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Abstract

Exploration of Venus in the 1970–1990’s revealed that the geology of Venus, the most Earth-like of the terrestrial planets, was

decidedly un-Earth-like, with no plate tectonics, and no record of the first 80% of its history. A major outstanding question

is whether Venus is still volcanically active today. We find that regions of Ganis Chasma have low radar emissivity values,

due to low volumes of high dielectric minerals formed by surface – atmosphere weathering on the timescales of around 10s

Ma. This confirms the presence of geologically recent volcanism in association with this major tectonic rift zone. The spatial

correspondence of this emissivity signature with transient thermal anomalies suggests that Venus has been volcanically active

at this site for at least the last few decades, a prediction that can be tested with space missions to Venus in the coming decade.
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Key Points 

1. Radar anomalies in Ganis Chasma correspond to transient bright spots seen in infrared data 

2. Low radar emissivity values suggest recent volcanic and tectonic activity on Venus 

3. Lava flows in Ganis Chasma may have erupted over the last 30 years  
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Abstract 1 

Exploration of Venus in the 1970–1990’s revealed that the geology of Venus, the most Earth-like 2 

of the terrestrial planets, was decidedly un-Earth-like, with no plate tectonics, and no record of the 3 

first 80% of its history. A major outstanding question is whether Venus is still volcanically active 4 

today. We find that regions of Ganis Chasma have low radar emissivity values, due to low volumes 5 

of high dielectric minerals formed by surface – atmosphere weathering on the timescales of around 6 

10s Ma. This confirms the presence of geologically recent volcanism in association with this major 7 

tectonic rift zone. The spatial correspondence of this emissivity signature with transient thermal 8 

anomalies suggests that Venus has been volcanically active at this site for at least the last few 9 

decades, a prediction that can be tested with space missions to Venus in the coming decade.  10 

1 ONGOING VOLCANISM ON VENUS? 11 

The diameter of Venus predicts that it should, like Earth, be volcanically active today (e.g., Head 12 

and Solomon, 1981). Radar images of the surface collected during the Magellan mission (1990–13 

1994) did not identify any morphological evidence of recent volcanic activity. Nonetheless, recent 14 

and ongoing volcanic activity on Venus is suggested by other multiple independent lines of 15 

evidence. Pioneer Venus Orbiter (PV, 1978–1986) and Venus Express (VEx, 2005–2014) missions 16 

gathered more than 30 years of atmospheric measurements searching for evidence of possible 17 

volcanic eruptions. Both missions revealed fluctuations in sulfur dioxide (SO2) that are possibly 18 

associated with volcanic outgassing on Venus (e.g., Esposito, 1984; Esposito et al., 1988; Marcq 19 

et al., 2012).  20 

Idunn Mons, located in Imdr Regio, is considered to be among the most likely sites for active 21 

volcanism on the planet. Smrekar et al. (2010) detected some lava flows with relatively high 22 

thermal emission at 1 μm in the region. Infrared (1-μm) emissivity is derived from the Visual and 23 

Infrared Thermal Imaging Spectrometer (VIRTIS) images of the southern hemisphere returned by 24 

the VEx mission (Helbert et al., 2008; Mueller et al., 2008). In their work, Smrekar et al. (2010) 25 

suggest that the surface of Idunn Mons is made of young and unweathered lava flows, and hence, 26 

the volcano was possibly still active. Further investigations at Idunn reported that the young lava 27 

flows are more likely found on the eastern flanks of the volcano (D’Incecco et al., 2017), and 28 

contemporaneous to stratigraphically young structures associated with rifting at Olapa Chasma 29 

(D’Incecco et al., 2020; D’Incecco et al., 2021a; López et al., 2022). Other regions show a higher 30 
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1-μm emissivity relative to the surrounding plains, notably Hathor and Innini montes in Dione 31 

Regio (Mueller et al., 2008), Mielikki Mons, Shulamite and Shiwanokia coronae in Themis Regio 32 

(Stofan et al., 2009, 2016). The ages of the fresh, basaltic lava flows could not be well constrained 33 

since the timescale for chemical weathering in the near-surface environment of Venus is 34 

fundamentally unknown. The VIRTIS 1-µm emissivity data are expected to be controlled by the 35 

oxidation of ferrous iron in basalts to hematite, where the high thermal emission of Idunn Mons is 36 

thought to represent lower degrees of weathering; Smrekar et al. (2010) estimate that the volcano 37 

is 2.5 million years old or younger based on this reaction. More recent experimental studies under 38 

Venus conditions (Berger et al., 2019; Cutler et al., 2020; Filiberto et al., 2020; Filiberto et al., 39 

2021; Teffeteller et al., 2022) suggest that chemical weathering occurs on much shorter time 40 

frames (i.e., in weeks to months).  41 

Atla Regio is another region of prime interest for ongoing volcanic and tectonic activity, which is 42 

supported by analysis of the gravity and altimetry data returned by Magellan (Phillips, 1994; 43 

Smrekar, 1994; Stofan et al., 1995), and thermal anomalies observed by the Venus Monitoring 44 

Camera (VMC) during the VEx mission (Shalygin et al., 2012; 2015). Additionally, several 45 

analyses based on stratigraphic relationships between rift structures, lava flows, and crater features 46 

provide further evidence for the relative youthfulness of the region (e.g., Basilevsky, 1993; 47 

Basilevsky and Head, 2002a; 2002b; Brossier et al., 2021). VMC data collected during 2007–2009 48 

did not reveal any signs of ongoing volcanic eruptions for the major volcanoes in Atla Regio (i.e., 49 

Maat, Ozza and Sapas montes) (Shalygin et al., 2012). However, they show several high (1-µm) 50 

emission spots with varying intensity over several days or months at different sites near Ganis 51 

Chasma (Shalygin et al., 2015). Ganis Chasma (or Ganiki Chasma) is a rift zone in Atla Regio 52 

centered at 192°E, 18°N, where recent activity was already suggested based on the superposition 53 

of rift structures on young impact deposits (Basilevsky, 1993). Shalygin et al. (2015) propose that 54 

these transient high emission spots are consistent with short-lived effusive activity, locally causing 55 

significant increases of surface temperatures. 56 

2 MAGELLAN EMISSIVITY AS A CHRONOMETER 57 

Radar emissivity can also be used as proxy to constrain the degree of weathering and therefore 58 

surface age of volcanic systems. Pioneer Venus and Magellan data show that many of Venus’s 59 

highlands have distinctly elevated values of radar reflectivity (Masursky et al., 1980; Ford and 60 
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Pettengill, 1983) and thus low values of radar emissivity at their summits (Pettengill et al., 1992). 61 

These radar “anomalies” are ascribed to the presence of minerals with a high dielectric constant, 62 

as it is expected from theory that materials with high dielectric constants will enhance their radar 63 

reflectivity and lower their radar emissivity (Pettengill et al., 1992; Campbell, 1994). Several 64 

studies indicate that high dielectric minerals can be produced through chemical weathering 65 

reactions between the rocks and the near-surface atmosphere (e.g., Klose et al., 1992; Schaefer and 66 

Fegley, 2004; Treiman et al., 2016; Semprich et al., 2020 and references therein); if so, the 67 

reduction in radar emissivity can be associated with the formation of high dielectric minerals over 68 

time and thus can serve as a chronometer.  69 

Brossier et al. (2020) reveal that most volcanoes and coronae on Venus are compatible with the 70 

presence of ferroelectric minerals in their rocks, particularly the tallest volcanoes on the planet 71 

(Maat and Ozza montes). Ferroelectric minerals (e.g., chlorapatite, perovskite oxides) are 72 

substances that undergo a phase transition when they reach a certain temperature, also called the 73 

Curie temperature, where its dielectric constant increases strongly. As the temperature rises above 74 

the Curie temperature (i.e., lower elevation on Venus), its dielectric constant gradually declines to 75 

normal values (Shepard et al., 1994; Treiman et al., 2016). Elevation and shape of the emissivity 76 

variations described in Brossier et al. (2020) indicate the presence of ferroelectrics with Curie 77 

temperatures of 693–731 K over a range of elevation between 6052.5 km and 6056.7 km. The 78 

varying “critical altitudes” reported in Klose et al. (1992) and seen by Brossier and colleagues 79 

could be due to diverse mineralogical compositions, or local differences in the atmospheric 80 

composition or temperature (Treiman et al., 2016). A more detailed investigation in Atla Regio 81 

(Brossier et al., 2021), shows that Maat and Ozza montes display multiple reductions in radar 82 

emissivity at different altitudes including, atypically, lowlands. These authors reported that these 83 

low emissivity signatures are found to correlate with individual lava flows, indicating that the 84 

excursions are controlled by variations in rock chemistry as opposed to the deposition of 85 

atmospheric precipitates. 86 

Here we extract radar emissivity and elevation data collected during the Magellan mission (1990–87 

1994) and examine the variation of emissivity with altitude for sites at Ganis Chasma identified as 88 

thermal anomalies in the VMC data (Shalygin et al., 2015), thus providing an independent 89 

constraint on surface age in the region. We believe that a detailed description of the radiophysical 90 
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behaviors of these sites may help to retrieve, or at least constrain, their relative age and composition 91 

(as in Brossier et al., 2020; 2021; Brossier and Gilmore, 2021). The present paper is therefore 92 

organized as follows. We first locate and describe the changes in radar emissivity with altitude for 93 

the selected sites of interest in order to assess in detail the radiophysical signatures seen in Ganis 94 

Chasma (Section 4). This aims to determine whether the material measured in the region has the 95 

behavior consistent with that of known substances and we consider whether emissivity variations 96 

are related to rock age (Section 5). 97 

3 DATA & METHODS 98 

Our investigation uses radar datasets compiled during the Magellan mission (frequency = 2.4 GHz, 99 

λ = 12 cm). Morphological units are identified with the Cycle 1 left-looking Magellan Synthetic 100 

Aperture Radar (SAR) images (FMAPS) produced at a resolution of 75 m per pixel. The rift valley 101 

as well as the surrounding craters (e.g., Sitwell and Bashkirtseff craters), volcanoes (e.g., Yolkai-102 

Estsan Mons) and tesserae were initially mapped in Ivanov and Head (2011) (Figure 1).  103 

[Figure 1] 104 

We derived altimetry and emissivity from the Magellan global topography data records (GTDR) 105 

and global emissivity data records (GEDR). Altimetry data have a spatial resolution ranging from 106 

~10 km at periapsis (ca. 10˚N latitude) to ~20 km near the poles (ca. 90˚N and 70˚S) when the 107 

orbiting spacecraft was high above the planet. Emissivity data were collected while the spacecraft 108 

was operating in radiometer mode. The spatial resolution of the emissivity data varies from ~20 109 

km near periapsis to ~80 km at high latitudes (Pettengill et al., 1991). Near-global mosaics are 110 

produced in the GTDR and GEDR data products that are publicly available through the USGS 111 

websites (https://planetarymaps.usgs.gov/mosaic). The two mosaics are resampled to a spatial 112 

resolution of 4.6 km per pixel (scale of 22.7 pixel per degree). Altimetry and emissivity data are 113 

extracted from these mosaics to produce scatterplots of the emissivity variation with altitude for 114 

each site of interest (e.g., Brossier et al., 2020; Brossier and Gilmore, 2021; Brossier et al., 2021), 115 

as in Klose et al. (1992). Elevation data are given in planetary radius with a mean value taken as 116 

6051.8 km (Ford and Pettengill, 1992). Selection and extraction processes are done with the 117 

ArcGIS 10.6 (ESRI) software package, while the plots are produced with RStudio software. We 118 

also retrieve temperatures by correlation to the Vega 2 lander entry profile (Seiff, 1987; Lorenz et 119 

https://planetarymaps.usgs.gov/mosaic


6 
 

al., 2018; Brossier et al., 2020). Magellan datasets covering the study area, shapefiles (mapped 120 

units, and sites of interest), and extracted values (emissivity, altimetry and temperatures) are 121 

available through the online repository linked to this work (Brossier et al. 2022). 122 

[Figure 2] 123 

4 RESULTS 124 

4.1 Study Sites 125 

Our extraction is performed on the four sites studied with VMC data in Shalygin et al. (2015) (sites 126 

1–4), and three other sites (sites 5–7) for comparison purposes. The main objective of this study is 127 

to use our methodology previously published (Brossier et al., 2020; 2021; Brossier and Gilmore et 128 

al., 2021) and to apply it on the exact same regions outlined in Shalygin et al. (2015), in order to 129 

have a direct comparison. Figure 1 displays the major morphological features in the region, while 130 

Figure 2 indicates the emissivity and elevation variations for each site. Sites 1 and 4 are located at 131 

the margins of the rift valley and replicate the boundaries of the strongest thermal anomalies 132 

identified by Shalygin et al. (2015). Both sites comprise outer flows and faulted walls of the rift 133 

valley. Sites 2 and 3 are also considered as areas of recent activity and correspond to high elevated 134 

and faulted walls of the rift valley. Among the new sites, 5 and 6 are morphologically similar to 135 

sites 2 and 3, and at similar high elevations. Site 7 corresponds to the extensive lava flows of 136 

Yolkai-Estsan Mons (hereafter called Yolkai for simplicity). This volcano has been heavily 137 

dissected by faults and is thus older than the rifting. Sitwell crater (32.8 km–diameter) has a 138 

parabolic ejecta deposit (parabola) that is superimposed on Ganis Chasma and may have 139 

undergone some rift-associated fracturing. This indicates possible continuation of rifting activity 140 

in this part of Ganis Chasma after the formation of the crater and its parabola (Basilevsky, 1993). 141 

Bashkirtseff crater (36.3 km–diameter) is another crater in the region that lacks a parabola and 142 

appears to be embayed by Yolkai lava flows.  143 

4.2 Emissivity Excursions 144 

Figure 3A shows elevation – emissivity plots obtained for the seven sites of interest. Because both 145 

composition and surface roughness can reduce emissivity, we distinguish emissivity values 146 

derived from the faulted walls of Ganis Chasma (red dots), from those related to flow materials at 147 

the edge of the rift (black dots) (see also Figure S1). Nonetheless, it is worth noting that this 148 
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distinction may include some surrounding effects due to the difference in resolutions between SAR 149 

images (75 m per pixel) for the mapping of the lava flows and faulted walls, and the extraction of 150 

the elevation and emissivity data (4.6 km per pixel). 151 

The magnitude of an emissivity excursion is defined by the percentage decrease between the 152 

minimum emissivity value observed in a region and the planetary average of ~0.85 (Pettengill et 153 

al., 1992). We observe different magnitudes and behaviors of the emissivity excursions: (1) a 154 

“strong” excursion is where emissivity shows a decrease of ~30% or more from the planetary 155 

average value, (2) a “subtle” excursion shows a decrease of 10–30%, or (3) no changes (≤ 10%) 156 

where emissivity is nearly constant with elevation. Figure 3B reports the magnitude of the 157 

emissivity excursions detected in each site and the corresponding altitude and temperature. 158 

Excursion magnitudes reported here are those of the lava flow units (black dots in Figure 3A), 159 

mitigating surface roughness effects. Sites 1–4 and site 6 have subtle declines in emissivity (11-160 

21%) that reach minimum values of 0.672–0.753 at altitudes varying between 6054.2 km and 161 

6055.8 km (701–716 K). Conversely, sites 5 and 7 have strong declines (~30%) to minimum values 162 

of 0.595–0.600 reached at 6056.2 km (697 K) and 6054.5 km (713 K), respectively. All values are 163 

summarized in Table 1 for all sites of interest. 164 

[Figure 3] 165 

[Table 1] 166 

5 COMPOSITION & RELATIVE AGE 167 

At each site, emissivity values gradually decline with increasing altitude from the lowlands (i.e., 168 

below 6053 km) to a given elevation (Figure 3A). This pattern of emissivity variations with altitude 169 

is consistent with ferroelectric behavior, characterized by a steady, gradual decline in radar 170 

emissivity with increasing elevation, then a sharp return to higher emissivity values at altitudes 171 

above 6056 km (around 700 K). Such a behavior is observed in Ovda Regio (Shepard et al., 1994; 172 

Treiman et al., 2016) and more globally in most volcanic edifices and tesserae on the planet 173 

(Brossier et al., 2020; Brossier and Gilmore, 2021). Ferroelectric minerals are known to be very 174 

conductive at a certain temperature, namely the mineral’s Curie temperature (Tc). In Ganis 175 

Chasma, we see this behavior for site 1 (Figure 3A), and although the other sites do not reach 176 

elevations of 6056 km, the shape of the emissivity – elevation curve is similar to site 1 and other 177 



8 
 

examples of ferroelectric behavior (Shepard et al., 1994; Treiman et al., 2016; Brossier et al., 2020; 178 

Brossier and Gilmore, 2021). In the ferroelectric model, the altitude (and temperature) of an 179 

emissivity excursion is a function of the composition, while its magnitude is a function of the 180 

volume of ferroelectric minerals (Shepard et al., 1994; Brossier et al., 2021). Chlorapatite and 181 

some perovskite oxides are good candidates, as their transition from ferro- to paraelectric occurs 182 

at temperatures found on the surface of Venus (690–735 K). The reader is referred to Brossier et 183 

al. (2021) for more details on the presence of ferroelectrics on Venus.  184 

To use emissivity as a chronometer, we assume that the lava flows have a similar initial 185 

composition, and that the primary minerals in the flows are chemically weathered by the 186 

atmosphere over time to produce secondary minerals with high dielectric constants. In this model, 187 

sites with strong emissivity excursions occurring at high altitude (above 6053 km) are thought to 188 

have had enough time to produce the ferroelectric minerals responsible for the radar anomalies in 189 

the region via surface – atmosphere chemical weathering reactions. Conversely, sites with subtle 190 

or no emissivity excursions at high altitudes are considered to be young or possibly active since 191 

they have a lower volume of ferroelectric minerals. This model is supported by studies of other 192 

large volcanoes, such as Maat, Idunn and Otafuku montes, whose lava flows show subtle to low 193 

emissivity excursions that correlate with recent stratigraphic position (Brossier et al., 2020; 2021). 194 

In Ganis Chasma, the emissivity patterns imply that the youngest features are in sites 1, 3 and 4 195 

(subtle to no emissivity excursions), while the oldest features are in sites 5 and 7 (strong emissivity 196 

excursions). This interpretation is in good agreement with the observations made using VMC 197 

images by Shalygin et al. (2015). In Ganis Chasma (and other rift valleys), rifting process may 198 

have an important role in faulting and creating freshly exposed rocks, and it would produce a 199 

signature similar to the newly erupted lava flows. Indeed, ferroelectric minerals would be formed 200 

or “triggered” in contact with the near-surface environment; thus, these detections may indicate 201 

the presence of very recent tectonic activity, in concert with the associate evidence for recent 202 

volcanism.  203 

Shalygin et al. (2015) report that site 1 was the most prominent spot, followed by sites 2 and 3, 204 

while at site 4 it was uncertain if it was transient. It is worth noting that the IR-bright spots from 205 

VMC data are short-lived (only lasted a few days) and observed in 2008–2009. Conversely, our 206 
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analysis displays older signatures from the early 1990’s, leading to a 20 year-gap between the two 207 

observations. This suggests that site 2 has erupted since it was imaged by Magellan. 208 

Overall, the sites have similar emissivity behaviors (variation with altitude) at comparable 209 

elevation ranges (Figure 3A), although they present different excursion magnitudes (i.e., different 210 

volume, age) and slightly different critical altitude (i.e., temperature, composition) (Figure 3B). 211 

Site 6 is very similar to site 2 in terms of emissivity excursions, although it is uncertain since the 212 

data points are more diffuse. Interestingly, site 7 has a distinct emissivity pattern, with a strong 213 

excursion at low elevation (below 6055 km) that resemble that of some volcanoes on Venus, such 214 

as Sekmet and Anala montes (Brossier et al., 2020). This slight variability in critical altitudes could 215 

be ascribed to slight differences in the ferroelectric composition, as discussed in Shepard et al. 216 

(1994) and Treiman et al. (2016). Shepard et al. (1994) demonstrate that minor change of the Pb 217 

abundance in a (Pb,Ca)TiO3 perovskite can increase or decrease the Curie temperature (Rupprecht 218 

and Bell, 1964), and hence the critical altitude. For instance, a 1% change in the Pb abundance 219 

changes the Curie temperature by ~8 K, corresponding to a 1 km change in the transition altitude. 220 

Treiman et al. (2016) suggests that differences in anion composition (OH, F and Cl) or cation 221 

composition (substitution of Sr or rare Earth elements for Ca) in a Ca5(PO4)3(OH,F,Cl) apatite can 222 

also change the Curie temperature. More importantly, they state that chlorapatite is ferroelectric 223 

and thus the F:Cl ratio will control the Curie temperature where apatite with a larger F:Cl ratio 224 

would require higher temperatures (i.e., lower elevations) to exhibit a high dielectric constant 225 

(Rausch, 1976).  226 

6 CONCLUSION 227 

We show that the transient IR-bright spots detected in Shalygin et al. (2015) have radar emissivity 228 

values close to the planetary average (~0.85). Other regions in Ganis Chasma with similar 229 

morphology and elevation range have low emissivity values indicating the presence of minerals 230 

with a high dielectric constant (e.g., ferroelectrics), predicted to be produced by chemical 231 

weathering over time. 232 

Sites 1, 3 and 4 are characterized by young materials, as they lack minerals with high dielectric 233 

constant (not yet produced). Sites 5 and 7 are characterized by older materials with a greater 234 

volume of these minerals. This is further supported for site 7 that has been dissected by the rift 235 

formation. All sites are consistent with the presence of ferroelectrics with subtle differences in the 236 
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mineral composition (chlorapatite, or perovskite oxides). This is in agreement with the other 237 

volcanoes in Atla Regio, Maat and Ozza montes (Brossier et al., 2020; Brossier et al., 2021). The 238 

pattern of the radar emissivity in these regions is consistent with relatively young and unweathered 239 

materials. The transient IR-bright spots in these regions detected 20 years after Magellan, provide 240 

independent corroboration of active volcanism in Ganis Chasma since the 1990’s. 241 

As a possible site of current tectonic and volcanic activity, Atla Regio represents one important 242 

science target for the upcoming missions to Venus (see also D’Incecco et al., 2021b). Future 243 

missions will indubitably provide important clues about present-day activities on the planet (e.g., 244 

Glaze et al., 2018). NASA’s Venus Emissivity, Radio Science, InSAR, Topography & 245 

Spectroscopy (VERITAS) mission (Smrekar et al., 2020) and ESA’s EnVision mission (Ghail et 246 

al., 2012, 2020) will return complementary, critical datasets including improved topography, SAR 247 

imaging, gravity, and infrared spectroscopy. Additionally, NASA’s Deep Atmosphere Venus 248 

Investigation of Noble gases, Chemistry, and Imaging (DAVINCI) mission (Garvin et al., 2022) 249 

will analyze gases typically extruded by active volcanoes (SO2, CO2, HCL, HF, and perhaps PH3). 250 

Roscosmos’ Venera-D mission (Senske et al., 2017; Zasova et al., 2019) will analyze the infrared 251 

(1-µm) emissivity at high resolution, while its lander will also provide in-situ geochemical 252 

measurements of the surface and subsurface composition. 253 
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Table(s) 395 

Table 1 – Values for the seven sites of interest in Ganis Chasma. Sites 1–4 correspond to the 396 

locations of the VMC thermal anomalies indicated in Shalygin et al. (2015). Sites 5–7 are control 397 

areas with similar morphology and altitude range to sites 1–4. 398 

Sites Features 
Lon. 

(°E) 

Lat. 

(°N) 

Area 

(km2) 

Minimum 

emissivity 

Altitude 

(km) 

Temp. 

(K) (*) 

Excursion 

magnitude 

(%) 

1 VMC anomaly 12.5 197.6 23300 0.718 6055.4 704.6 15.5 

2 VMC anomaly 16.5 197.6 31100 0.672 6055.4 704.6 20.9 

3 VMC anomaly 18.2 191.5 31700 0.718 6055.8 700.7 15.5 

4 VMC anomaly 12.0 199.3 38200 0.753 6054.2 715.6 11.4 

5 Control area 20.1 187.3 34440 0.595 6056.2 696.5 30.0 

6 Control area 17.4 194.6 12200 0.684 6055.4 704.6 19.5 

7 Control area 16.2 193.9 54600 0.600 6054.5 712.9 29.4 

Notes: (*) Temperatures are derived from extrapolation of the Vega 2 lander data (Seiff, 1987; Lorenz et al., 2018) 

and reported in Brossier et al. (2020). 

  399 
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Figure Captions 400 

Figure 1 – Ganis Chasma (192°E, 18°N) showing Magellan SAR image (gray scale) and the main 401 

morphologic features. The seven sites of interest are outlined in red. Morphologic features are 402 

mapped after Ivanov and Head (2011): Ganis Chasma (rift zone), Sitwell crater (with its parabola), 403 

Bashkirtseff crater, Yolkai-Estsan Mons, and surrounding tesserae. Maps (here and in Figure 2) 404 

have a simple cylindrical projection and north is up. Magellan images covering the study area and 405 

shapefiles (and auxiliary files) for the mapped units and sites of interest can be found in the online 406 

repository linked to this work (Brossier et al. 2022). 407 

Figure 2 – Magellan radar emissivity and elevation overlapping SAR image (same as Figure 1) at 408 

Ganis Chasma (192°E, 18°N): (A) radar emissivity varies from low values in blue to high values 409 

in red, while (B) elevation varies from low elevations in teal to high elevation areas in brown. 410 

Figure 3 – (A) Elevation vs emissivity plots obtained for the studied sites. Dashed lines in plots 411 

are mean global values of emissivity at 0.85 (vertical, black), and planetary radius at 6051.8 km 412 

(horizontal, gray). (B) Magnitude of emissivity excursions (percent change from global average 413 

value of 0.85) detected in each site vs. corresponding altitude and temperature. Temperatures are 414 

given by the Vega 2 lander data (Seiff, 1987; Lorenz et al., 2018; Brossier et al., 2020). Elevation 415 

(as planetary radius, in km) and emissivity values are reported as text files in the online repository 416 

(Brossier et al., 2022).  417 
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Figure S1. Elevation vs emissivity plots obtained for the sites 1, 4 and 7, which straddle 

between the lava flows (black dots) and faulted walls (red dots) of Ganis Chasma. Dashed 

lines in plots are mean global values of emissivity at 0.85 (vertical, black), and planetary 

radius at 6051.8 km (horizontal, gray). Temperatures are given by the Vega 2 lander data 

(Seiff, 1987; Lorenz et al., 2018; Brossier et al., 2020). Elevation (as planetary radius, in km) 

and emissivity values are reported as text files in the online repository (Brossier et al., 

2022). 
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