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Abstract

Non-hydrostatic km-scale weather and climate models show significant improvements in simulating clouds, especially convective

ones. However, even km-scale models need to parameterize some physical processes and are thus subject to the corresponding

uncertainty of parameters. Systematic calibration has the advantage of improving model performance with transparency and

reproducibility, thus benefiting model intercomparison projects, process studies, and climate-change scenario simulations. In

this paper, the regional atmospheric climate model COSMO v6 is systematically calibrated over the Tropical South Atlantic.

First, the parameters’ sensitivities are evaluated with respect to a set of validation fields. Five of the most sensitive parameters

are chosen for calibration. The objective calibration then closely follows a methodology extensively used for regional climate

simulations. This includes simulations considering the interaction of all pairs of parameters, and the exploitation of a quadratic-

form metamodel to emulate the simulations. In the current set-up with 5 parameters, 51 simulations are required to build the

metamodel. The model is calibrated for the year 2016 and validated in two different years using slightly different model setups

(domain and resolution). Both years demonstrate significant improvements, in particular for outgoing shortwave radiation, with

reductions of the bias by a factor of 3 to 4. The results thus show that parameter calibration is a useful and efficient tool for

model improvement. Calibrating over a larger domain might help improve the overall performance, but could potentially also

lead to compromises among different regions and variables, and require more computational resources.
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Key Points:6

• A systematic calibration method is applied to improve the performance of a km-7

resolution regional climate model over the tropical Atlantic.8

• Cloud-related model performance at the km-scale is significantly improved through9

systematic calibration.10

• The calibrated parameter setting is robust among different years.11
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Abstract12

Non-hydrostatic km-scale weather and climate models show significant improvements in13

simulating clouds, especially convective ones. However, even km-scale models need to14

parameterize some physical processes and are thus subject to the corresponding uncer-15

tainty of parameters. Systematic calibration has the advantage of improving model per-16

formance with transparency and reproducibility, thus benefiting model intercomparison17

projects, process studies, and climate-change scenario simulations.18

In this paper, the regional atmospheric climate model COSMO v6 is systematically19

calibrated over the Tropical South Atlantic. First, the parameters’ sensitivities are eval-20

uated with respect to a set of validation fields. Five of the most sensitive parameters are21

chosen for calibration. The objective calibration then closely follows a methodology ex-22

tensively used for regional climate simulations. This includes simulations considering the23

interaction of all pairs of parameters, and the exploitation of a quadratic-form metamodel24

to emulate the simulations. In the current set-up with 5 parameters, 51 simulations are25

required to build the metamodel. The model is calibrated for the year 2016 and validated26

in two different years using slightly different model setups (domain and resolution). Both27

years demonstrate significant improvements, in particular for outgoing shortwave radi-28

ation, with reductions of the bias by a factor of 3 to 4.29

The results thus show that parameter calibration is a useful and efficient tool for30

model improvement. Calibrating over a larger domain might help improve the overall31

performance, but could potentially also lead to compromises among different regions and32

variables, and require more computational resources.33

1 Introduction34

While the critical role of anthropogenic greenhouse gases for the climate system35

is widely accepted (IPCC, 2021), the uncertainties in climate projections are still stag-36

geringly large. Current uncertainties limit the ability to plan climate-change adaptation37

measures, weakening the debate about climate-change mitigation. Reducing these un-38

certainties is thus of key importance.39

Studies have found that the uncertainty in global mean warming in response to an-40

thropogenic greenhouse gases in climate models is closely related to the representation41

of cumulus and stratocumulus clouds over tropical oceans, since they are controlled by42

dynamic processes at small scales (typically 0.1-10 km), which is significantly lower than43

the grid spacing of global climate models (50-100 km) (Bony & Dufresne, 2005; Sher-44

wood et al., 2014; Bony et al., 2015; Schneider et al., 2017). Due to computational con-45

straints, most global climate models still parameterize the moist-convective vertical ex-46

change of energy, moisture and momentum, even in the tropics, where it is the key agent47

of atmospheric motion. However, during the last decade, tremendous efforts have become48

evident towards explicitly resolving convective clouds rather than using semi-empirical49

parameterization schemes (Satoh et al., 2019; Stevens et al., 2019; Schär et al., 2020).50

Several studies using limited area modeling have shown that the convection-resolving ap-51

proach yields a significantly improved simulation of the diurnal cycle of precipitation (Prein52

et al., 2013), as well as a better representation of hourly precipitation statistics, wet and53

dry extremes (Kendon et al., 2019; Ban et al., 2014, 2015; Prein et al., 2017), cloud cover54

(Hentgen et al., 2019; Miyamoto et al., 2013) and wind (Belušić et al., 2018).55

While the progress of convection-resolving models (CRMs) in the extratropics has56

been highly promising, recent studies suggest that the potential of CRMs in the trop-57

ics is even more exciting (Stevens et al., 2019; Hentgen et al., 2020). In the tropics, con-58

vection is a key process throughout all seasons and is closely linked to the Hadley cir-59

culation that features air rising near the Equator, flowing poleward in the upper trop-60

ical atmosphere, descending in the subtropics, and then returning equatorwards. This61
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is one of the most important circulations in our climate system that functions as an at-62

mospheric heat engine, and many studies have demonstrated that the spatial organiza-63

tion of subtropical and tropical clouds associated with the Hadley circulation can be rep-64

resented more credible at high resolutions (Bretherton & Khairoutdinov, 2015; Heim &65

Hentgen, 2021). This concerns especially shallow cumulus and stratocumulus clouds (Hohenegger66

et al., 2020).67

In spite of these improvements when going towards higher resolution, there are still68

some challenges. Although CRMs run at a relatively high resolution (typically lower than69

4 km) (Prein et al., 2015), some processes still need to be parameterized, such as cloud70

microphysics and turbulence (Schär et al., 2020), which are approximations of subgrid-71

scale processes and rely on semi-empirical parameters that are poorly constrained by ob-72

servations. Thus, when applying CRMs over the tropics, the simulations are subject to73

high parametric uncertainty related to poorly confined model parameters. In practice,74

the values of uncertain parameters are determined using subjective expert tuning. Nor-75

mally, the tuning does not follow a unique well-defined methodology (Hourdin et al., 2017).76

Subjective model tuning implies some difficult challenges. For instance, differences in model77

results reflect both differences in model structure (such as dynamical cores and type of78

parameterizations) and model tuning, thereby hazing the value of model intercompar-79

ison projects. This is particularly important for cloud-radiative feedback, as the mag-80

nitudes of the anthropogenic forcing and cloud-radiative feedbacks are small, often smaller81

than the systematic model biases in terms of radiation budget (Stocker, 2014).82

Compared with subjective tuning, systematic calibration methods, using a prede-83

fined mathematical framework to perform model tuning, possess the advantage of mak-84

ing the process more explicit and reproducible (Hourdin et al., 2017). The framework85

encompasses the validation strategy, the set of to-be-calibrated parameters, and the mod-86

eling strategy (period and domain). Within such a stipulated framework, the calibra-87

tion is objective, but the definition of the framework is subjective. Thus, to ensure a valid88

intercomparison of different model versions (e.g., different resolutions or parameteriza-89

tions) and an assessment of the parametric uncertainty, a systematic model calibration90

method is preferable (Garćıa-Dı́ez et al., 2015; Bellprat et al., 2012, 2016).91

Current calibration techniques mainly include two categories in terms of the op-92

timization (Hourdin et al., 2017). One is fast optimization of some cost function, eval-93

uating model performance given specific metrics like averaged radiation or precipitation94

(Neelin et al., 2010; Bellprat et al., 2012; Bracco et al., 2013; Duan et al., 2017; Langen-95

brunner & Neelin, 2017; Tett et al., 2017; Gorman & Oliver, 2018). The other, instead96

of trying to find the optimum parameter setting, involves using Bayesian approaches to97

provide the uncertainty for the parameters (Bony & Dufresne, 2005; Rougier, 2007; Sander-98

son, 2011; Sexton et al., 2012; Salter et al., 2019; Couvreux et al., 2021). Except for some99

studies that use particle-based approaches (Lee et al., 2020) or adaptive sampling algo-100

rithms (Phipps et al., 2021). Most of the research uses emulators, mapping model in-101

puts with outputs to reduce computational resources. In terms of the emulators, the cal-102

ibration methods can also be divided into those that use statistical models (Voudouri103

et al., 2021) and machine learning methods (Li et al., 2019).104

In this study, We choose a fast optimization method given limited computational105

resources, and applied a simple statistical emulator for clearer input-output relationships.106

We systematically calibrated the non-hydrostatic fully compressible limited-area model107

of the Consortium for Small-Scale Modeling (COSMO) in climate mode (Steppeler et108

al., 2003; Doms & Förstner, 2004) and obtained optimistic parameter settings over the109

tropical Atlantic. The objective of this study is to examine the potential of systematic110

calibration in improving the model performance of cloud simulation over the tropics. Fu-111

ture applications will address the role of cloud-radiative feedbacks in climate change.112
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2 Materials and Methods113

2.1 Numerical Simulations114

The European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis115

(ERA5) data (Hersbach et al., 2020) is used as lateral boundaries to drive the COSMO116

v6 model. The parameterization schemes applied are similar as Heim and Hentgen (2021):117

deep and shallow convection parameterizations are switched off, radiative fluxes are com-118

puted following the δ-two-stream approach after Ritter and Geleyn (1992), the single-119

moment bulk scheme after Reinhardt and Seifert (2006) is used as cloud microphysics120

parameterisation, a 1D TKE-based model (Raschendorfer, 2001) is employed for the com-121

putation of subgrid-scale vertical turbulent flux and we use prescribed sea-surface tem-122

perature over the ocean.123

All simulations are run with 60 vertical levels and a horizontal grid spacing of 4124

km. For the sensitivity and calibration simulations, domain D01 is applied as displayed125

in Figure 1 with a size of 1000x575 grid columns. The simulation period covers 4 months126

(Feb., May, Aug., Nov.) in 2016, each with a 5-day-spin-up period. Based on previous127

calibration studies (Voudouri et al., 2018; Russo et al., 2020), 13 parameters that are thought128

to exert a significant impact on model results were tested, shown in Table 1. In the end,129

five of these parameters are selected for calibration, and the reasoning is elaborated in130

section 3.1. For validation of the optimized parameter setting, we proceed in two steps.131

First we present a validation over D01 with the same set-up as for the calibration. Sec-132

ond, we a larger validation domain D02 is used at a refined horizontal grid spacing of133

3 km. It has a size of 2750x2065 grid columns. Both validation periods consider another134

year than the one used in calibration, to avoid overfitting of parameters.135

Figure 1. Simulation, calibration and validation domains. Domain D01 (green line) is used

for the COSMO sensitivity and model calibration simulations. The calibration takes place in the

subdomain D03 (red line). In addition, the large domain D02 (blue line) is also used for further

validation.

2.2 Calibration136

The calibration with N parameters optimises the parameter choice in an N -dimensional137

cube spanned by the min/max ranges of the selected parameters (see Table 1. To con-138

struct a metamodel, the following set of simulations are employed: the default simula-139

tion (all parameters at default value), pairs of sensitivity simulations (one parameter changed140

to min/max values), and quadruplets of interaction simulations (two parameters changed141

to min/max values). The total number of simulations is then 1 + 2N + 2N(N − 1) =142

2N2+1, and for N = 5 this yields 51 simulations. Based on this set of simulations, a143

metamodel is constructed, and the optimal value of the parameters is selected. The re-144

striction to using only quadratic interactions (with two non-default values) in the set of145

simulations is consistent with the choice of the metamodel (see below). The set of sim-146
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Table 1. Perturbed parameters. The parameters selected for calibration are denoted in bold.

The range covers the parameter values explored. The bold entries denote the default values in

simulations. The same values have also been used by Hentgen et al. (2020).

Parameter/property Acronym Value Range

Turbulence
Minimal diffusion coefficients for vertical heat and momentum
transport (m2s−1)

tkmin [0, 0.4, 2]

Maximal turbulent length scale (m) tur len [60, 100, 500]
Factor for turbulent momentum dissipation d mom [12, 16.6, 20]

Land surface
Scaling factor for laminar boundary layer depth rlam heat [0.1, 0.5249, 2]
Scaling factor for laminar boundary layer depth over sea rat sea [1, 20, 100]

Surface area index of the waves over sea c sea [1, 1.5, 10]
Exponent to get the effective surface area e surf [0.1, 1, 10]

Microphysics
Cloud ice threshold for autoconversion qi0 [0, 5e-6, 0.01]
Variable for computing the rate of cloud liquid water in unsaturated cases clc diag [0.2, 0.5, 1]
Cloud droplet number concentration cloud num [1e7, 5e8, 1e9]

Radiation
Variable for computing the rate of cloud cover in unsaturated cases uc1 [0, 0.0626, 1.6]
Critical value for normalized oversaturation q crit [1, 1.6, 10]
Portion of gridscale qc seen by the radiation radqc fact [0.5, 0.5, 1]

ulations considered in the current study is shown in Table 2. The technical details of the147

calibration closely follow Bellprat et al. (2012). Significant differences concern the choice148

of the validation data, differences in the performance score, and the use of scaled param-149

eter ranges (see below).150

2.2.1 Performance score151

Since the target is to improve cloud-related performance, top of atmosphere (TOA)152

radiative fluxes (outgoing longwave radiation (OLR) and outgoing shortwave radiation153

(OSR)) are chosen to calibrate the model results. Besides, the surface latent heat flux154

(LHFL) is also included as a target validation field, since it plays an important role in155

humidifying the atmosphere. Furthermore, LHFL also enables us to take a surface field156

into consideration, apart from the TOA fields. The TOA observation data is from Satel-157

lite Application Facility on Climate Monitoring (CM SAF) (Schulz et al., 2009). Since158

LHFL observation data is limited, ERA5 reanalysis data (Hersbach et al., 2020) is used159

to constrain this field. This special choice of validation data is owed to the limited avail-160

ability of in-situ observations in the area of interest. A critical element of this choice is161

the use of ERA5 data for LHFL. The use of such data in the calibration hinges upon an162

appropriate estimate of the data’s uncertainties.163

The variables are evaluated using monthly means, averaged spatially for 28 rect-164

angular regions (5◦ × 5◦ each, 4 rows and 7 columns over the calibration domain D03165

as displayed in Figure 1). The error of these time series is measured using a performance166
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score (PS):167

PS = exp[− 1

2V RT Y

∑
v

∑
r

∑
t

∑
y

(mv,r,t,y − ov,r,t,y)
2

σ2
ov,t

+ σ2
ϵv,t,y

]. (1)168

The Y, T,R, V in (1) denote the number of years used in the calibration framework (Y=1169

with the year 2016), number of months used (T=4 monthly averages including Feb., May.,170

Aug., Nov.), averaged over each region (R=28 regions), and for the three validation vari-171

ables (OLR, OSR, LHFL, V = 3). PS is therefore an estimate of likelihood obtained by172

normalizing the simulated error (m−o) with interannual observation variation (σo) and173

observational uncertainty (σϵ). The interannual variability (σo) is expressed as the in-174

terannual standard deviations of the monthly mean observations (2013-2017) averaged175

over the whole domain. The observational uncertainty (σϵ) of OLR and OSR are from176

Urbain et al. (2017). The σϵ of LHFL is from the standard deviation of the ERA5 as-177

similation ensemble members, which provides background-error estimates for the deter-178

ministic reanalysis system (Hersbach et al., 2019, 2020). Table 3 displays the σo and σϵ179

used for the calibration.180

Table 2. Summary of simulations: the sensitivity ensemble includes 2 simulations per pa-

rameter (with min and max parameter values); the interaction ensemble includes sensitivity

simulations with all quadratic interactions; and the validation simulations include two simulations

with default and calibrated parameter sets over two domains.

Ensemble Domain Period Resolution Parameters Simulations

Default simulation D01 Feb. May., Aug., Nov. 2016 4.4 km def 1
Sensitivity tests D01 Feb. May., Aug., Nov. 2016 4.4 km 13 26
Parameter interactions D01 Feb., May., Aug., Nov. 2016 4.4 km 5 40
Validation01 D01 the whole year of 2013 4.4 km - 2
Validation02 D02 Feb., May., Aug., Nov. 2006 3.3 km - 2

Table 3. σo and σϵ used for calibration.

σ Fields (Wm−2) Feb. May Aug. Nov.

σo

OLR 10.0 16.0 8.7 17.2
OSR 35.3 26.8 29.5 31.6
LHFL 28.8 40.6 37.3 10.2

σϵ

OLR 4.9
OSR 1.3
LHFL 11.5

2.2.2 Metamodel181

Since direct simulations with the convection-resolving model (CRM) are compu-182

tationally expensive, a quadratic metamodel (MM) was chosen to emulate the output183

of the CRM (Neelin et al., 2010; Bellprat et al., 2012). The MM is based on the assump-184

tion that the climate model results from parameter perturbation are smooth and can be185
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approximated by a 2nd order polynomial regression. Interactions of parameter pertur-186

bations are approximated by a non-linear term for each parameter pair.187

Relative parameter values µ∗ and model fields Φ∗ are used as independent and de-188

pendent variables separately to fit the MM. For each field, month and domain pixel, the189

corresponding formulations can be written as:190

µ∗ = µp − µdef , (2)191

Φ∗ = Φp − Φdef , (3)192

Φp = fMM (µ∗) + Φdef , (4)193

where subscripts def and p refer to default and perturbed parameter values, and194

fMM indicates the polynomial function of MM. It includes one linear and one quadratic195

term for each relative parameter value and also one interactive term for every param-196

eter pair (1st order for each parameter in the pair). Depending on the number of param-197

eters (N), fMM can be expressed in the vector notation as198

Φ∗ = µT
∗ a+ µT

∗ Bµ∗, (5)199

where the vector a contains the N linear coefficients for each parameter, and the ma-200

trix B includes coefficients for N quadratic terms on its diagonal and for N(N−1)/2201

interactive terms in the off-diagonal elements (with the general assumption Bi,j = Bj,i).202

Together this yields N(N+3)/2 coefficients defining the MM. For example, if two pa-203

rameters (µ1, µ2) are calibrated, fMM would be204

Φ∗ = µ1a1 + µ2a2 + µ2
1b1 + µ2

2b2 + 2µ1µ2b1,2, (6)205

where a1, a2, b1, b2 and b1,2 are coefficients to be solved.206

Perturbed parameter ensembles used to fit the MM are simulated through sampling207

parameters with their maximum and minimum possible values based on previous stud-208

ies (Voudouri et al., 2018; Bellprat et al., 2016). Consequently, there are 2N2 simula-209

tions used to fit the MM, which is more than the number N(N+3)/2 of unknown co-210

efficients. The resulting linear system of equations is thus overdetermined, and optimal211

interaction parameters are estimated using least squares error measures.212

In general, the default value µdef will not be in the center of the parameter range213

[µmin, µmax], and this may lead to unsatisfactory results when fitting the MM. Parabolic214

fitting works best with a default value at the center, therefore we applied a logarithmic215

transformation of parameter values to fit the MM as Voudouri et al. (2018),216

x → x̂ ≡ log(α
x− xmin

xmax − xmin
+ β), (7)

where the α and β are determined by parameter default values and ranges enabling x̂def =217

(x̂min + x̂max)/2.218

After the construction of the MM, 3,000,000 parameter sets are sampled with the219

Latin hypercube design (McKay et al., 2000). The set of parameter values with max-220

imum PS was chosen as the optimal parameter set.221

3 Results222

3.1 Optimized parameters223

Figure 2 presents the PS’s of the sensitivity tests of the 13 parameters. The default224

PS (the black dots) indicates that LHFL performance is quite good, which is reasonable225
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since we use the prescribed sea-surface temperature. Besides, as the domain D01 is mainly226

affected by low clouds, which hardly modify emitted longwave radiation from surface,227

the longwave radiation performance is also good. One of the target is to improve the rep-228

resentation of low clouds, which is related to variations in the OSR-field. Therefore, when229

choosing the final parameters for calibration, the ones that strongly impact OSR are the230

priority. Based on this figure the following parameters are selected for the calibration:231

tur len, clc diag, cloud num, qi0 and rat sea.232

The choice follows the following considerations: First, tur len, clc diag and cloud num233

have the largest potential in increasing OSR performance, with the largest OSR PS around234

0.6. We also include two parameters to constrain OLR and LHFL. OLR is most sensi-235

tive to qi0, which controls the autoconversion of cloud ice and has almost no impact on236

OSR and LHFL. This makes qi0 a suitable parameter for calibration. For LHFL, rlam heat237

and rat sea exert the most significant impact. Since they have a similar impact over the238

ocean (rlam heat controls the overall latent heat flux and rat sea is a scaling factor ex-239

erted on the rlam heat to distinguish sea and land) and the domain located over the ocean,240

rat sea is chosen for calibration. Besides, according to Possner et al. (2014), it’s better241

to use a small value for tkmin, thus in the calibration, it’s set as 0.25.242

Figure 3 displays the biases of longwave and shortwave radiation based on the sen-243

sitivity tests averaged over the four months (Feb., May, Aug. Nov.) in 2016. The OLR,244

OSR, LHFL are all defined as upward positive in this paper. Only the five calibrated pa-245

rameters are displayed. The drastic impact of qi0 on longwave radiation can be seen when246

setting it to the maximum value. Because larger qi0 indicates less conversion of cloud247

ice to precipitable snow and more cloud ice would accumulate, thus preventing longwave248

radiation from escaping. The remaining parameters effectively control the shortwave ra-249

diation.250

3.2 Calibration results251

Once the coefficients of the metamodel have been determined from the calibration252

simulations, the optimal parameter setting is chosen based on a sampling of the five-dimensional253

cube. Figure 4 shows the resulting distribution of the PS. The PS increases from the de-254

fault 0.62 (black line) to the optimum 0.86 (red line). This improvement is very substan-255

tial, but will require independent validation (see section 3.3). Figure 5 displays the cor-256

responding distributions of PS as a function of the parameters. The default and opti-257

mized parameter values are shown by the black and red vertical lines. Results show that258

the parameter qi0 mainly affects high clouds and controls longwave radiation. Increas-259

ing qi0 results in lower values for OLR due to larger cloud ice content. The parameter260

for computing the rate of cloud liquid water in unsaturated cases (clc diag) approaches261

1, which indicates no subgrid-scale clouds. That is reasonable for high-resolution mod-262

eling due to smaller grid cells. The optimal value for tur len is a bit lower than its de-263

fault. This leads to less vertical mixing within the planetary boundary layer. This in-264

dicates decreased moisture supply and cloud amount. Besides, turbulence also affects the265

boundary layer stability and the inversion height (Heim & Hentgen, 2021), which indi-266

rectly influences the amount of low clouds. A shallower boundary layer favors the for-267

mation of low clouds, especially of persistent stratocumulus decks, yet a too shallow bound-268

ary layer top might be lower than the surface-determined lifting condensation level (LCL)269

and thus not allow clouds to form (Wood, 2012). Lower values of rat sea favour higher270

surface latent heat fluxes. Clouds react to decreased rat sea mainly in two ways. One271

is higher PBL moisture which allows for more cloud water. The other is decreased bound-272

ary layer stability, which may not favor the formation of low clouds. Furthermore, a lower273

value of cloud num results in a larger cloud droplet size. That leads to increased pre-274

cipitation, and might thus decrease cloud amount. In the mean time, reduced cloud num275

also suppresses buoyant turbulence kinetic energy (TKE) production, thus may decrease276
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Figure 2. PS calculated separately for OLR (blue dashed line), OSR (green dashed line) and

LHFL (red dotted line) and the PS for all of the 3 fields (black solid line) for the three tested

parameter values. The results are the averaged over the four months and the analysis domain.

The black dots indicate the respective PS with the default parameter setting. The horizontal

axes shows the parameter values after the logarithmic transformation, and the lines represent

quadratic fits.
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Figure 4. Metamodel predicted PS distributions for the 3,000,000 sampled parameter combi-

nations (blue histogram) with the Latin hypercube method along with the original score of the

reference (black line) and the optimized (red line) simulation.
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Figure 5. Number of experiments (blue histograms) of the parameter settings, which perform

equally well, given the uncertainty of the metamodel in predicting the model performance (with

an uncertainty of 0.015). The blue lines indicate the parameter range, the black line indicates the

default parameter value and the red line indicates the optimum parameter values.

cloud-top entrainment and increase cloud amount (Coakley Jr & Walsh, 2002; Acker-277

man et al., 2004).278

3.3 Robustness of the optimized parameter setting279

To verify the calibration and the key result in Figure 4, the default simulation for280

the year 2016 has been repeated with the calibrated parameter settings. This confirmed281

the results and showed an improvement in PS from 0.62 before calibration, to 0.86 af-282

ter calibration. The agreement with the metamodel is surprisingly good, as the optimal283

performance score is missed by less than a percent.284

To test whether the calibrated parameter setting also works for another year, Fig-285

ure 6 displays the comparison between simulations using the optimized parameter set-286

ting as described before and the default simulation during four full seasons in 2013 with287

domain D01: December, January and February (DJF), March, April and May (MAM),288
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DJF MAM

JJA SON

Optimum

Default

Optimum

Default

Figure 6. Validation of the optimum parameter setting in 2013 for December, January and

February (DJF), March, April and May (MAM), June, July and August (JJA), September, Octo-

ber and November (SON). (bias = model - observation)

June, July and August (JJA), September, October and November (SON). The model289

performance is significantly improved in all seasons for shortwave radiation and surface290

latent heat flux. OLR is mainly affected by high clouds, whereas the spatial domain is291

dominated by low clouds for most of the seasons. Therefore, the change in OLR is mi-292

nor. In MAM, when the ITCZ is southernmost and partially within the simulation do-293

main, there is a significant underestimation of OLR, and an increase of the bias with the294

calibration. This kind of effect is to be expected with, as with the use of a PS there may295

be compensation of errors. In this particular case, the large OSR bias in the default is296

being reduced, but at the cost of increases in the OLR bias. The underestimation in MAM297

is mainly due to the overestimated ice cloud in the ITCZ. Therefore, the longwave ra-298

diation bias in MAM might indicate a deficiency of the model in simulating the high clouds299

with the same set of optimum parameters obtained over the current domain (since more300

weight is given to the low clouds due to the selection of the domain). However, overall301

PS is reduced, corresponding to a net reduction of the weighted overall bias.302

The daily bias over the domain D01 in 2013 is presented in Figure 7. For the long-303

wave radiation, the bias is almost the same between the optimum and default setting for304

most of the time. However, in April and May, where the ITCZ moves to the Southern-305

most, the bias with the optimum parameter setting is significantly higher than with the306

default setting. For shortwave radiation, there is a systematic decrease of bias using the307

optimum parameter setting, especially in austral winter and spring, when low cloud pre-308

vails. It should be noted that the consideration of daily biases includes biases due to pre-309

dictability limitations and chaotic processes in the model domain.310

To further explore how robust the optimum parameter setting is, we use another311

year (2006) and an extended simulation domain (D02 as displayed in Figure 1) for val-312

idation. Due to the limitation of computational resources, we only simulated 4 months313

(Feb., May, Aug., Nov.) to represent each season. Figure 8 shows the comparison be-314

tween the optimized parameter setting and the default ones averaged over four months315

(Feb., May, Aug., Nov.). Table 4 lists the biases for the simulations with the optimum316
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Figure 7. Comparison of daily bias averaged over domain D01 in 2013 between the optimum

and default setting. (The data gap between July 1st-9th is due to missing satellite data.)
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Optimum Default Observation

Figure 8. Validation of the optimum parameter setting averaged over four months (Feb., May,

Aug., Nov.) in 2006. (bias = model - CM SAF observation)

and default setting for 2006 over the whole domain D02 and calibration domain D03. Within317

D03 (Figure 1), the performance improved substantially, where the OSR bias decreased318

from 25, 25, 36, 53 Wm−2 under the default setting to 4, 12, 2, 3 Wm−2 under the op-319

timum setting in Feb., May, Aug., Nov. respectively. OLR performance has also improved,320

except for May. The deteriorated underestimation of OLR in May with the optimum set-321

ting might be due to the impact of the ITCZ, which is a similar case as the validation322

results in 2013 (Figure 6). These results indicate that the optimum parameter setting323

is robust for different years and slightly different resolutions (4 km versus 3 km). When324

taking the remaining part of the domain D02 (Figure 1) into consideration, the perfor-325

mances still improve significantly for OSR and LHFL. The four months average bias in326

2006 decreased from 11 to -1 Wm−2 for OSR and from -5 to 2 Wm−2 for LHFL. For327

OLR, it is evident that the optimum simulation underestimates OLR over the ITCZ (Fig-328

ure 8), and Table 4 shows that overall D02 domain average OLR is underestimated in329

all four months. Because D02 encompasses the ITCZ during all four months. This is con-330

sistent with the aforementioned result that the set of parameters that suits low clouds331

over sea might not apply as well for ITCZ.332
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Table 4. Comparison of bias between optimum and default simulation in 2006

Month Spacial range OLR (Wm−2) OSR (Wm−2) LHFL (Wm−2)

Default Optimum Default Optimum Default Optimum

Four months average
D03 4 -1 35 5 -2 -6
D02 -1 -6 11 -1 -5 2

Feb.
D03 6 1 25 4 -2 -5
D02 -2 -6 11 0 -5 2

May
D03 2 -14 25 12 -2 -8
D02 0 -7 7 -1 -5 3

Aug.
D03 6 6 36 2 -6 -9
D02 0 -4 13 -2 -6 1

Nov.
D03 3 1 53 3 2 -2
D02 -2 -7 15 -3 -4 2

4 Summary and conclusions333

In this paper, the regional climate model COSMO v6 was systematically calibrated334

over the Tropical South Atlantic. First, the most sensitive parameters were identified with335

respect to the target fields that are important for the representation of clouds (short-336

wave/longwave radiation and surface latent heat flux). Based on sensitivity studies, a337

total of 5 parameterization parameters were selected for calibration. The calibration is338

based on single-parameter sensitivity experiments and simulations considering quadratic339

interactions. A metamodel (MM) is then used to emulate the model simulations. We ap-340

plied Latin hypercube sampling and chose the set of parameters with the best perfor-341

mance score (PS) as the optimal parameter set.342

We calibrated the COSMO v6 model in 2016 and validated the results in 2013 and343

2006 in two different computational domains. With the calibrated optimal parameter344

settings, the performance improved significantly compared with the default parameter345

setting, especially for OSR. Even when we applied the optimal setting over a signficantly346

extended domain with a slightly higher resolution (3 km versus 4 km), the optimal set-347

ting also showed significant improvements. However, since the calibrated domain is dom-348

inated by the ocean and the impact of ITCZ in the domain is small, applying the ob-349

tained optimal parameter setting over land and the northern part of the domain encoun-350

ters problems, especially for OLR, which is highly relevant with ITCZ high clouds. Thus,351

calibrating over a larger domain might improve the overall performance, but would po-352

tentially also lead to compromises among different regions and variables, and would re-353

quire more computational resources to achieve improved results for the whole domain.354

Besides the aforementioned performance improvements, another advantage of the355

systematic calibration applied in this study is that it could benefit model intercompar-356

isons, process studies and climate-change scenario simulations. The traditional way of357

tuning a model does not follow a unique well-defined methodology and thus hazes the358

value of model intercomparisons. Instead, systematic calibration, based on a well-defined359

methodology, is promising in constraining parameterization-related uncertainties with360

transparency and reproducibility. Moreover, the calibration methodology, which is pro-361

vided as an open source code with this paper, is independent of the target model and362

validation fields, and could be easily applied to other models and research domains.363
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Using regional climate model (RCM) simulations with prescribed lateral bound-364

ary conditions from reanalysis fields in model calibration, as presented in the current study,365

provides substantial advantages over using calibration with global climate models (GCMs).366

In a GCM there will in general be significant circulation biases. For instance, biases in367

polar regions will affect the circulation in tropical regions, and a calibration will at least368

partly attempt to compensate for associated circulation biases. With RCMs driven by369

reanalyses, the calibration targets the parameterization suite with realistic large-scale370

circulations. As a result, the RCM approach requires much shorter calibration and val-371

idation periods, as demonstrated by our study. Indeed, we used merely 4 months of a372

particular year for the calibration, and have demonstrated that this significantly improves373

simulations in other years and extended domains. It is thus attractive to consider a com-374

bined GCM/RCM calibration framework, that considers both approaches. Indeed, there375

is an increasing number of GCMs that are available in both limited-area and global con-376

figurations, such as the ICON model (Pham et al., 2021) or the Unified Model (Bush et377

al., 2020). With such models, it is feasible to combine RCM-style calibrations in sub-378

domains. For instance, one could calibrate boundary-layer and warm microphysics pa-379

rameters over tropical oceans, snow and ice microphysics parameters over polar regions,380

and land-surface parameters over major continental regions. We believe that this kind381

of approach would be superior in comparison with conventional GCM model tuning, and382

provide a more physically based set of model parameters.383

There are a number of fundamental limitations with model calibration. First of all,384

it can only improve parameterization-related model performance of the subjectively pre-385

defined validation fields. It is thus important to select a broad range of validation data386

sets. Second, there are compensations of errors between different variables and areas. Since387

the model itself is not perfect (i.e. will have biases irrespective of the parameter choices),388

compensation of errors cannot be completely avoided. Third, emulators are necessary389

within the calibration framework, since it is impossible to traverse the parameter space390

with the climate model. In this study, we used deterministic polynomial regression to391

build the emulator, which already provided enough accuracy as indicated in section 3.3,392

but emulators inevitably bring in uncertainties. Nevertheless, we believe that the results393

achieved in this study are very promising and suggest that regional climate models should394

more systematically be calibrated than in the past.395
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