1)

and the growth rate (y-axis; unit: year−1). Panels (a)–(b) here show the EP and CP El Niño

dominant cases, corresponding to the two panels in Figure 2.

advective feedback. In the decadal model (9), a state-dependent (i.e., multiplicative) noise
coefficient σI(I) is adopted that allows I to be non-negative, which comes from the fact
that the trade wind in the lower level of the Walker circulation in the decadal time scale
is easterly. Here, as only limited data for the decadal variability is available, a uniform
distribution function of I is adopted in the model. This is based on the fact that the
uniform distribution is the maximum entropy solution for a function in the finite interval
without additional information (Kapur & Kesavan, 1992; Branicki et al., 2013; Majda &
Wang, 2006). The parameter m is the mean of I, which can be inferred directly from the
data. The damping parameter λ can be determined by taking the inverse of the decorrelation
time, which is defined as

τ = lim
T→∞

∫ T

0

ACF (t) dt with ACF (t) = lim
T→∞

1

T

∫ T

0

I(t+ t′)I(t′)

var(I)
dt′,

where T here is the time not SST. A sufficiently large T is used as a numerical approximation.
Finally, the multiplicative noise coefficient σI(I) is determined in the following way (Averina
& Artemiev, 1988)

σ2
I (I) =

−2λ

p(I)

∫ I

−∞

(

s− m

λ

)

p(s) ds.
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Bivariate distribution of DJF El Nino SSTA peaks
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Freq: yr-1

-3

-2.5

-2

-1.5

-1

-0.5

0

G
ro

w
th

: 
y
r-1

(a) Spectrum of eigenmodes

[EP El Nino dominant case]

Remaining modes

Leading modes

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Freq: yr-1

-3

-2.5

-2

-1.5

-1

-0.5

0

G
ro

w
th

: 
y
r-1

(b) Spectrum of eigenmodes

[CP El Nino dominant case]


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure A1 legend
	Figure A1
	Figure B1 legend
	Figure B1

