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Abstract

In this paper, we introduce a testbed for evaluating and comparing climate modeling systems at cloud resolving scales using

hindcasts of the June 2012 North American derecho. The testbed is applied to two models: the regionally-refined Simple

Cloud-Resolving E3SM Atmosphere Model (SCREAM) at horizontal resolutions ranging from 6.5 to 1.625 km and the Weather

Research and Forecasting (WRF) model with 4 km grid spacing. We find the simulation results to be highly sensitive to the

initial conditions, initialization time, and model configurations, with initial conditions from the Rapid Refresh (RAP) producing

the best simulation. Significant improvement is identified in the SCREAM simulations as horizontal grid spacing is refined.

While a propagation delay of approximately 2 hours is found in both models, SCREAM at 1.625 km simulates the observed bow

echo structure of the derecho well and predicts strong surface gusts that exceed 30 m/s. In comparison, WRF hardly produces

surface wind over 25 m/s, and the derecho wind gust in WRF is 42-46% lower than in SCREAM. Moreover, WRF has a lower

bias in simulating cold clouds but overestimates the precipitation intensity. Both models well reproduce the observed outgoing

longwave radiation spatial patterns (Pearson correlation > 0.88) while they simulate larger areas of composite radar reflectivity

> 40 dBZ by up to 4 times and underestimate the precipitating area by ˜ 70\% in WRF and 47\% in SCREAM compared to

observations.
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Key Points:11

• A testbed of observational products, diagnostics, and metrics is constructed to eval-12

uate hindcasts of the June 2012 North American derecho.13

• Hindcast results are sensitive to initial conditions, initialization time, horizontal14

resolutions, and convective and microphysics schemes.15
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reproduces severe surface gusts with wind speeds above 30 m/s.17
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Abstract18

In this paper, we introduce a testbed for evaluating and comparing climate modeling sys-19

tems at cloud resolving scales using hindcasts of the June 2012 North American dere-20

cho. The testbed is applied to two models: the regionally-refined Simple Cloud-Resolving21

E3SM Atmosphere Model (SCREAM) at horizontal resolutions ranging from 6.5 to 1.62522

km and the Weather Research and Forecasting (WRF) model with 4 km grid spacing.23

We find the simulation results to be highly sensitive to the initial conditions, initializa-24

tion time, and model configurations, with initial conditions from the Rapid Refresh (RAP)25

producing the best simulation. Significant improvement is identified in the SCREAM26

simulations as horizontal grid spacing is refined. While a propagation delay of approx-27

imately 2 hours is found in both models, SCREAM at 1.625 km simulates the observed28

bow echo structure of the derecho well and predicts strong surface gusts that exceed 3029

m/s. In comparison, WRF hardly produces surface wind over 25 m/s, and the derecho30

wind gust in WRF is 42-46% lower than in SCREAM. Moreover, WRF has a lower bias31

in simulating cold clouds but overestimates the precipitation intensity. Both models well32

reproduce the observed outgoing longwave radiation spatial patterns (Pearson correla-33

tion > 0.88) while they simulate larger areas of composite radar reflectivity > 40 dBZ34

by up to 4 times and underestimate the precipitating area by ∼ 70% in WRF and 47%35

in SCREAM compared to observations.36

Plain Language Summary37

This paper describes a testbed for evaluating model performance on a particular38

high-impact weather event – the June 2012 North American derecho, a storm event as-39

sociated with extreme winds and precipitation. The testbed is applied to evaluate the40

Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM) and the Weather Research41

and Forecasting (WRF) model at resolutions that resolve cloud systems. The performance42

of both models is shown to be sensitive to the dataset used for model initialization. Finer43

grid resolution generally leads to better model performance. All simulations show a 2-44

hour delay in predicting the evolution of the derecho and produce more intense rainfall.45

SCREAM generates a more realistic convective front than WRF and produces stronger46

surface winds. The evaluation protocol can be used to better understand the credibil-47

ity of model simulations of extreme events and guide model development.48

1 Introduction49

Climate modeling systems are among our best tools for understanding the climate50

system and future impacts of climate change (Kharin et al., 2007). In the pursuit of mod-51

els of the highest quality, modeling groups cycle between developing new functionality,52

testing that functionality in isolation, integrating it into comprehensive modeling sys-53

tems, and evaluating those combined systems. In the case of climate models, evaluation54

has generally focused on average behavior over large regions or long time periods (Gleckler55

et al., 2008; Eyring et al., 2019). However, this form of generalized analysis does not ad-56

dress whether climate models are able to simulate the most extreme and high-impact weather57

phenomena, such as extreme mesoscale convective systems (MCSs), with high fidelity.To58

this end, in this paper we propose one such extreme event testbed for evaluating climate59

modeling systems that operate at cloud resolving scales. The testbed focuses on histor-60

ical simulation of a single event, in this case the June 2012 North American derecho and61

accompanying MCS, with the intention of providing a standard and comprehensive suite62

of metrics for model assessment and intercomparison.63

MCSs are responsible for a variety of severe atmospheric hazards, such as flood-64

producing heavy rainfall events (Schumacher & Johnson, 2006; Stevenson & Schumacher,65

2014; Hu et al., 2020a), lightning (Carey et al., 2005), and damaging winds (Bernardet66

& Cotton, 1998; Schoen & Ashley, 2011). Due to their important role in the hydrolog-67
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ical cycle (Hu et al., 2020b) and land-atmosphere interactions (Hu et al., 2021), there68

is considerable demand for evaluating their representation in one model or as part of an69

intercomparison across different models (Van Weverberg et al., 2013; Schumacher & Clark,70

2014; A. F. Prein et al., 2020; Feng, Song, et al., 2021; Na et al., 2022). However, most71

previous studies focus on the long-term climatological metrics averaged over multiple years,72

which does not take specific events into consideration (Demaria et al., 2011; Pinto et al.,73

2015). A few studies evaluated the performance of climate models in the hindcast of in-74

dividual extreme MCS events qualitatively but without a uniform set of metrics (Toll75

et al., 2015; Grunzke & Evans, 2017). Even in the short-term, for case studies of extreme76

MCSs that last for 1-2 days, evaluations are mainly conducted through qualitative anal-77

ysis of spatial patterns (Toll et al., 2015; Grunzke & Evans, 2017) rather than quanti-78

fying the model performance using a uniform set of metrics. Previous studies (Davis et79

al., 2006; N. Roberts, 2008; N. M. Roberts & Lean, 2008; Mittermaier & Roberts, 2010)80

proposed and discussed fractions skill score (FSS) as a variation of the Brier skill score81

to assess a common dataset that consisted of WRF model precipitation forecasts in ge-82

ometric cases. However, as indicated in Davis et al. (2006), this skill score only consid-83

ered the precipitation and was highly dependent upon the threshold values and the do-84

main sizes. While the FSS provided a measure of the spatial accuracy of precipitation85

forecasts, additional techniques are needed to determine behaviors of other features to86

gain a comprehensive understanding of the convective systems.87

It is challenging to simulate individual convective storms accurately, due to the need88

to adequately resolve complex physical interactions between dynamical and microphys-89

ical processes over a wide range of scales (Stensrud et al., 2013; Houze Jr, 2004; Weis-90

man & Rotunno, 2004; A. F. Prein et al., 2015; Feng et al., 2018). Previous studies have91

demonstrated that the performance of MCS simulations is greatly influenced by a num-92

ber of factors, such as horizontal grid spacing (Tao & Chern, 2017; Squitieri & Gallus,93

2020), initial conditions (ICs) (Vié et al., 2011; Brousseau et al., 2016; Weyn & Durran,94

2017), model configuration (Schumacher & Clark, 2014), and choice of parameterizations95

(Elliott et al., 2016; Wheatley et al., 2014; Feng et al., 2018). As a result, sensitivity tests96

and simulation ensembles are often carried out in MCS studies to determine optimal model97

configurations. However, different MCS tracking algorithms and evaluation criteria are98

employed in these studies (Fiolleau & Roca, 2013; Haberlie & Ashley, 2019; Feng, Le-99

ung, et al., 2021), leading to possible inconsistencies in the reported results and a lack100

of clarity regarding the strengths and weaknesses of various models. Storm evaluation101

is also subject to uncertainties due to the observations or reanalyses selected as refer-102

ence datasets and the selected thresholds (Kolios & Feidas, 2010; Huang et al., 2018).103

Therefore, a comprehensive and robust evaluation process and a uniform suite of met-104

rics and diagnostics are much needed to streamline the process and provide greater com-105

parability across climate modeling studies for understanding MCS features and impacts,106

particularly in the context of large ensembles.107

The testbed proposed herein can be used to evaluate the representation of multi-108

ple storm characteristics in regional and global climate models at cloud system resolv-109

ing scales. The proposed evaluation protocol is subsequently applied to compare and con-110

trast regional and regionally-refined global climate models for a specific severe storm event,111

which we recommend as a standard for broader intercomparison. In this study, we limit112

our investigation to the Weather Research and Forecasting (WRF) model at 4km and113

the regionally refined model (RRM) approach using the Simple Cloud-Resolving E3SM114

Atmosphere Model (SCREAM) with different model configurations. Sensitivity tests ad-115

dress RRM grid spacing (6.5 - 1.625 km), differences between hydrostatic and nonhy-116

drostatic dynamical cores, low-resolution and high-resolution model configurations, ini-117

tialization time, and data source for the ICs.118

This paper is organized as follows: section 2 presents the proposed testbed, includ-119

ing a brief introduction of the severe weather event we selected, observations employed,120
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and metrics selected; section 3 describes the SCREAM-RRM and WRF models in de-121

tail; section 4 evaluates the simulation results of both models; finally, section 5 provides122

a summary of our findings and conclusions.123

2 The June 2012 North American Derecho Testbed124

In this section we describe the proposed testbed, based on a 24-hour hindcast of125

the June 2012 North American derecho, and designed for evaluation and intercompar-126

ison of climate modeling systems at cloud resolving scales. The testbed consists of a sim-127

ulation protocol, a set of observational products, and a comprehensive set of diagnos-128

tics and statistical metrics that leverage those observations. Section 2.1 provides a me-129

teorological overview of the derecho and previous relevant studies. Section 2.2 describes130

the selected observational datasets. Section 2.3 presents four essential storm features that131

are examined in this framework, and section 2.4 explains the calculations of the metrics.132

2.1 Meteorology133

Johns and Hirt (1987) categorized derechos as meteorological events with severe134

wind gusts and precipitation lasting for several hours, in conjunction with a linear MCS.135

An extensive study (Corfidi et al., 2016) more recently defined a derecho as an event with:136

1) convectively induced wind damage and/or gusts of > 25.7 m/s over an area with a137

major axis of 400 km, 2) geographically-consistent reports, and 3) presence of 3 or more138

reports of gusts > 33.4 m/s within the affected area. Among all historical derechos in139

North America, the June 2012 North American derecho (or June 2012 Mid-Atlantic and140

Midwest derecho) is one of the most infamous – a progressive derecho event that became141

one of the most destructive and fastest-moving derechos in US history.142

The June 2012 North American derecho was characterized by an intense bow-echo143

MCS causing widespread severe wind damage across the upper Midwest and the Ohio144

River valley, as well as the mid-Atlantic states, during the afternoon and evening of 29145

June and early morning of 30 June in 2012 (Shourd, 2017; Shourd & Kaplan, 2021). This146

particular event was selected because of the significant socioeconomically-hazardous im-147

pact and the high forecast difficulty. At initiation, a relatively small cluster of storm cells148

began to form as embryonic convection in eastern Iowa around 14:00 UTC on 29 June.149

Around 16:00 UTC, the small storm cluster began rapidly forming a well-defined MCS150

before crossing through Chicago, Illinois. Afterward, the MCS expanded into an asym-151

metric bow echo over Indiana as it accelerated southeastward at about 25 m/s slightly152

to the north of the frontal boundary. The MCS intensified further as it crossed Indiana153

and Ohio, transforming into a derecho MCS. The MCS continued along its destructive154

path until reaching the Atlantic coast of Virginia and Maryland about 06:00 UTC on155

30 June. As estimated by the Storm Prediction Center (SPC), a damaging wind swath156

of about 1000 km in length resulted from this event, with over 800 wind damage reports157

during the 10-hour lifetime. Severe wind gust reports ranging between 25–33 m/s were158

widespread with peak gusts in excess of 40 m/s reported over eastern Indiana and west-159

ern Ohio.160

As indicated in Johns and Hirt (1987), progressive derechos are frequently challeng-161

ing for operational meteorologists to forecast due to their weakly forced nature. The June162

2012 North American derecho was underforecasted days and hours ahead of time, as well163

as throughout much of the duration of the storm. Most numerical weather prediction164

models showed no indication that any convective cells would develop, illustrating the fore-165

cast difficulty (Halverson, 2014; Guastini & Bosart, 2016; Schumacher & Rasmussen, 2020).166

This forecast difficulty serves as the motivation for the following studies. Fierro et167

al. (2014) evaluated the short-term forecast (≤ 6 h) of the derecho event from the re-168

gional WRF model at 3 km resolution to compare two distinct data assimilation tech-169
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niques. Shourd and Kaplan (2021) simulated the derecho using the WRF model in a nested170

domain with the inner domain at 2 km resolution and reproduced the super derecho. How-171

ever, no quantitative evaluation metrics were used in these two analyses, resulting in no172

clear conclusions drawn as to the quality of the reproduction, especially when compared173

with other studies. Shepherd et al. (2021) performed an 11-member ensemble of convection-174

permitting regional simulations using WRF and tested the sensitivities to model con-175

figuration including microphysics parameterizations, lateral boundary conditions, start176

dates, and use of nudging. All 11 members had difficulty capturing the realistic evolu-177

tion of the derecho, exhibiting a time delay (ranging from 2 - 8 hours) in simulating the178

derecho intensification and passage.179

Previous studies that focused on simulating the June 2012 North American dere-180

cho (Fierro et al., 2014; Shourd, 2017; Shourd & Kaplan, 2021; Schumacher & Rasmussen,181

2020) have emphasized the analysis and evaluation of composite radar reflectivity. Nev-182

ertheless, wind gusts are an integral component of the definition of derecho. In order to183

provide a more thorough evaluation of the event, our study has an additional empha-184

sis on evaluating the wind speed, along with precipitation and composite radar reflec-185

tivity.186

2.2 Observations187

It is well known that precipitation products diverge considerably across regions,188

even in the regional means at daily to seasonal timescales, and particularly across in-situ,189

reanalysis and satellite products (Miao et al., 2015; Beck et al., 2017, 2019; Sadeghi et190

al., 2021). Our testbed requires a detailed comparison of hourly precipitation pattern191

and magnitude at fine horizontal resolution, where the differences between these prod-192

ucts are particularly large. Therefore, three high-resolution gauge-based precipitation193

datasets are used to evaluate the simulated precipitation:194

1. The National Centers for Environmental Prediction (NCEP) 4km Gridded Stage195

IV Data (Lin & Mitchell, 2005; Du, 2011), which is a merged ground-based and196

radar-derived hourly rainfall accumulation dataset from 140 radars and ∼ 5500197

gauges over the continental United State (CONUS). The NCEP Stage IV dataset198

provides highly accurate precipitation estimates and is, therefore, widely used as199

a reference for the evaluation of precipitation (Hong et al., 2004; AghaKouchak200

et al., 2011, 2012; Nelson et al., 2016; X. Zhang et al., 2018).201

2. NASA Integrated Multi-satellite Retrievals for Global Precipitation Measurement202

(IMERG) V06B final run (Huffman et al., 2015), which intercalibrates, merges,203

and interpolates all estimates of the Global Precipitation Measurement (GPM)204

constellation, infrared (IR) estimates, gauge observations, and other potential sen-205

sors’ data with a 0.1°× 0.1° spatial resolution and 30 minute temporal resolution.206

3. NOAA Climate Prediction Center Morphing technique (CMORPH) bias-corrected207

V1.0 (Joyce et al., 2004; Xie et al., 2017, 2019) – this 8 km resolution dataset pro-208

duces 30 minute estimates of rainfall derived from passive microwave observations209

and extrapolates them backwards and forwards in time via spatial propagation210

information obtained from geostationary IR satellite data.211

Following previous efforts (Beck et al., 2019; Feng et al., 2018), we use the NCEP Stage212

IV dataset as our primary precipitation reference, but also provide supplementary re-213

sults from IMERG and CMORPH. While the NCEP Stage IV precipitation dataset is214

of high quality, it is available only over the US. IMERG and CMORPH are included to215

generalize our framework for testbed cases worldwide, considering their broader cover-216

age. An intercomparison of different precipitation datasets is out of the scope of this pa-217

per.218

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Outgoing longwave radiation (OLR) is evaluated using the brightness temperature219

(Tb) from the NCEP half-hourly 4 km IR V1 dataset (Janowiak et al., 2017), which con-220

tains globally-merged geostationary satellites with parallax correction and viewing an-221

gle correction. Tb is converted to OLR following the empirical formulation provided by222

Yang and Slingo (2001).223

For observations of radar reflectivity, we use the hourly three-dimensional high-resolution224

Next-Generation Radar (NEXRAD) (Bowman & Homeyer, 2017), which covers most of225

the contiguous U.S merged from 125 National Weather Service WSR-88D weather radars.226

The raw spatial resolution of NEXRAD is 0.02°x 0.02°and a vertical resolution of 1 km.227

Composite reflectivity (cREF) is calculated as the maximum reflectivity for each column228

and time step in both NEXRAD and the simulations.229

For wind speed evaluation, we use station records from the National Weather Ser-230

vice Automated Surface Observation System (ASOS) (Nadolski, 1998). There are 90 ASOS231

stations in the analysis domain (76°-88°W, 36.5°-42°N), shown as black circles in Figure232

1c. The temporal frequency of the ASOS record is 5 minutes, although several records233

are missing. Two wind-related parameters from the ASOS are used:234

1. Wind speeds: ASOS stations measure wind direction and speed once every sec-235

ond using meteorological equipment at a height of 10 meters. Five-second wind236

direction and wind speed averages are computed from the 1-second measurements.237

These 5-second averages are rounded to the nearest knot and retained for 2 min-238

utes. The resolution of the wind speed is 1 knot and converted from knots to m/s239

in all analyses of this study.240

2. Gust wind speeds: The gust wind speeds represent the maximum five-second241

wind speed measured in each five–minute period when gust criteria are met (Nadolski,242

1998). Gusts are rounded up to the nearest whole knot and converted from knots243

to m/s. Gust wind speed is not a standard parameter and only reported when:244

(a) Gust wind speed is at least 3 knots (1.54 m/s) above the current running 2-minute245

mean wind speed.246

(b) Gust wind speed exceeds the minimum five-second average in the last 10 min-247

utes by at least 10 knots (5.14 m/s).248

(c) The current 2-minute average wind speed is at least 3 knots (1.54 m/s).249

2.3 Storm Characteristics250

To provide a near comprehensive evaluation of the relevant meteorological char-251

acteristics of the derecho, the proposed testbed focuses on four essential parameters: pre-252

cipitation, cREF, OLR, and wind speed. We define three features based on the commonly253

used thresholds in the previous MCS analyses to locate and track the derecho: the cold254

cloud shield, the precipitation feature, and the cREF feature. The cold cloud shield is255

defined as the contiguous area with Tb lower than 241 K (Maddox, 1980; Feng et al.,256

2018; Feng, Leung, et al., 2021). Following the empirical formulation provided by Yang257

and Slingo (2001), this Tb threshold is instead applied to the OLR (which is output di-258

rectly from the models), using a threshold of 163.44 W/m2. The precipitation feature259

is defined as the contiguous area with precipitation rate higher than 1 mm/hour (Peters260

et al., 2009; Yuan & Houze, 2010; Feng et al., 2018). The cREF feature is defined as a261

continuous area with composite radar reflectivity greater than 40 dBZ (Dye et al., 1989;262

Zipser & Lutz, 1994; Haberlie & Ashley, 2019).263

The latitude and longitude of the midpoint of a certain feature is calculated as the264

mean of the maximum and minimum of the latitude and longitude of the object. While265

the centroid of the feature polygon could have been similarly employed (Pinto et al., 2015;266

Davis et al., 2006), we observed similar results to those obtained via the simple midpoint.267
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Therefore, this study only uses the midpoint instead of the centroid because of the sim-268

plicity of computation. The features are further isolated and tracked using TempestEx-269

tremes (Ullrich & Zarzycki, 2017; Ullrich et al., 2021), as shown in the appendix. The270

area of an isolated feature is calculated as the sum of areas of grid points that are de-271

tected in the TempestExtremes.272

Note that the definitions of MCSs and thresholds are diverse in the past studies273

(Schumacher & Johnson, 2005; Yuan & Houze, 2010). While we choose the most widely274

used thresholds, the involvement of thresholds and tracking algorithms would still in-275

duce a certain degree of uncertainty, as mentioned in section 1. Therefore, we will use276

metrics without incorporating the storm detection and tracking if possible besides the277

features described above.278

2.4 Evaluation Metrics279

Quantitative evaluation of the SCREAM and WRF experiments is performed via280

a variety of statistical techniques over the analysis region shown in Figure 1c. To facil-281

itate comparison, the simulated variables are interpolated onto the coarse observation282

grid (i.e., 0.05° for OLR and cREF and 0.1° for precipitation). Here we use precipita-283

tion as an example, but similar calculations are applied to other variables (OLR and cREF).284

The model bias is measured by the mean error (ME),285

ME =
1

N

N∑
i=1

(pi − oi), (1)

where N is the total number of verification grid point, and p and o are the simulated and286

observed values, respectively. Mean absolute error (MAE), is calculated as287

MAE =
1

N

N∑
i=1

|pi − oi|. (2)

The root-mean-square of the error (RMSE) (Anthes, 1983) is defined as288

RMSE =

[
1

N

N∑
i=1

(pi − oi)
2

]1/2

. (3)

The pattern correlation between simulations and observations are represented by the Pear-289

son product-moment correlation coefficient, calculated as290

r =

∑N
i=1(pi − p)(oi − o)√∑N

i=1(pi − p)2
√∑N

i=1(oi − o)2
. (4)

We choose the centered form, which measures the similarity of the pattern after remov-291

ing the regional mean (Santer et al., 1993), because it provides additional information292

independent of the mean bias. We also use the Spearman rank correlation coefficient as293

a robust and resistant alternatives to the Pearson product-moment correlation coefficient.294

The Spearman correlation is simply the Pearson correlation coefficient computed using295

the ranks of the data,296

rs = 1 −
6
∑N

i=1 D
2
i

N(N2 − 1)
, (5)

where Di is the difference in ranks between the ith pair of values.297

It is important to stress that a particular simulation can exhibit a bias close to zero,298

along with poor correlation (e.g., the regionally-averaged precipitation rate is similar to299

the reference dataset but the precipitation patterns are distorted), or a high correlation,300
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but with a high bias (e.g., a consistent spatial distribution of precipitation but with in-301

tensified rainfall rate relative to that of the reference dataset). As such, the conclusions302

derived from single metrics could be misleading, suggesting a need to incorporate mul-303

tiple measures in such an analysis.304

Our evaluation metrics also include two scores normally used in the assessment of305

accuracy of weather prediction. The first is the bias score (BS), which indicates whether306

the model over or under predicts the fractional areal coverage of precipitation for a cer-307

tain threshold. On the other hand, the threat score (TS), ranging from 0 (worst) to 1308

(best), is used to measure the skill of predicting the area of precipitation exceeding a cer-309

tain intensity threshold. The BS and TS are defined as310

BS =
P

O
, (6)

and311

TS =
H

P + O −H
, (7)

where P and O are the number of grid points with values higher/lower (i.e., higher for312

precipitation and cREF; lower for OLR) than the threshold in the simulation and ref-313

erence dataset, respectively. H is the number of grid points higher/lower than the thresh-314

old in both the simulation and the observation.315

3 Models316

3.1 The SCREAM Regional Refined Model317

A series of RRM simulations are conducted using SCREAM (Caldwell et al., 2021;318

Liu et al., 2022), configured with a high-resolution (HR) grid located in the northeast-319

ern US, a low-resolution (LR) grid covering the remaining globe, and a transition area320

between them (Figure 1b). Figure 1a shows the SCREAM RRM grid in the global or-321

thographic projection. The grid is based on the unstructured cubed-sphere finite-element322

grid with 4 Gauss-Lobatto-Legendre (GLL) nodes per element’s edge (np4). Our LR grid323

uses 128 × 128 spectral elements on each face, denoted ne128, corresponding to a hor-324

izontal grid spacing of 0.25°(∼ 28 km). Using the offline software tool SQuadGen (Ullrich,325

2014), three RRM grids were constructed using the same low base resolution (ne128) and326

various high resolutions: ne512 (6.5 km), ne1024 (3.25 km), and ne2048 (1.625 km). The327

HR portion of the grid is large enough to comprise the region where the derecho initi-328

ated, as well as its propagation path. While the derecho eventually migrated to the At-329

lantic in its decay phase, our analysis only focuses on processes on land where the dam-330

age occurred and, therefore, does not cover broad oceanic area in the HR portion.331

The RRM approach has been validated in other models over many regions of in-332

terest (Zarzycki & Jablonowski, 2014; Sakaguchi et al., 2015, 2016; Rhoades et al., 2018;333

Wu et al., 2017; Xu et al., 2018) and demonstrated to be effective for regional climate334

studies at a reduced computational cost compared to uniform GCMs. For example, Zarzycki335

and Jablonowski (2014, 2015) demonstrated improved skill in simulating tropical cyclones336

in the Community Atmosphere Model with a refined mesh (0.25°) over the North At-337

lantic at multidecadal timescale. Huang and Ullrich (2017) reproduced the geographic338

patterns of 26-year historical precipitation climatology over the western US with the variable-339

resolution Community Earth System Model with a fine grid resolution of 0.25°. Two340

studies (Sakaguchi et al., 2015; Tang et al., 2019) demonstrated that RRM reproduced341

the seasonal precipitation of the high-resolution model over the CONUS.342

However, previous RRM studies were performed with the highest horizontal res-343

olution of around 0.25°and seasonal or longer timescales. Our study adopt the RRM ap-344

proach in SCREAM with finer horizontal resolutions from 6.5 - 1.625 km and a timescale345

of 1-day. Since no optimal grid spacing has been identified for MCS simulations (Weisman346
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Figure 1. (a) The SCREAM RRM grid, shown using a global orthographic projection. (b)

The transition region in the RRM grid from LR to HR resolution. (c) Locations of ASOS sta-

tions in black circles. The red box shows the analysis region (76°-88°W, 36.5°-42°N).

et al., 1997; Squitieri & Gallus, 2020), we investigate a variety of grid spacings between347

6.5 km and 1.625 km to examine the impact of horizontal resolution on the derecho sim-348

ulation in SCREAM.349

Prescribed SST and sea ice extent are used for all SCREAM simulations. The land350

initial file is generated from a 12-month spinup land simulation prior to the initial date.351

Native output is saved every 15 minutes and later remapped using the TempestRemap352

software suite (Ullrich & Taylor, 2015; Ullrich et al., 2016) before calculating derived vari-353

ables or performing analyses.354

A summary of the SCREAM RRM simulations conducted in this study is provided355

in Table 1, including horizontal resolutions, ICs, initialization time, LR/HR configura-356

tions, and dynamical cores. Specifically, simulations SCREAM 6.5km, SCREAM 3.25km,357

and SCREAM 1.625km are designed to examine the sensitivity of model performance358

to grid spacing. Simulations SCREAM ERA5 and SCREAM ERAI serve as sensitivity359

tests of the model to the IC source. All simulations are initialized at 12:00 UTC 29 June360

2012 and end at 12:00 UTC 30 June 2012, except for SCREAM 06Z initialized at 06:00361

UTC 29 June 2012. The SCREAM HR configuration, where deep convection is turned362

off and includes a 128 layer vertical grid with a model top at 40 km (2.25 hPa), is em-363

ployed in most simulations. SCREAM LR uses the LR configuration; the model is run364

with 72 vertical levels with a top at 60 km, and the Zhang-McFarlane deep convection365

scheme (G. J. Zhang & McFarlane, 1995) is applied. These two configurations follow the366

vertical levels, model tops, and application of the deep convection scheme as described367
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Table 1. A summary of the SCREAM RRM simulations conducted and compared in this

study.

Simulation Abbreviation Fine Resolution IC Initialization Time (UTC) LR/HR Configuration Dynamical Core

SCREAM 6.5km ne512 (6.5km) ERA5+RAP 12:00 29 June 2012 HR NH

SCREAM 3.25km ne1024 (3.25km) ERA5+RAP 12:00 29 June 2012 HR NH

SCREAM 1.625km ne2048 (1.625km) ERA5+RAP 12:00 29 June 2012 HR NH

SCREAM ERA5 ne1024 (3.25km) ERA5 12:00 29 June 2012 HR NH

SCREAM ERAI ne1024 (3.25km) ERAI 12:00 29 June 2012 HR NH

SCREAM 06Z ne1024 (3.25km) ERA5+RAP 06:00 29 June 2012 HR NH

SCREAM LR ne1024 (3.25km) ERA5+RAP 12:00 29 June 2012 LR NH

SCREAM H ne1024 (3.25km) ERA5+RAP 12:00 29 June 2012 HR H

Table 2. Timesteps of the SCREAM RRM simulations.

Simulation Name(s) Fine Resolution Dynamics Timestep (s) Physics Timestep (s)

SCREAM 6.5km ne512 (6.5km) 16 2/3 300

SCREAM 3.25km, SCREAM ERA5,
SCREAM ERAI, SCREAM 06Z

SCREAM LR, SCREAM H
ne1024 (3.25km) 81/3 100

SCREAM 1.625km ne2048 (1.625km) 41/6 50

in Caldwell et al. (2021) and Caldwell et al. (2019), respectively. The dynamical equa-368

tions are solved using the High Order Method Modeling Environment (HOMME) (J. Den-369

nis et al., 2005; J. M. Dennis et al., 2012; Evans et al., 2013). The simulations mostly370

use the HOMME nonhydrostatic (NH) spectral element dynamical core (Taylor et al.,371

2020; Bertagna et al., 2020; Liu et al., 2022) with one addition sensitivity test (SCREAM H)372

utilizing the HOMME hydrostatic (H) dynamical core (Golaz et al., 2019; Caldwell et373

al., 2019; S. Zhang et al., 2020). Both the dynamics and physics timesteps are scaled across374

different RRM grids, controlled by the fine resolution, as shown in Table 2. Because of375

the horizontal resolution differences among three RRM grids, the topography is repre-376

sented differently in these configurations.377

The IC files are derived from three datasets: the Rapid Refresh (RAP) (Benjamin378

et al., 2016), the fifth generation of atmospheric reanalysis (ERA5) (Hersbach et al., 2018)379

and ERA-Interim (ERAI) (Dee et al., 2011), with details summarized in Table 3. A hind-380

cast initialization suite (Betacast, Zarzycki and Jablonowski (2015)) is used to generate381

the IC files for the model from the above datasets. Since the RRM is a global model, ERA5382

and ERAI data are directly mapped from the reanalysis grids to the model grid. The383

RAP analysis only covers North America, so for the simulations initialized using RAP,384

a two step approach is applied where a global ‘base’ IC is first generated using ERA5385

and then the RAP analysis is used to overwrite the model state fields over the valid RAP386

region, displayed as ERA5 + RAP in Table 1. To eliminate noise associated with map-387

ping the analyses across different grids, a hydrostatic correction is applied at each grid388

point to correct the hydrostatic surface pressure field between the analysis and model389

orographies, following the method described in Trenberth et al. (1993). Finally, all prog-390

nostic state variables in the vertical column are then reinterpolated based on the adjusted391

surface pressure since SCREAM uses a terrain-following coordinate.392

3.2 WRF Model393

WRF v4.3.3 (Skamarock et al., 2019) at 4 km is employed for intercomparison with394

the SCREAM RRM simulations. The WRF domain extends from 30.69°N to 48.04°N395

and from 102.78°W to 62.01°W. Four WRF simulations are run using different setups396
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Table 3. A summary of datasets used to generate IC files.

Dataset Name Coverage Temporal Resolution Grid Spacing Reference

RAP North America Hourly 13 km Benjamin et al. (2016)

ERA5 Global Hourly 0.25° Hersbach et al. (2018)

ERAI Global 6-hourly 0.75° Dee et al. (2011)

Table 4. A summary of the WRF simulations.

Simulation Abbreviation IC Number of Vertical Levels Microphysical Scheme

WRF RAP ERA5+RAP 45 Thompson

WRF NARR NARR 45 Thompson

WRF HR ERA5+RAP 72 Thompson

WRF HR P3 ERA5+RAP 72 P3

(Table 4) with the same simulation period, initialized on 12:00 UTC 29 June 2012, and397

output frequency as the SCREAM RRM simulations. The time step for integration is398

10 seconds in the WRF simulations. The baseline simulation (WRF RAP in Table 4),399

has 45 vertical layers with a thickness of ∼ 50 m for the lowest layer and a top at 100400

hPa. Physics schemes used in WRF RAP include the Thompson microphysics scheme401

(Thompson et al., 2008), the Rapid Radiative Transfer Model for General Circulation402

Models (RRTMG) shortwave and longwave radiation schemes (Iacono et al., 2008), the403

Mellor-Yamada-Janjic (MYJ) planetary boundary layer scheme (Janjić, 1994), the Eta404

similarity surface layer scheme, the Noah Land Surface Model (Chen & Dudhia, 2001),405

and the Building Energy Model coupled with the Building Environment Parameteriza-406

tion (BEP + BEM) for urban physics (Salamanca et al., 2010). Initial and lateral bound-407

ary conditions are from ERA5 and RAP, where ERA5 provides soil conditions while RAP408

provides atmospheric and land surface conditions.409

Besides the baseline simulation, three sensitivity tests are performed (WRF NARR,410

WRF HR, and WRF HR P3; Table 4) to examine the impacts of different initial and411

boundary conditions, vertical resolutions, and microphysical schemes. The configuration412

of WRF NARR is the same as WRF RAP, except using initial and boundary conditions413

from the NCEP North American Regional Reanalysis (NARR) product (Mesinger et al.,414

2006). Compared to WRF RAP, WRF HR has 72 vertical layers with a vertical reso-415

lution of ∼20 m near the surface. The difference between WRF HR and WRF HR P3416

is that WRF HR P3 uses the Predicted Particle Property (P3) microphysics scheme with417

3-moment ice (Morrison & Milbrandt, 2015).418

4 Evaluation419

Our discussion begins with a snapshot of the mature stage of the derecho at 00:00420

UTC 30 June 2012 in section 4.1. The temporal evolution of the derecho is investigated421

in section 4.2 followed by section 4.3, which presents the metrics to quantify the fidelity422

of the models. We also display how to interpret the quantified metrics to understand the423

derecho characteristics in section 4.3. Section 4.4 provides additional discussion about424

the simulated 10-m wind speed.425

4.1 00:00 UTC snapshot426

Figures 2-3 show the instantaneous simulation outputs of OLR and cREF at 00:00427

UTC 30 June 2012 in eight SCREAM RRM simulations (Table 1), two WRF simulations428
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(WRF RAP and WRF NARR, Table 4), and observations at 0.05° resolution. The ob-429

servation panel is marked with red title in all figures. Unlike Figures 2-3, which show430

instantaneous outputs, Figure 4 shows the precipitation amount in the simulations and431

reference datasets accumulated from 00:00 to 01:00 UTC (since the NCEP Stage IV pre-432

cipitation dataset is accumulated hourly). Some spatial displacement is clear between433

the cREF and precipitation due to the propagating nature of the derecho. We will dis-434

cuss the two WRF sensitivity tests (WRF HR and WRF HR P3; see Table 4) in section435

4.4 and, therefore, not display their results in this section.436

Figures 4a-c clearly show that the precipitation patterns in different products are437

divergent. While all three products include gauge corrections, IMERG shows significantly438

higher rainfall rates than NCEP Stage IV dataset and CMORPH, especially in the south-439

ern part of the derecho near (80°W, 39°N). However, the NCEP Stage IV rainfall is the440

most widely used reference dataset (Beck et al., 2019; Feng et al., 2018) and has the best441

agreement with the ASOS station records among all three products (not shown). Ac-442

cordingly, NCEP Stage IV dataset is used as the primary precipitation reference dataset443

in the following analysis.444

Based on the comparison of SCREAM RRM simulations at three different grid spac-445

ings (SCREAM 6.5km, SCREAM 3.25km, and SCREAM 1.625km) with observations,446

it is clear that simulations at higher horizontal resolutions appear to better represent the447

derecho. Specifically, the simulated derecho at 6.5 km resolution is underdeveloped, pro-448

ducing the smallest cold cloud shield (by ∼ 65%) and most compact cREF/precipitation449

feature. While the derechos at all three horizontal resolutions are all located upstream450

(northwest side) of the observed feature, the discrepancy between the simulation and the451

observation decreases as the resolution becomes finer. The bow-shape echo and the axis452

angle of the convective core are more qualitatively similar to observations in the 1.625453

km simulation.454

The simulation performance exhibits substantial sensitivity to the IC sources (SCREAM 3.25km,455

SCREAM ERA5, and SCREAM ERAI). This dependency has been pointed out in past456

research examining convection simulations, as summarized in section 1. Consistent with457

the results in Shepherd et al. (2021), despite the higher resolution and larger data as-458

similation volume of ERA5, the simulation initialized with ERA5 does not show signif-459

icantly better performance than the one with ERAI. However, simulation initialization460

with RAP shows significantly improved performance compared to both ERA5 and ERAI.461

Notably, Figurski et al. (2017) also showed that simulations using ERA5 produce scat-462

tered reflectivity fields that are very different from those observed. WRF simulations (WRF RAP463

and WRF NARR) are also sensitive to the IC source, with better performance appar-464

ent in WRF RAP than WRF NARR. Interestingly, despite the good performance of SCREAM 3.25km,465

the simulation initialized 6 hours earlier at 06:00 UTC (SCREAM 06UTC) shows lit-466

tle precipitation and cREF, along with a weaker cold cloud shield, indicating the high467

sensitivity to the IC source even when applying the same dataset at different initializa-468

tion times (Figurski et al., 2017).469

The SCREAM simulation with LR model configuration (SCREAM LR) is not able470

to reproduce the derecho successfully: namely, convective clouds do not form when the471

deep convective scheme is active. This is perhaps unsurprising, as previous studies have472

indicated better simulation of individual convective events in a convection-permitting473

model without a convective parameterization scheme than those in GCMs and RCMs474

(A. F. Prein et al., 2015; Fosser et al., 2015). This suggests a significant benefit comes475

from resolving convection explicitly, as the use of a convective parameterization scheme476

leads to common errors such as misrepresentation of the diurnal cycle of convective pre-477

cipitation (Dai et al., 1999; Brockhaus et al., 2008) and the underestimation of hourly478

precipitation intensity (A. Prein et al., 2013; Fosser et al., 2015; Ban et al., 2014; Gao479

et al., 2017).480
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Although Liu et al. (2022) demonstrated the discrepancy between nonhydrostatic481

and hydrostatic simulations is significant over certain hotspots in the seasonal simula-482

tion ensembles, the simulation with hydrostatic dynamical core (SCREAM H) is not sig-483

nificantly different from its nonhydrostatic counterpart in the snapshots of this short-484

term hindcast, producing remarkably similar result to SCREAM 3.25km. This suggests485

that even a hydrostatic dynamical core can simulate MCSs with comparable fidelity to486

a nonhydrostatic dynamical core, even far into the classical nonhydrostatic regime, po-487

tentially because the physics parameterizations dominate the model behaviors.488

The detailed structure of the derecho in observations is particularly well simulated489

in the SCREAM 1.625km. Specifically, the bow-shape echo of the cREF core is tilted490

in a northeast-southwest direction, forming a classic bow echo described in Fujita (1978).491

The precipitation feature (Figure 4f) displays a similar tilting shape along with a larger492

precipitating area and higher rainfall intensity in the northeast tail. A secondary clus-493

ter is found in the southwest tail with relatively low rainfall rate in the center part of494

the derecho. In contrast, the shapes of precipitating and cREF features in the WRF RAP495

simulation are aligned in a more east-west direction with the most intense rainfall show-496

ing in the northwest part of the derecho. The meridional spread in WRF RAP (∼ 1.5°)497

is about half that in the observation and SCREAM 1.625km.498

Even in the simulations with relatively better representation of the derecho (e.g.,499

SCREAM 3.25km, SCREAM 1.625km, and WRF RAP), the simulated precipitation rate500

is higher than the observed (i.e., NCEP Stage IV). These moist biases are consistent with501

past studies, such as a study of daily WRF hindcasts of monsoon convections in Moker Jr502

et al. (2018). While observational precipitation bias may be a factor here, there is no ev-503

idence to suggest this is the case.504

In Figures 2-4, it is obvious that some simulations (i.e, SCREAM ERA5, SCREAM ERAI,505

SCREAM 06UTC, SCREAM LR, and WRF NARR) are not able to capture the dere-506

cho accurately and are simply not comparable to the other simulations. Therefore, in507

the following discussions, we will only show results in the better simulations (i.e, SCREAM 6.5km,508

SCREAM 3.25km, SCREAM 1.625km,and WRF RAP). Given the clear similarity of SCREAM 3.25km509

and SCREAM H, the result from SCREAM H will also not be displayed, except when510

there is a noteworthy result.511

As mentioned in sections 1 and 2.3, our study emphasizes the assessment of the sim-512

ulated 10-m wind speeds because of its relevance to storm damage (Shourd, 2017; Shep-513

herd et al., 2021). Figure 5 shows the simulated 10-m wind speed maximum (m/s; shaded)514

in the period of 00:00 - 01:00 UTC 30 June 2012, calculated as the maximum of 15-minute515

instantaneous wind speed. The region of high wind speed in Figure 5 is wider/larger than516

the instantaneous gust front because it includes the wind swaths over an hour, captur-517

ing the movement of the derecho. The dot markers indicate the gust wind maximum (m/s;518

left panels) and wind speed maximum (m/s; right panels) calculated from 5-minute ASOS519

stations’ records. To simplify the figure, only ASOS stations with gust reports are shown520

in the left panels and right panels only show stations with wind speed maximum higher521

than 5 m/s. All simulation results are shown at native grid points without regridding522

to minimize interpolation error. The ASOS stations have the caveat that they possibly523

do not capture the highest wind speed due to their limited spatial and temporal cover-524

age. Note that the ASOS gust wind speed is generally higher than regular wind speed525

by 2-10 m/s (see section 2.2 for details).526

Compared with ASOS, SCREAM RRM performs well in simulating the observed527

10-m wind speed. The bow-shaped convective feature that produces extended swaths of528

damaging surface winds is one of the most important feature of the derecho, which is clearly529

shown in SCREAM 1.625km as a curved wind front, related to either a very strong rear-530

inflow jet or a strong downdraft (Fujita, 1978). It is obvious that the area with high wind531

speed at 3.25 and 1.625 km resolutions is significantly larger than that at 6.5 km res-532
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Figure 2. OLR (W/m2) at 00:00 UTC 30 June 2012 in (a) NCEP IR V1, (b)

SCREAM 6.5km, (c) SCREAM 3.25km, (d) SCREAM 1.625km, (e) SCREAM ERA5, (f)

SCREAM ERAI, (g) SCREAM 06UTC, (h) SCREAM LR, (i) SCREAM H, (j) WRF RAP,

and (k) WRF NARR. All datasets are remapped to 0.05° resolution. The panel with red title

denotes the reference dataset.

Figure 3. Same as Figure 2 but for cREF (dBZ). Panel (a) shows cREF in NEXRAD dataset.
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Figure 4. Same as Figure 2 but for accumulated precipitation (mm) from 00:00 - 01:00 UTC

30 June 2012. Panels (a-c) show NCEP Stage IV, IMERG, and CMORPH precipitation, respec-

tively. All datasets are remapped to 0.1°.
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Figure 5. Wind speed maximum (m/s; shaded) between 00:00 and 01:00 UTC 30 June

2012 in (a-b) SCREAM 6.5km, (c-d) SCREAM 3.25km, (e-f) SCREAM 1.625km, and (g-h)

WRF RAP. The dot markers represent the ASOS gust wind speed maximum (m/s) in the left

panels and wind speed maximum (m/s) in the right panels. The ASOS stations with wind speed

maximum lower than 5 m/s are not shown in the right panels. All simulation results are dis-

played at raw grids.

olution, consistent with previous figures where enhanced fidelity is found at finer reso-533

lution. Additionally, the wind front forward of the derecho is closest to the ASOS sites534

with wind gust reports in the SCREAM 1.625km as the derecho location is simulated535

best at the 1.625 km resolution (Figure 4f). The WRF simulation shows lower wind speeds536

than SCREAM not only in the derecho-covered area but also over the entire analysis do-537

main in general. More discussions about the simulated wind speeds and the different be-538

haviors between WRF and SCREAM will be presented in section 4.4.539

4.2 Time Evolution540

Figure 6 shows 2-hourly evolution of cREF (dBZ) from 18:00 UTC 29 June to 06:00541

UTC 30 June 2012 in the NEXRAD, SCREAM 6.5km, SCREAM 3.25km, SCREAM 1.625km,542

and WRF RAP at 0.05° resolution. We only show cREF feature associated with the dere-543

cho identified using the TempestExtremes described in section 2.3 and remove other small544

clusters. Some time slots are not displayed (e.g., 18, 20, 22 UTC in SCREAM 6.5km)545

because the cREF feature does not qualified to be identified at that time (either too weak546

or too small using the defined thresholds).547
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The modelled track of the convective line broadly matches the observed one. The548

derecho-producing system proceeds southeastward from northern Indiana across central549

and southern Ohio with a strengthening convective core, reaching western West Virginia550

by 00:00 UTC. Over Ohio, the derecho system attains its greatest organization and strength.551

A rear-inflow notch at the back edge of system, which indicates an evaporatively cooled552

strong rear-inflow jet (Grim et al., 2009; Alliss & Hoffman, 2010), is evident before and553

during the leading line’s transformation into a bow echo over Ohio. The mature bow echo554

contains two bookend vortices, generally marking a region of enhanced downdraft and555

an increased probability of stronger winds at the surface. The signature progressive bow-556

ing presentation is evident in the SCREAM simulation at 3.25 and 1.626 km resolutions.557

For a sufficiently persistent MCS, the Coriolis force eventually leads to a strengthening558

of the cyclonic (or poleward) bookend vortex and a weakening of the anticyclonic (or equa-559

torward) vortex (Przybylinski, 1995; Schenkman & Xue, 2016). Accordingly, relatively560

fast eastward propagation is favored north of the front, with slower speed to its south561

in the observation and simulations. The storm system weakens as it moves into the south-562

ern New Jersey.563

The development of the derecho from 18:00 to 22:00 UTC is significantly under-564

estimated in the SCREAM 6.5km, which is corrected at finer resolutions. The observed565

weakening (displayed as a discontinuity in the track) around 04:00 UTC and the north-566

ward jump around 06:00 UTC near New Jersey are also well reproduced by the SCREAM 1.625km.567

The location of the derecho shows roughly 2-hour delay in SCREAM 3.25km and WRF RAP,568

and larger (∼ 3-hour) delay in SCREAM 6.5km. Comparing to SCREAM 3.25km, SCREAM569

at 1.625 km resolution reduces the delay by ∼ 0.5-1 hour. Longer postponements rang-570

ing from 3-8 hours were found in Shepherd et al. (2021), dependent on the model con-571

figurations.572

All SCREAM and WRF simulations show larger cREF feature coverage than the573

NEXRAD. With that said, SCREAM 1.625km is the best ensemble simulating a nar-574

row linear core with cREF > 50 dBZ, most similar to NEXRAD, with extended spread575

in 40-50 dBZ. WRF shows significantly higher cREF than the SCREAM and NEXRAD576

by ∼ 10 dBZ, consistent with the overestimated rainfall intensity in Figure 4.577

To compare the location of the simulated derecho to the observation accurately,578

Figure 7 shows the time series of longitude (left panels) and latitude (right panels) of579

the cold cloud shield (top), cREF feature (middle), and precipitation feature (bottom)580

from 18:00 UTC 29 June to 06:00 UTC 30 June 2012 in SCREAM 6.5km (dark blue),581

SCREAM 3.25km (yellow), SCREAM 1.625km (red), WRF RAP (green), and observa-582

tion (black). The solid line represents the center of the derecho at 15-minute frequency583

for all simulations and hourly frequency for the observation. Circle and triangle mark-584

ers denote the 2-hourly maximum and minimum of the longitude/latitude, respectively.585

All simulations show western and southern biases ranging from 0-3°, associated with586

the time delay of the migration. SCREAM 1.625km provides the best simulated posi-587

tion in the zonal direction among all simulations with the eastern progressive edge of the588

derecho following the observed one. WRF RAP simulates the best location in the merid-589

ional direction while SCREAM 1.625km exhibits a more northern position by 0-0.5°.590

Figure 8 shows the time series of the cold cloud shield, cREF feature, and precip-591

itation feature areas. The dashed lines represent the raw simulation result frequency (15592

minutes) while results averaged to the observation frequency (hourly for cREF and pre-593

cipitation, and half hourly for OLR) are shown in the solid lines. The observed tempo-594

ral evolution of cold cloud shield is reproduced best by WRF RAP with the largest cold595

cloud shield present around 03:00 UTC. WRF RAP shows a similar cold cloud size to596

SCREAM 3.25km before 00:00 UTC and grows up to twice the size of SCREAM after597

00:00 UTC. SCREAM 1.625km captures the extending cold cloud shield before 23:00 UTC598
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Figure 6. 2-hourly evolution of cREF feature (dBZ) from 18:00 UTC 29 June to 06:00

UTC 30 June 2012 in (a) NEXRAD, (b) SCREAM 6.5km, (c) SCREAM 3.25km, (d)

SCREAM 1.625km, and (e) WRF RAP at 0.05° resolution. The black bold numbers mark the

hours in UTC.
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Figure 7. Time series of longitude (left) and latitude (right) of the cold cloud shield

(top), cREF feature (middle), and precipitation features (bottom) from 18:00 UTC 29 June

to 06:00 UTC 30 June 2012 in the SCREAM 6.5km (dark blue), SCREAM 3.25km (yellow),

SCREAM 1.625km (red), WRF RAP (green), and observation (black). The solid line represents

the center of the derecho at 15-minute frequency for all simulations and hourly frequency for the

observation. Circle and triangle markers denote the 2-hourly longitude/latitude maximum and

minimum, respectively.
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but shows a smaller cold cloud shield after 00:00 UTC by up to 50% than the observa-599

tion.600

All simulations overestimate the observed cREF feature size by up to four times601

while they underestimate the precipitation feature size by ∼ 50%. The precipitation fea-602

ture is significantly larger than the cREF feature by up to 10 times in the observation603

(black lines in Figures 8b-c) indicating only approximately 10% of the precipitation fea-604

ture is associated with high cREF (> 40 dBZ) whereas the rest of it has relatively low605

cREF. However, precipitation and cREF features show comparable sizes in WRF RAP606

(greens lines in Figures 8b-c) suggesting almost the entire precipitation feature is asso-607

ciated with high cREF. In the SCREAM simulations, about 50% of the precipitation fea-608

ture is associated with high cREF. The results are consistent with Figures 3 and 6 where609

the observation shows the most linear cREF area while WRF RAP shows the widest cov-610

erage of the high cREF.611

The observed cREF feature develops strongly between 18:00-20:00 UTC reaching612

its maximum coverage at 20:00 UTC, and persists until around 23:00 UTC. The precip-613

itating area keeps expanding until 00:00 UTC when it starts to shrink while the cold cloud614

shield remains extending for three more hours. Similarly, in SCREAM simulations, the615

cREF and precipitation features show their coverage maxima 1-2 hours earlier than the616

cold cloud. Despite the propagation delay (Figure 6), the largest precipitating area of617

SCREAM occurs two hours earlier than observed, associated with the early decay of the618

cold cloud shield (Figure 8a). The peak time of precipitation, cREF, and cold cloud fea-619

ture is almost simultaneous in the WRF simulation with a delayed cREF/precipitation620

feature area maximum by approximately 2.5-3 hours than the observation.621

To evaluate the precipitation intensity, Figure 9a shows time series of regional-averaged622

precipitation rate in the analysis domain (76°-88°W, 36.5°-42°N), shown as the red box623

in Figure 1c, in the simulations and NCEP Stage IV precipitation dataset. Figure 9b is624

similar to Figure 9a but averaged only over precipitating grid points with rainfall rate625

> 1 mm/day. Additionally, averaged precipitation over the derecho identified by Tem-626

pestExtremes is also examined (not shown) and implies similar results to Figure 9b. It627

is not shown considering the calculation processes in Figure 9b are much simpler and achiev-628

able for the broad research community without additional steps using TempestExtremes.629

The observed regional-averaged precipitation peak time is captured by WRF ac-630

curately in both Figures 9a and b, but the averaged precipitation magnitude over the631

precipitating grid points is approximately twice as great as the observed (Figure 9b). WRF632

has wet bias over the precipitating grids but the precipitating area (Figure 8c) is reduced633

resulting in the similar magnitudes of precipitation peaks in the regional means (Figure634

9a). While the maximum of averaged precipitation over the precipitating grid points is635

similar at three SCREAM resolutions, the time delay in the peak time is greatest in SCREAM 6.5km636

and declines at higher resolutions. SCREAM RRM simulations also show higher precip-637

itation peaks than the observation by roughly 45%.638

Figure 9c shows frequency distribution of the hourly precipitation rates at all grid639

points within the analysis domain (76°-88°W, 36.5°-42°N) during 18:00 UTC 29 June to640

06:00 UTC 30 June 2012 in solid lines. The dashed lines are the same as the solid lines641

except for applying a 2-hour forward shift in the simulations, resulting in a period of 20:00642

UTC 29 June to 08:00 UTC 30 June 2012; however, the conclusions are not sensitive to643

the 2-hour shift. WRF RAP shows the strongest wet bias, strongly overestimating the644

observed precipitation rates higher than ∼ 30 mm/day. However, WRF displays signif-645

icantly lower frequency of precipitation rates below 30 mm/day and higher frequency for646

precipitation above 50 mm/day, consistent with a smaller coverage of relatively shallow647

precipitation and an overwhelming intense precipitation core in Figure 4. The SCREAM648

RRM simulations also produce an excess of extremely high rainfall rates (> 350 mm/day)649

but show lower frequency for the rainfall rates between 100 and 250 mm/day. SCREAM650
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Figure 8. Time series of the area (103 km2) of the identified features using (a) OLR,

(b) cREF, and (c) precipitation from 18:00 UTC 29 June to 06:00 UTC 30 June 2012 in

SCREAM 6.5km (dark blue), SCREAM 3.25km (yellow), SCREAM 1.625km (red), WRF RAP

(green), and observation (black). The dashed lines represent the results at 15-minute frequency

for all simulations. The solid lines denote hourly frequency for cREF and precipitation and half

hourly frequency for OLR.
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Figure 9. (a) Time series of regional-averaged precipitation rate (mm/day) in the analy-

sis domain (76°-88°W, 36.5°-42°N), shown as the red box in the Figure 1c, from 18:00 UTC 29

June to 06:00 UTC 30 June 2012 in SCREAM 6.5km (dark blue), SCREAM 3.25km (yellow),

SCREAM 1.625km (red), WRF RAP (green), and NCEP Stage IV dataset (black). The dashed

lines represent the simulation results at 15-minute frequency and the solid lines represent the

hourly frequency. (b) is the same (a) but averaged only over precipitating grid points with rain-

fall rate > 1 mm/day. (c) Frequency distribution of hourly precipitation rates of all grid points

within the analysis domain in the period of 18:00 UTC 29 June to 06:00 UTC 30 June 2012 in

the solid lines. The dashed lines are the same as the solid lines but apply a 2-hour forward shift

for the simulations resulting in a period as 20:00 UTC 29 June to 08:00 UTC 30 June 2012. The

dots on the y axis denote the frequencies of zero precipitation.
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Table 5. Locations of three ASOS stations.

Number in Figure 1c Station ID Station Full Name State Longitude Latitude

1 KCMH COLUMBUS PORT COLUMBUS INTL AP OH 39.99139°N 82.88083°W

2 KCKB CLARKSBURG BENEDUM AP WV 39.29556°N 80.22889°W

3 KDCA WASHINGTON REAGAN AP VA 38.8483°N 77.0341°W

Table 6. Metrics derived from the OLR averaged from 18:00 UTC 29 June to 06:00 UTC 30

June 2012 in the analysis region (76°-88°W, 36.5°-42°N) in each simulation using NCEP IR V1

dataset as the reference. The calculations of the metrics are present in section 2.4. Scores in

parentheses are calculated by applying a two-hour forward shift to the simulation results (i.e., the

averaging period for the simulations changes to 20:00 UTC 29 June to 08:00 UTC 30 June 2012).

The red numbers denote the best scores in each category. BS and TS are calculated using the

threshold of 230 W/m2.

Simulation Name SCREAM 6.5km SCREAM 3.25km SCREAM 1.625km SCREAM H WRF RAP

RMSE 47.77 (39.35) 29.13 (26.43) 27.21 (25.29) 29.39 (27.69) 20.48 (17.65)

MAE 43.81 (34.61) 26.18 (22.61) 23.98 (21.46) 26.16 (23.89) 16.70 (14.15)

ME 43.81 (34.49) 22.31 (17.85) 18.86 (15.95) 21.66 (18.09) 8.18 (-0.11)

Pearson Correlation 0.89 (0.88) 0.89 (0.88) 0.88 (0.88) 0.87 (0.86) 0.88 (0.90)

Spearman Correlation 0.90 (0.86) 0.85 (0.80) 0.78 (0.78) 0.79 (0.74) 0.84 (0.82)

BS 0.20 (0.39) 0.58 (0.71) 0.73 (0.79) 0.61 (0.70) 0.83 (1.05)

TS 0.20 (0.39) 0.54 (0.64) 0.65 (0.71) 0.55 (0.61) 0.75 (0.87)

at 6.5 km exhibits a lower frequency in rainfall rates above 30 mm/day than simulations651

at 3.25 and 1.625 km, associated with the smaller precipitation feature (Figure 8c).652

Figure 10 shows the time series of wind speeds at three ASOS stations, marked by653

the blue arrows in Figure 1c with details in Table 5. The three stations are selected to654

be airport stations in the derecho propagation path, spread over three states to capture655

various stages of the derecho life cycle, and using Figure 6 as a reference. In addition,656

the three stations are confirmed to not have missing wind speed records during the anal-657

ysis period (18:00-06:00 UTC). The simulation results are shown at the closest single grid658

point to the specific ASOS station. While displaying time series at all ASOS stations is659

not feasible on a single plot, the three stations selected provide insights into the timing660

of the simulated gust fronts. Note that the ASOS station records have a high time fre-661

quency of 5 minutes and the simulation results are derived at individual grid points, caus-662

ing the high-frequency fluctuations in the time series.663

The delayed wind speed peaks representing the gust fronts are found in all simu-664

lations with reduced timing biases at finer resolution, consistent with the observed im-665

provement in timing at 1.625 km resolution (Figure 6). The timing biases are approx-666

imately 1-1.5 hours at 1.625 km resolution, 2-3 hours at 3.25 km resolution, and 3-4 hours667

at 6.5 km resolution. The magnitudes of wind speed peaks in SCREAM 1.625km and668

SCREAM 3.25km are either comparable to or larger than ASOS winds (black lines) by669

0-30%, and lower than ASOS gust speed (purple lines) by ∼ 30%. On the other hand,670

WRF RAP shows the wind speed peak lower than ASOS wind speed by 27-70% and ASOS671

gust by 56-85%.672
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Figure 10. Time series of wind speeds (m/s) in the SCREAM 6.5km (dark blue),

SCREAM 3.25km (yellow), SCREAM 1.625km (red), WRF RAP (green), ASOS gust (purple),

and ASOS wind (black) from 18:00 UTC 29 June to 06:00 UTC 30 June 2012 at ASOS station

(a) KCKB, (b) KCMH, and (c) KDCA. The time intervals of ASOS records and simulation out-

puts are 5 minutes and 15 minutes, respectively. The simulation results are shown at the closest

grid point to the specific ASOS station.
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Table 7. As Table 6 but derived from the precipitation accumulated from 18:00 UTC 29 June

to 06:00 UTC 30 June 2012 using NCEP Stage IV dataset as the reference. The last two columns

show metrics calculated using the CMORPH and IMERG precipitation datasets comparing to

the NCEP Stage IV dataset. BS and TS are calculated using the threshold of 15 mm.

Simulation/Observation Name SCREAM 6.5km SCREAM 3.25km SCREAM 1.625km SCREAM H WRF RAP CMORPH IMERG

RMSE 6.99 (7.14) 8.50 (8.48) 7.73 (7.52) 8.17 (8.07) 9.26 (9.05) 5.78 8.65

MAE 4.32 (4.37) 4.66 (4.65) 4.49 (4.34) 4.81 (4.71) 4.87 (4.78) 3.88 5.47

ME -1.73 (-1.46) -0.70 (0.67) 1.03 (0.71) 1.16 (0.96) -0.67 (-0.71) 2.89 4.56

Pearson Correlation 0.54 (0.53) 0.50 (0.51) 0.54 (0.55) 0.54 (0.54) 0.52 (0.53) 0.77 0.72

Spearman Correlation 0.70 (0.72) 0.73 (0.75) 0.71 (0.73) 0.71 (0.73) 0.73 (0.74) 0.87 0.86

BS 1.01 (1.07) 1.46 (1.48) 1.49 (1.41) 1.72 (1.67) 1.07 (1.08) 2.17 2.54

TS 0.28 (0.27) 0.23 (0.23) 0.23 (0.24) 0.24 (0.25) 0.25 (0.25) 0.30 0.28

4.3 Metrics673

Table 6 displays metrics derived from the OLR in each simulation (see section 2.4674

for the calculations of the metrics) with NCEP IR V1 dataset as the reference. The red675

number marks the best score in each category. The scores in parentheses are calculated676

by applying two-hour forward shift to the simulation results, providing better results (smaller677

biases) in all metrics except for two correlation scores.678

WRF RAP produces smaller biases in OLR than SCREAM when compared to ob-679

servations. RMSE, MAE, and ME are lowest for WRF RAP, particularly in the two-hour680

shifted ones, indicating WRF RAP simulates the OLR field better than SCREAM. It681

is notable that SCREAM at finer resolutions shows better performance (in RMSE, MAE,682

and ME) than at coarser resolutions. The positive-biased OLR indicates a lower cloud683

top along with a smaller cold cloud shield (Figure 8a) in the simulations than the ob-684

served. The differences of Pearson correlations among all simulations are minor (< 0.03).685

Interestingly, despite previous analyses and other metrics showing better performance686

at finer resolution, Spearman correlation is highest in the coarsest simulation (SCREAM 6.5km),687

possibly caused by the underestimation of the cold cloud area at finer resolutions after688

23:00 UTC (Figure 8a). BS showing values < 1 also indicates an underestimated cold689

cloud area in the simulations. WRF RAP has the best representation of the cold cloud690

shield area, as indicated by the BS closest to 1, especially in the two-hour shifted BS.691

The simulation using the H dynamical core (SCREAM H) is also listed in Table692

6. While it is not significantly different from the NH simulation in the snapshots of sec-693

tion 4.1 (Figures 2-5) and the time series in section 4.2 (not shown), we investigate whether694

the difference is more pronounced as the period is prolonged here. The H simulation shows695

slightly higher biases (< 6%) in the two-hour shifted RMSE, MAE, and ME than SCREAM 3.25km,696

but the difference is much smaller than that among other simulation ensembles. As such,697

we attribute this difference to simulation variability rather than structural uncertainty.698

Table 7 is the same as Table 6 but derived from precipitation accumulated from699

18:00 UTC 29 June to 06:00 UTC 30 June 2012. Figure 11 shows the accumulated pre-700

cipitation patterns along with two-hour shifted patterns shown in Figure S1. WRF RAP701

shows the largest biases in RMSE and MAE, related to the overestimates of precipita-702

tion (Figures 4, 9, and 11). However, the ME in WRF RAP is smallest in magnitude and703

becomes the best score among all simulations because the wet bias from enhanced pre-704

cipitation intensity is offset by the reduced precipitating area (Figures 8c and 11e). The705

ME changes from negative to positive when SCREAM resolution becomes finer and the706

precipitating area of the derecho increases (Figure 8c). The ranges of RMSE and MAE707

in the simulations are comparable to those in CMORPH and IMERG, suggesting rea-708

sonable model performance in line with obserational uncertainty. The Pearson and Spear-709
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Figure 11. Accumulated precipitation (mm) from 18:00 UTC 29 June to 06:00 UTC

30 June 2012 in (a) NCEP Stage IV, (b) CMORPH, (c) IMERG, (d) SCREAM 6.5km, (e)

SCREAM 3.25km, (f) SCREAM 1.625km, (g) SCREAM H, and (h) WRF RAP.

Figure 12. Wind speed maximum (m/s) between 18:00 UTC 29 June and 06:00 UTC 30

June 2012 in (a) ASOS gust, (b) ASOS wind, (c) SCREAM 6.5km, (d) SCREAM 3.25km, (e)

SCREAM 1.625km, and (f) WRF RAP. Only ASOS sites with gust reports during the period are

displayed. Panels (c-f) show results at the closest gird points to the ASOS locations.

man correlations with 2-hour shift do not display significant differences among simula-710

tions (with difference < 0.03). The simulations have larger areas with higher accumu-711

lated precipitation amount (> 15 mm) than observations, illustrated by BS larger than712

1, and consistent with Figure 9c. Comparing SCREAM H to SCREAM 3.25km, the H713

simulation shows worse BS, indicating the area with greater accumulated precipitation714

amount (> 15 mm) is enhanced when employing the H dynamical core.715

Figure 12 shows 10-m wind speed maximum between 18:00 UTC 29 June and 06:00716

UTC 30 June 2012 in ASOS records and simulations. Only ASOS sites with gust reports717

during the period are displayed. Figure 13 shows the histogram of wind speed maximum718

to quantify the number of stations with wind speed maximum in each 5 m/s interval.719
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Figure 13. Histogram of wind speed maximum between 18:00 UTC 29 June and 06:00 UTC

30 June 2012 in SCREAM 6.5km (dark blue), SCREAM 3.25km (yellow), SCREAM 3.25km max

(light blue), SCREAM 1.625km (red), WRF RAP (green), WRF HR (brown), WRF HR P3

(pink), WRF HR max (olive), ASOS gust (purple), and ASOS wind (black) in the analysis re-

gion.

Figures S2-S3 are the same as Figures 12-13 but with the two-hour shift, producing sim-720

ilar results.721

The wind speed maximum in SCREAM is generally between the values reported722

by ASOS gust and ASOS wind. SCREAM produces wind speeds exceeding 25 m/s at723

3.25 km and 1.625 km resolutions during approximately the first half of the derecho life724

cycle, over central Indiana and Ohio, while the wind speed maximum is lower (20-25 m/s)725

during the second half of the derecho life cycle over northern West Virginia when the dere-726

cho size and intensity decline (Figures 8 and 9). SCREAM 6.5km displays an opposite727

pattern with higher wind speeds in the second half of the derecho path, associated the728

under-development of the system before 00:00 UTC at coarser resolution (Figure 6b).729

WRF RAP shows lower wind speeds than both ASOS gust and ASOS wind speeds, with730

maximum wind speed lower than 25 m/s. This result is consistent with the WRF result731

in Shepherd et al. (2021) (see their Figure 9) where the wind speed maximum is under732

25 m/s. Given that wind damage generally occurs above 25.7 m/s and is proportional733

to the cube of the wind speed, the underestimation of 10-m wind speeds may make it734

difficult to leverage the WRF simulations to estimate wind damage during such storms.735

In Figure 13, the distribution of wind speed maximum in SCREAM 1.625km agrees736

best with the ASOS gust showing most of the stations in the range of 10-25 m/s as well737

as ∼ 15 stations with extremely high speed (> 25 m/s). None of the SCREAM simu-738

lations display the wind maximum lower than 5 m/s. As the SCREAM grid spacing de-739

creases, the histogram shifts towards being right-skewed, representing generally higher740

wind speeds. For WRF RAP, wind speed maximum higher 25 m/s is not represented.741

Further, it has twice as many stations with wind speed maximum lower than 10 m/s as742

in ASOS wind, but only 35-70% of the ASOS stations fall into categories greater than743

10 m/s.744

4.4 Sensitivity Tests of Wind Speeds745

To better understand the discrepancy between SCREAM and WRF simulations,746

in term of 10-m wind speed (Figures 5, 10, 12 and 13), we consider three factors that747

might affect the simulated wind speed and conduct additional sensitivity tests to pro-748

vide more insights into the wind speed in diverse model configurations.749
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Table 8. Regional-averaged 10-m wind speed maximum (m/s) between 18:00 UTC 29 June to

06:00 UTC 30 June 2012 in the analysis region (76°-88°W, 36.5°-42°N). The reference simulation

in the calculation of percentage is shown in the parenthesis of the last column.

Simulation Name Regional-averaged 10-m Wind Speed Maximum (m/s) Increase of Regional-averaged 10-m Wind Speed Maximum (%)

WRF RAP 8.99 –

WRF HR 9.36 4.12 (WRF RAP)

WRF HR P3 9.46 1.07 (WRF HR)

WRF HR max 10.28 9.83 (WRF HR)

SCREAM 6.5km 10.71 –

SCREAM 3.25km 15.52 –

SCREAM 3.25km max 16.47 6.12 (SCREAM 3.25km)

SCREAM 1.625km 16.62 –

Firstly, the SCREAM HR configuration (used in all SCREAM simulations except750

for SCREAM LR; Table 1) uses 128 vertical levels (92 levels below 100 hPa), while WRF RAP751

uses 45 vertical levels (all below 100 hPa), which may cause higher 10-m wind speed in752

SCREAM than WRF. A new WRF simulation run with 72 vertical levels (WRF HR;753

Table 4) is performed and shown in Figure 14a. Comparing WRF HR with Figure 12f,754

increasing the number of vertical levels does lead to higher 10-m wind speed, especially755

in central Indiana and southern Ohio. Table 8 quantifies the regional-averaged 10-m wind756

speed maximum. WRF HR has a similar wind maximum pattern as WRF RAP but with757

an increased regional-averaged wind maximum by 4.12%. The histogram of wind speed758

maximum in the new WRF HR is also shown in Figure 13. More vertical levels reduce759

the wind speed maximum in the 5-10 m/s bin by 30% and slightly increases frequency760

of high wind speed (> 25 m/s). However, the WRF HR wind speed maximum distribu-761

tion still exhibits a low bias when compared with the ASOS wind in all categories above762

10 m/s.763

Secondly, the simulated 10-m wind speed is also related to the microphysical scheme764

applied since the microphysical scheme affects the convective structure and the cold pool765

associated with it. A new simulation WRF HR P3 (Figure 14b,Table 4) is conducted766

by replacing the microphysical scheme in WRF HR with P3, which produces an insignif-767

icant increase in regionally-averaged wind maximum (1%). The P3 scheme’s impact is768

more noticeable in shifting the derecho propagation path southward by 1-3° rather than769

modifying the 10-m wind speed magnitude exclusively.770

Thirdly, both SCREAM and WRF results in the previous analyses are instanta-771

neous outputs at 15-minute frequency, which possibly do not capture the highest wind772

speed during the 15-minute period. Therefore, we further output the wind speed max-773

imum during each 15-minute period in SCREAM 3.25km and WRF HR, labeled as SCREAM 3.25km max774

(Figure 14d) and WRF HR max (Figure 14c), respectively. This change causes an in-775

crease of regional-averaged wind maximum by 9.83% in WRF and 6.12% in SCREAM776

(Table 8), becoming the most influential factor in this section to the wind speed. This777

suggests that future work involving the assessment of 10-m wind hindcast against high-778

frequency observations (such as 5-minute ASOS) should consider a higher output fre-779

quency of the wind speed than other variables. The highest wind speed in SCREAM 3.25km max780

then exceeds 30 m/s. WRF HR max display the most stations with wind speed max-781

imum above 25 m/s among all WRF simulations. Although the wind speed increases (by782

9.83%) in WRF HR max than WRF RAP, there is an underestimation of wind speed783

in every category above 10 m/s comparing WRF HR max to ASOS gust or wind (Fig-784

ure 13). Specifically, the total number of stations with wind speeds > 10 m/s is 47 in785

ASOS wind, 71 in ASOS gust, and 26 in WRF HR max (less than ASOS wind and gust786

by 45% and 63%, respectively).787
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Figure 14. Same as Figure 12 but in (a) WRF HR, (b) WRF HR P3, (c) WRF HR max, and

(d) SCREAM 3.25km max.

5 Conclusions788

Climate models have been evaluated primarily using average behavior over large789

areas or long time periods (Gleckler et al., 2008; Eyring et al., 2019). However, it is rare790

for evaluations to consider the fidelity of simulating the most extreme and high-impact791

weather phenomena. Evaluating the capability of models to reproduce poorly predicted,792

but severe historic events will facilitate further model development and comparison, en-793

able optimization of model configuration, and provide context for examining future changes794

in such events. In this work, we present one such extreme event testbed for evaluating795

climate modeling systems that operate at cloud resolving scales. The testbed focuses on796

the hindcast of the June 2012 North American derecho, which is one of the most dev-797

astating and strongly under-forecasted events in the US, with the intention of provid-798

ing a largely comprehensive suite of diagnostics and statistical metrics for model assess-799

ment and intercomparison.800

The metrics aim to assess the spatiotemporal characteristics of the derecho using801

RRM approach in SCREAM at various resolutions (Table 1) and regional WRF model802

at 4km (Table 4) against observations. Sensitivity tests address RRM grid spacing rang-803

ing from 6.5 - 1.625 km, differences between hydrostatic and nonhydrostatic dynamical804

cores, low-resolution and high-resolution model configurations, initialization time, and805

source for the ICs (i.e., RAP, ERA5, and ERAI). Besides OLR, precipitation, and com-806

posite radar reflectivity fields, this study places additional emphasis on the 10-m wind807

speed evaluation, which has not been thoroughly covered in previous studies. It is worth808

mentioning that the metrics package evaluated here is independent of the tracking method.809

The representation of the derecho is shown to benefit from the finer horizontal res-810

olutions in SCREAM, particularly at 1.625 km grid spacing, in a variety of ways includ-811

ing: cold cloud temperature and its coverage, radar reflectivity structure of the MCS,812

derecho position during the propagation, and simulated surface gust wind speed. The813

derecho-associated cold cloud in the SCREAM simulation at the coarsest resolution (6.5814

km) is significantly underdeveloped with a smaller coverage maximum by ∼ 23% and a815

longer lag (∼ 2 hours) in the peak time compared to simulations at finer resolution. These816

results reinforce the need for higher resolution in operational convection-permitting mod-817

els.818
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The simulations exhibit high dependence on the IC source and the initialization819

time, revealing the initial environment to be one of the most important factors for the820

simulation quality. Although it is impossible to determine the most superior product,821

as results may vary on a case by case basis, in this study RAP is found to be the best822

choice of IC source. Simulations initialized with RAP provide significantly improved per-823

formance in both SCREAM and WRF, compared with ERA5, ERAI, and NARR (Fig-824

ures 2-4) for this specific event. In particular, SCREAM simulations with ERA5 and ERAI825

are not able to generate a realistic organized convection pattern.826

The SCREAM HR model configuration (no deep convection scheme and more ver-827

tical model levels) produces a significantly better storm than the LR model configura-828

tion, which fails to develop an organized precipitating system over the affected region829

(Figures 2-4). The simulation with the hydrostatic dynamical core is similar to the non-830

hydrostatic one when examining individual snapshots (Figures 2-4) but shows greater831

biases (< 6%) in the averaged OLR over the 12-hour period (Table 6).832

While both SCREAM and WRF models show high pattern correlations (> 0.88)833

between the simulated OLR and the observation (Table 6), SCREAM is characterized834

by lower cloud top (indicated by 33-42% more biases in OLR RMSE; Table 6) and smaller835

cold cloud coverage by up to 50% than WRF (Figure 8), especially in the second half836

of the derecho life cycle.837

SCREAM and WRF simulations both capture the observed derecho track, but both838

produce a delay of approximately 2 hours in feature location and associated gust front839

timing (Figures 6 and 10). Among all simulations, SCREAM at 1.625 km resolution dis-840

plays the smallest time lag with an difference of ∼ 0.5-1 hour from the 3.25 km simu-841

lation. Both models overestimate the precipitation intensity over the precipitating grid842

points (up to 100% in WRF and 45% in SCREAM; Figure 9b) and the areas with com-843

posite radar reflectivity > 40 dBZ (up to 4 times in both models; Figure 8b), and un-844

derestimate the precipitating area (∼ 70% in WRF and 47% in SCREAM; Figure 8c).845

WRF yields higher wet biases (up to 20% higher in accumulated precipitation RMSE;846

Table 7 and Figure 9c) but over smaller precipitation feature by ∼ 45% than SCREAM847

(Figure 8c). The overall bias magnitudes of 12-hour accumulated precipitation in the mod-848

els fall in the range of CMORPH and IMERG compared to the NCEP Stage IV precip-849

itation, except for a higher RMSE in WRF (Table 7). Our results highlight the impor-850

tance of using multiple metrics to reveal different aspects of the simulations and errors.851

SCREAM captures the bow-shape echo with a tilted axis more realistically than852

WRF (Figure 3). Moreover, the largest discrepancies between SCREAM and WRF are853

apparent in the 10-m wind speed. SCREAM simulates a 10-m wind speed maximum in854

between ASOS wind and ASOS gust speeds and a highest wind speed above 30 m/s, sig-855

nificantly higher than WRF by ∼ 73% (Table 8). WRF underestimates the wind speed856

maximum compared to either ASOS wind (by 27-70%) or gust speeds (by 56-85%; Fig-857

ure 10) and does not produce damaging wind speeds > 25 m/s (Figure 13). Further in-858

vestigation shows that this underestimation of the 10-m wind speed in WRF could be859

partly reduced by finer vertical resolution (4.12%) or changing the analyzed output from860

the 15-minute instantaneous model result to the maximum during each 15-minute in-861

terval (9.83%; Table 8).862

Last but not least, we suggest some potential applications for future studies. SCREAM863

RRM demonstrates competitive utility for studying individual high-impact weather events864

when compared to a high-resolution regional climate model (WRF), and so could be em-865

ployed for future regional climate model simulations. We argue that it could be useful866

for assessing and tuning resolution-dependent configurations in global models and for867

short-term weather prediction at fine scales (Zarzycki & Jablonowski, 2015). We further868

expect the extreme weather testbed described here is useful for future cloud-resolving869

model intercomparisons, such as to models from the DYnamics of the Atmospheric gen-870
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eral circulation On Non-hydrostatic Domains (DYAMOND) project (Stevens et al., 2019),871

performed in similar hindcast mode. This suite of assessment will be useful in objectively872

evaluating model design choices related to extreme weather phenomenon, building cred-873

ibility for extreme event attribution, and developing physical climate storylines to ex-874

plore plausible changes of extreme events in the future.875

Appendix A Derecho tracking with TempestExtremes876

For feature tracking in the simulations and observations, we use TempestExtremes877

2.2.1 (Ullrich & Zarzycki, 2017; Ullrich et al., 2021). The exact commands employed in878

this analysis are provided here for reference.879

$TEMPESTEXTREMESDIR/DetectBlobs --in_data FLUT.nc --out DetectBlobs.FLUT.nc880

--thresholdcmd "FLUT,<,163,0" --geofiltercmd "area,>=,5000km2"881

--lonname lon --latname lat --regional882

$TEMPESTEXTREMESDIR/StitchBlobs --in DetectBlobs.FLUT.nc883

--out StitchBlobs.FLUT.nc --var "binary_tag" --outvar "id" --mintime "6h"884

--min_overlap_prev 50 --regional --lonname lon --latname lat885

Data Availability Statement886

SCREAM is available online (E3SM Project, 2022). Simulation results (including887

SCREAM and WRF) and scripts used to plot figures could be archived at Zenodo (https://888

doi.org/10.5281/zenodo.6617206).889
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X - 2 LIU ET AL.: JUNE 2012 NORTH AMERICAN DERECHO

Figure S1. Same as Figure 11 but have a 2-hour shift for simulations resulting in the period

changed to 20:00 UTC 29 June - 08:00 UTC 30 June 2012. Note that the time shift is applied

only for simulation (i.e, panels a-e) and not applied for precipitation products (i.e., panels f-h).
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LIU ET AL.: JUNE 2012 NORTH AMERICAN DERECHO X - 3

Figure S2. Same as Figure 12 but have a 2-hour shift for simulations resulting in the period

changed to 20:00 UTC 29 June - 08:00 UTC 30 June 2012. Note that the time shift is applied

only for simulation (i.e, panels a-e) and not applied for precipitation products (i.e., panels f-h).

Figure S3. Same as Figure 13 but have a 2-hour shift for simulations resulting in the period

changed to 20:00 UTC 29 June - 08:00 UTC 30 June 2012.
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X - 4 LIU ET AL.: JUNE 2012 NORTH AMERICAN DERECHO

Figure S4. Same as Figure 14 but have a 2-hour shift for simulations resulting in the period

changed to 20:00 UTC 29 June - 08:00 UTC 30 June 2012.
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