
P
os
te
d
on

23
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
16
37
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Topological Feature Tracking for Submesoscale Eddies

Sam Voisin1, Jay Hineman1, James Bruce Polly2, Gary Koplik1, Ken Ball1, Paul Bendich1,
Joseph D‘Addezio3, Gregg A Jacobs4, and Tamay M. M. Ozgokmen5

1Geometric Data Analytics
2Geometric Data Analytics, Inc.
3Naval Research Laboratory Ocean Dynamics & Prediction Branch
4Naval Research Laboratory
5University of Miami

November 23, 2022

Abstract

Current state-of-the art procedures for studying modeled submesoscale oceanographic features have made a strong assumption

of independence between features identified at different times. Therefore, all submesoscale eddies identified in a time series were

studied in aggregate. Statistics from these methods are illuminating but oversample identified features and cannot determine

the lifetime evolution of the transient submesoscale processes. To this end, the authors apply the Topological Feature Tracking

(TFT) algorithm to the problem of identifying and tracking submesoscale eddies over time. TFT allows a user to identify

submesoscale eddies as critical points on a set of time-ordered scalar fields and associate the points between consecutive

timesteps. The procedure yields tracklets which represent spatio-temporal displacement of eddies. Thus the time-dependent

behavior of submesoscale eddies can be studied. We analyze the submesoscale eddy dataset produced by TFT, which yields

unique, time-varying statistics on this currently underexplored phenomenon.
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Key Points:8

• Current procedures for studying submesoscale oceanographic features assume in-9

dependence between features identified at different times.10

• Statistics from these methods oversample features and cannot determine the life-11

time evolution of the transient submesoscale processes.12

• We apply the Topological Feature Tracking algorithm to identify and track ed-13

dies over time, which yields unique, time-varying statistics.14
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Abstract15

Current state-of-the art procedures for studying modeled submesoscale oceanographic16

features have made a strong assumption of independence between features identified at17

different times. Therefore, all submesoscale eddies identified in a time series were stud-18

ied in aggregate. Statistics from these methods are illuminating but oversample iden-19

tified features and cannot determine the lifetime evolution of the transient submesoscale20

processes. To this end, the authors apply the Topological Feature Tracking (TFT) al-21

gorithm to the problem of identifying and tracking submesoscale eddies over time. TFT22

allows a user to identify submesoscale eddies as critical points on a set of time-ordered23

scalar fields and associate the points between consecutive timesteps. The procedure yields24

tracklets which represent spatio-temporal displacement of eddies. Thus the time-dependent25

behavior of submesoscale eddies can be studied. We analyze the submesoscale eddy dataset26

produced by TFT, which yields unique, time-varying statistics on this currently under-27

explored phenomenon.28

Plain Language Summary29

Current state-of-the art procedures for studying small-scale features in the ocean30

do not take the effects of time into account. Instead, features like small vortices are stud-31

ied as a single population across many points in time. This method has provided oceanog-32

raphers with many valuable insights. New insights can be added by identifying vortices33

and then tracking them over time to study their behavior through an algorithm designed34

to identify and track features on a grid.35

1 Introduction36

Submesoscale eddies are important ocean features which occupy length scales be-37

tween large-scale forcings and micro-scale dissipation. Their larger, mesoscale counter-38

parts are well studied, yet submesoscale currents have, until recently, received less at-39

tention despite the important role played in a variety of oceanic transport phenomena.40

In addition to influencing the transport of nutrients (Lévy et al., 2018) and pollutants41

(Poje et al., 2014), submesoscale currents form an important link in the turbulent en-42

ergy cascade and the global oceanic circulation (see McWilliams, 2016, for a summary43

of submesoscale eddy dynamical theory, observational findings, and modeling approaches).44

Studies considering the temporal evolution of mesoscale eddies have been performed45

(e.g., Chelton et al., 2007; Kurian et al., 2011; Faghmous et al., 2015), but similar in-46

vestigations have yet to be done for the submesoscale. Statistical summaries of subme-47

soscale eddy properties, behavior, and lifetime evolution are of interest to multiple com-48

munities as the nature of these disturbances inform both modeling approaches to sim-49

ulate eddy dynamics, and satellite altimetry data assimilation.50

While dissipation-scale phenomena are typically unresolved and parameterized with51

subgrid-scale closure models, the “intermediate” length scales occupied by submesoscale52

eddies are being resolved in models such as the Navy Coastal Ocean Model (NCOM; Barron53

et al., 2006) and the Regional Oceanic Modeling System (ROMS; Shchepetkin & McWilliams,54

2005). Time tracking and statistical reporting of submesoscale eddies in these models55

is not currently done but would provide additional insight on eddy lifetime, direction-56

ality, and behavior. This information is useful for model evaluation, e.g., inspecting per-57

formance of eddy viscosity and parameterized closure schemes. Furthermore, statistical58

summaries of transient submesoscale eddy behavior is needed for data assimilation ef-59

forts (D’Addezio et al., 2019) and has motivated the statistical investigations in D’Addezio60

et al. (2020).61

–2–



manuscript submitted to Geophysical Research Letters

Figure 1: Left to right: (1) Submesoscale eddies identified in space and time depicted
as blue points in the Gulf of Mexico. Zones 1, 2 and 3 (west to east) enclose mesoscale
features which transport eddies. Eddy characteristics in these zones are explored in the
following sections. (2) Submesoscale eddies being tracked through time via TFT. Solid
line contours are eddies identified at January 5, 2016 03:00. Dotted line contours depict
eddy locations over the previous five days. This subset depicts only tracks of 25km or
longer. (3) Selection of tracks of eddies lasting for 15 days or more. These relatively long
lived tracks demonstrate both the cyclic behavior and transport behavior of the eddies.

In this study we apply the algorithm (henceforth referred to as Topological Fea-62

ture Tracking, or TFT) introduced in Soler et al. (2018) to the problem of submesoscale63

eddy identification and temporal association. In this way, we extend the study of D’Addezio64

et al. (2020) by computing statistics of eddy lifetimes and trajectories to supplement the65

time-independent statistical analysis presented therein. Using one year of NCOM sim-66

ulation data, we provide statistical summaries of eddy speed, lifespan, and displacement67

in aggregate over the Gulf of Mexico. We also provide analysis of these characteristics68

conditioned on season and regions selected for the presence of mesoscale features. While69

extending the technique used in D’Addezio et al. (2020) with the TFT-based method,70

we are introducing the community to the TFT approach in the context of surface-based71

submesoscale eddies.72

2 Method73

In this section we give a brief description of the TFT algorithm (Section 2.2), along74

with the elementary topological data analysis (TDA) concepts needed to understand it75

(Section 2.1). For more details on TFT and TDA in general, see Soler et al. (2018) and76

Edelsbrunner and Harer (2010), respectively. Finally, we describe the Okubo–Weiss pa-77

rameter used to generate the scalar field to which we apply TFT (Section 2.3).78

2.1 Persistence Diagrams79

Suppose that f is a scalar field, that is, a real-valued function on some domain U .80

The domain can be of arbitrary dimension and shape and we do not need to make any81

assumptions about the smoothness of f . For a working example, suppose U is any of the82

two-dimensional squares shown on the left side of Figure 2, with the values of f indicated83

by the color bar. The persistence diagrams of f provide a compact summary of the lo-84

cation and importance of topological features as observed by f . More precisely, consider85

Uα = {x ∈ U | f(x) ≤ α}. As the threshold value α increases, these create a nested86

filtration of sublevel sets that start with the empty set and finish with U itself. Along87

the way, topological features such as connected components and holes are created and88
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Figure 2: Illustration of TFT algorithm on a notional example: Left: Tracking two Gaus-
sian features on a time-ordered series of scalar fields. Right: Matching between persis-
tence diagrams (blue dots and orange dots) associated to scalar fields at t = 2, 3, respec-
tively.

then subsequently destroyed, each of which corresponds (Milnor, 1963) to a critical point89

of f that occurs at a critical value. The birth and death critical values of each feature90

are plotted as dots in the plane, and the multi-set of such dots, along with the major di-91

agonal y = x, forms the persistence diagram D(f) of the scalar field. Two such dia-92

grams can be seen on the right side of Figure 2, where blue (orange) dots correspond to93

features in the scalar fields in the second (third) columns, bottom row. The persistence94

of a dot is the difference between its death and birth values (i.e, the vertical distance to95

the major diagonal). Higher-persistence dots tend to be less likely to be noise. For ex-96

ample, all of the example scalar fields have two prominent connected components indi-97

cated by the two dots far from the major diagonal.98

Persistence diagrams have two important properties that we exploit in this paper.99

First, they are stable to noise in a precise sense. The Wasserstein distance between two100

diagrams can be defined as the cost of an optimal matching between the dots in the di-101

agrams, where dots can be matched to the major diagonal if needed; the right side of102

Figure 2 shows an optimal matching. Precise theorems (Cohen-Steiner et al., 2007) bound103

the Wasserstein distance between two diagrams D(f), D(g) in terms of the ℓ∞ distance104

between the scalar fields f, g. In particular, this guarantees that the diagrams associated105

to a smoothly time-varying sequence of scalar fields will themselves form a time-varying106

sequence, which facilitates the TFT algorithm. Second, various theorems (Edelsbrunner107

et al., 2006; Laudenbach, 2013) guarantee the following: given a two-dimensional scalar108

field f and a threshold value ϵ, there exists a simplified scalar field g with exactly the109

same critical point structure of f except that all critical points of persistence less than110

ϵ have been removed. For example, with ϵ being the distance between the major diag-111

onal and the dotted line on the right side of Figure 2, the scalar fields in the top row on112

the left are the topological simplifications of the scalar fields in the bottom row.113

2.2 Topological Feature Tracking114

Now suppose that we have a time-ordered sequence f1, . . . fT of scalar fields, such115

as the four fields across either row on the left of Figure 2, all defined on the same do-116

main U . Computing persistence leads to a time-ordered sequence D(f1), . . . , D(fT ) of117

persistence diagrams. The user has the option of choosing a persistence threshold to topo-118

logically simplify the scalar fields as desired. Then the TFT algorithm connects certain119

critical points to produce a series of tracks, as follows.120
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Consider a time-adjacent pair of (possibly simplified) scalar fields fi and fi+1. Each121

dot in the two diagrams corresponds to a topological feature, and has associated to it122

a pair of critical points in U , one which created the feature and one which destroyed it.123

The lifted Wasserstein distance of Soler et al. (2018) defines the cost of associating two124

dots in D(fi) and D(fi+1) as a (user-specified) weighted combination of the distance be-125

tween the pair of dots in the persistence diagram and the geometric distance between126

the associated critical points in the domain U , and an optimal matching between the two127

diagrams is then computed via this cost function. If this optimal matching connects two128

dots, then a track segment is drawn between their associated critical points. If it con-129

nects a dot at time i with the diagonal at time t+1, then a track segment ends. If it130

connects a dot at time i+1 with the diagonal at time i, a new track segment is started.131

The end result, over all time steps in the sequence, is a set of tracks which move in time132

through the domain U .133

Figure 2 shows the outputted tracks for our notional example, indicated as thick134

red lines on the left side of the figure. Figure 1 shows tracks for submesoscale eddies, iden-135

tified by the same procedure and further described in the following sections.136

The matching procedure described above must be applied to each consecutive pair137

of persistence diagrams in the time series. Computationally, this may be done in par-138

allel so long as the time order is maintained. Once matching is completed for all con-139

secutive time steps, the matchings of associated critical pairs may be applied to coor-140

dinates in the domain to combine the track segments and form full tracks of the iden-141

tified features.142

2.3 Okubo–Weiss Parameter143

The above describes the TFT method applied to a time-ordered series of arbitrary144

scalar fields. Our application is concerned with a specific scalar field, called the Okubo–145

Weiss parameter.146

Following D’Addezio et al. (2020), this is defined as147

W = S2
n + S2

s − ζ2 (1)

Sn and Ss are the normal and shear components of the strain respectively while ζ rep-148

resents relative vorticity. A location at which |ζ| > S2
n + S2

s implies W < 0 thus a149

high relative vorticity at that location. Regions having this quality may be interpreted150

as eddies.151

3 Data & Procedure152

The dataset used in this paper is a year-long simulation of the Gulf of Mexico gen-153

erated by the Navy Coastal Ocean Model (NCOM). The dataset has a spatial resolu-154

tion of one kilometer. The data were provided with temporal resolution of three hours.155

The time period of this dataset ranges from January 1, 2016 at 00:00 to December 31,156

2016 at 21:00. Two derivative datasets were generated from the NCOM simulation. The157

first is an exact replication of the dataset generated in D’Addezio et al. (2020). We call158

this the “masked” dataset—where all Okubo–Weiss values outside of the submesoscale159

eddy region are masked, and only eddies remain (see D’Addezio et al., 2020 for details).160

The second dataset is a less stringent version of the first in which the same procedure161

is followed until the normalized Okubo–Weiss field WN is generated. We refrain from162

applying the second smoothing filter and circularity test from this dataset; we therefore163

refer to it as “unmasked” as the entire Okubo–Weiss field remains, thus tasking the TFT164

algorithm to perform eddy identification.165

–5–
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We apply the TFT algorithm to the negative portions of each scalar field in both166

datasets. The negative portions of the scalar fields represent vortices. We found that lim-167

iting the field to only negative values resulted in the best track quality.168

The output of the TFT algorithm is a set of tracks representing the historical be-169

havior of individual submesoscale eddies in the Gulf of Mexico. Two mild postprocess-170

ing routines were applied to this set of tracks. We first removed tracks which began or171

ended on the boundary of the Gulf of Mexico. These erroneous tracks are caused by the172

abrupt end of the scalar field at its edges. We also applied a filter which removed any173

tracks whose average speed was greater than the maximum surface speed at any point174

in the NCOM simulation. A subset of the resulting tracks can be seen in the middle and175

right images of Figure 1.176

4 Results177

In this section we provide insights gleaned from tracking submesoscale eddies iden-178

tified in the Okubo–Weiss field. In Section 4.1 we share figures which depict large scale179

features’ influence on submesoscale eddy transport. In Section 4.2 we provide descrip-180

tive statistics of submesoscale eddy behavior observed through tracks identified using TFT.181

4.1 Identifying Seasonal Mesoscale Patterns via Submesoscale Tracks182

Mesoscale features are responsible for transporting submesoscale eddies through-183

out the Gulf of Mexico. By tracking those submesoscale eddies as they are transported,184

we are able to gain insight into the evolving behavior of the mesoscale phenomena as well.185

Figure 3 depicts this behavior in large scale features through their influence on subme-186

soscale eddies. Each frame of Figure 3 represents three months of tracks of submesoscale187

eddies ≥ 25 km in length. Beginning in the top left image (winter), the greatest sub-188

mesoscale eddy track density appears in the Loop Current passing north between Cuba189

and the Yucatán Peninsula and exiting the Gulf between the tip of Florida and north-190

ern coast of Cuba. We are able to watch the continued deformation of this Loop Cur-191

rent throughout the year by observing its shifting impact on the trajectories of local sub-192

mesoscale eddies. By the spring (bottom left image) the Loop Current has split into a193

lower current exiting the gulf to the east and a mesoscale eddy off the western coast of194

Florida. By the summer (top right) this large eddy has moved west, and a greater den-195

sity of tracks appear in the east bound current. Finally in the fall the large mesoscale196

eddy appears to have largely dissipated while the current continues to carry a high den-197

sity of eddies to the east. Across all seasons, the submesoscale tracks do not follow any198

consistent directional pattern. Their flow appears predominantly determined by the large-199

scale background flow, that being dictated primarily by both the synoptic jet and the200

interior mesoscale eddies. This is in contrast with the mesoscale eddy field which is known201

to propagate westward outside the influence of boundary currents (Chelton et al., 2007).202

4.2 Statistical Summary of Tracks203

We provide descriptive statistics of tracks generated by features identified on the204

Okubo–Weiss fields in Table 1. We calculate track statistics in aggregate within the Gulf205

of Mexico for an entire year as well as on subsets of the tracks. We subset tracks tem-206

porally by season (winter, spring, summer and fall) as well as spatially in three “zones”207

associated with large scale features. These zones are depicted in the left image of Fig-208

ure 1. These zones are labeled Zone 1, Zone 2 and Zone 3 from west to east. Zone 1 is209

an irregularly shaped, counterclockwise flow. Zone 2 is a circular, counterclockwise pat-210

tern. Zone 3 is a clockwise flow passing north between Cuba and the Yucatán Peninsula,211

reaching its zenith and turning south before passing between the Florida Keys and Cuba’s212

northern coast.213

–6–
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Figure 3: Illustration of submesoscale eddy behavior in aggregate over four seasons of
the NCOM dataset. We can see changes in the large scale features responsible for trans-
porting submesoscale eddies here. Tracks have been filtered down to those greater than or
equal to 25km for these images.
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Broadly, eddies in the Gulf of Mexico tend to move fastest in the spring and sum-214

mer. However, the seasonal variance is low. Overall, submesoscale eddy velocity is O(0.5215

m/s), furthering previous results which showed mesoscale and submesoscale horizontal216

velocities to be similar (Capet et al., 2008). If, as we have documented, the submesoscale217

eddy motion is largely a function of the jet and mesoscale eddies (Figure 1), this hor-218

izontal velocity proportionality is consistent219

Lifespans tend to be longer in the winter and fall. This is likely due to the known220

relationship between submesoscale generation and maintenance, and the depth of the mixed221

layer (McWilliams, 2016). Using this relationship, one can calculate a mixed-layer de-222

formation radius that dictates the maximum size of submesoscale eddies as a function223

of mixed-layer depth. In the summer, the mixed layer shoals in the presence of strong224

surface heating, dramatically reducing the mixed-layer deformation radius. With a 1-225

km horizontal resolution, this NCOM simulation cannot support the generation and main-226

tenance of such small features, leading to a decline in the number of identified subme-227

soscale eddies during this season (D’Addezio et al., 2020). As is found here, any subme-228

soscale eddy generated by the model during this time period is likely to be short lived229

because mixed layer dynamics are not favorable. This is further supported by the sea-230

sonality of the submesoscale eddy sample size (Table 1; last column). In contrast, win-231

ter features much deeper mixed layers, and can therefore support the creation of more,232

relatively larger submesoscale eddies and allow them to propagate longer in the more fa-233

vorable mixed layer environment.234

Finally, displacements tend to be similar across seasons for the unmasked group235

while eddies identified in the masked dataset tend to travel further during the winter and236

fall months. Note that both distances and lifetimes are greater for the unmasked fields,237

compared with the masked fields. This is due to the limiting nature of traditional eddy238

identification methods (e.g., D’Addezio et al., 2020). Certain criteria for identification,239

e.g., “circularity” may change over the eddy lifetime such that the feature fails to meet240

the identification criteria at some instances. This is an advantage of using TFT for this241

purpose so as to capture a more complete lifespan of an eddy rather than omit features242

in the middle of their evolution due to lacking circularity or other identification crite-243

ria.244

Speed (m/s) Lifespan (h) Displacement (km) Sample Size
Unmasked Masked Unmasked Masked Unmasked Masked Unmasked Masked

Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.) Mean (St. Dev.)
GoM Aggregate 0.4436 (0.2343) 0.3808 (0.2124) 17.8 (28.8) 12.3 (26.0) 30.9 (60.4) 16.2 (31.4) 655,727 119,775
GoM Winter (DJF) 0.4184 (0.2333) 0.3760 (0.2171) 19.0 (30.5) 13.5 (27.6) 31.3 (62.0) 17.4 (33.7) 182,522 31,319
GoM Spring (MAM) 0.4726 (0.2367) 0.3949 (0.2167) 16.7 (25.7) 11.1 (20.7) 31.4 (58.5) 15.4 (27.3) 171,134 31,292
GoM Summer (JJA) 0.4703 (0.2354) 0.3928 (0.2156) 15.8 (25.1) 11.6 (27.6) 29.1 (54.9) 15.8 (32.8) 154,453 28,545
GoM Fall (SON) 0.4133 (0.2241) 0.3586 (0.1966) 19.4 (33.3) 13.0 (27.5) 31.6 (66.0) 16.1 (31.7) 147,618 28,619

Zone 1 Aggregate 0.4316 (0.2154) 0.3457 (0.1689) 18.4 (30.0) 12.8 (26.4) 30.9 (58.9) 15.2 (28.6) 141,626 27,081
Zone 1 Winter 0.3862 (0.2034) 0.3205 (0.1598) 20.6 (33.7) 14.6 (29.3) 31.1 (61.2) 16.1 (30.1) 38,219 6,859
Zone 1 Spring 0.4556 (0.2189) 0.3526 (0.1697) 17.8 (26.8) 11.3 (20.2) 32.0 (58.2) 13.8 (22.9) 39,754 7,848
Zone 1 Summer 0.4622 (0.2187) 0.3596 (0.171) 16.3 (25.7) 11.6 (26.5) 29.5 (53.7) 14.4 (29.1) 35,998 6,737
Zone 1 Fall 0.4200 (0.2106) 0.3501 (0.1727) 19.1 (33.4) 14.2 (29.8) 30.8 (63.0) 17.2 (32.8) 27,655 5,637

Zone 2 Aggregate 0.4315 (0.2172) 0.3725 (0.1887) 16.8 (29.0) 12.8 (27.1) 26.6 (47.8) 16 (30.9) 24,571 5,773
Zone 2 Winter 0.4137 (0.2101) 0.3528 (0.1745) 18.2 (29.8) 13.8 (26.7) 27.5 (47.4) 16.1 (27.3) 6,601 1,506
Zone 2 Spring 0.4304 (0.2187) 0.3523 (0.1837) 15.6 (25.9) 12.2 (20.9) 25.2 (44.6) 14.4 (22.4) 5,576 1,443
Zone 2 Summer 0.4887 (0.2317) 0.4427 (0.2218) 13.6 (21.6) 11.3 (28.8) 25.2 (46.5) 17.0 (35.2) 5,481 1,245
Zone 2 Fall 0.4040 (0.2019) 0.3542 (0.1631) 18.8 (34.9) 13.6 (30.7) 27.8 (51.6) 16.6 (36.5) 6,913 1,579

Zone 3 Aggregate 0.5167 (0.2513) 0.4917 (0.2566) 14.8 (24.3) 12.0 (22.3) 29.3 (52.9) 21.0 (38.0) 93,578 19,608
Zone 3 Winter 0.5196 (0.2581) 0.5177 (0.2642) 16.4 (25.6) 12.5 (23.6) 33.1 (59.6) 23.1 (42.2) 29,903 5,849
Zone 3 Spring 0.5621 (0.2464) 0.5459 (0.2562) 13.8 (21.2) 10.9 (17.2) 30.5 (54.0) 21.9 (37.6) 23,629 4,813
Zone 3 Summer 0.5275 (0.2458) 0.4833 (0.2536) 13.5 (21.5) 11.3 (22.2) 27.1 (47.8) 19.3 (35.5) 22,881 4,773
Zone 3 Fall 0.4348 (0.2333) 0.4023 (0.2238) 15.3 (28.8) 13.2 (25.4) 23.7 (43.8) 18.8 (34.5) 17,165 4,173

Table 1: A selection of descriptive statistics of submesoscale eddy tracks across the Gulf
of Mexico and in each of the three zones depicted in Figure 1. Statistics for the Gulf of
Mexico and each zone are calculated in aggregate as well as by season.
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5 Conclusions245

Our application of TFT to submesoscale eddy tracking provides new insights into246

the behavior of small scale structures in the ocean. Through studying the movement pat-247

terns of submesoscale eddies, we improve our understanding of the mesoscale phenom-248

ena that are responsible for their transport. Neither labeled training data nor long train-249

ing epochs were required for tracking eddies in the Gulf of Mexico. TFT may be sim-250

ilarly applied to any section of the ocean and indeed to any evolving scalar field.251

Future work may focus on tracking meso- and submesoscale eddies entangled within252

the same field. Further modifying the Lifted Wasserstein distance function to penalize253

incorrect matchings in a nonlinear manner will improve the method broadly. Addition-254

ally, an automated method of suggesting or selecting weight parameters and the persis-255

tence threshold may be explored.256

Open Research257

Data Availability Statement: Ocean surface velocity data, used to identify and track258

features in this study, were obtained via the Navy Coastal Ocean Model (NCOM). The259
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as described in D’Addezio et al. (2020) (https://doi.org/10.1175/JPO-D-19-0100.1).262
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