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Abstract

Burial driven recycling is an important process in the natural gas hydrate (GH) systems worldwide, characterized by complex

multiphysics interactions like gas migration through an evolving gas hydrate stability zone (GHSZ), competing gas-water-hydrate

(i.e. fluid-fluid-solid) phase transitions, locally appearing and disappearing phases, and evolving sediment properties (e.g.,

permeability, reaction surface area, and capillary entry pressure). Such a recycling process is typically studied in homogeneous

or layered sediments. However, there is mounting evidence that structural heterogeneity and anisotropy linked to normal and

inclined fault systems or anomalous sediment layers have a strong impact on the GH dynamics. Here, we consider the impacts

of such a structurally complex media on the recycling process. To capture the properties of the anomalous layers accurately, we

introduce a fully mass conservative, high-order, discontinuous Galerkin (DG) finite element based numerical scheme. Moreover,

to handle the rapidly switching thermodynamic phase states robustly, we cast the problem of phase transitions as a set of

variational inequalities, and combine our DG discretization scheme with a semismooth Newton solver. Here, we present our

new simulator, and demonstrate using synthetic geological scenarios, a) how the presence of an anomalous high-permeability

layer, like a fracture or brecciated sediment, can alter the recycling process through flow-localization, and more importantly, b)

how an incorrect or incomplete approximation of the properties of such a layer can lead to large errors in the overall prediction

of the recycling process.
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Abstract

Burial driven recycling is an important process in the natural gas hydrate (GH) systems world-

wide, characterized by complex multiphysics interactions like gas migration through an evolv-

ing gas hydrate stability zone (GHSZ), competing gas-water-hydrate (i.e. fluid-fluid-solid) phase

transitions, locally appearing and disappearing phases, and evolving sediment properties (e.g.,

permeability, reaction surface area, and capillary entry pressure). Such a recycling process is

typically studied in homogeneous or layered sediments. However, there is mounting evidence

that structural heterogeneity and anisotropy linked to normal and inclined fault systems or anoma-

lous sediment layers have a strong impact on the GH dynamics. Here, we consider the im-

pacts of such a structurally complex media on the recycling process. To capture the proper-

ties of the anomalous layers accurately, we introduce a fully mass conservative, high-order,

discontinuous Galerkin (DG) finite element based numerical scheme. Moreover, to handle the

rapidly switching thermodynamic phase states robustly, we cast the problem of phase transi-

tions as a set of variational inequalities, and combine our DG discretization scheme with a semi-

smooth Newton solver. Here, we present our new simulator, and demonstrate using synthetic

geological scenarios, a) how the presence of an anomalous high-permeability layer, like a frac-

ture or brecciated sediment, can alter the recycling process through flow-localization, and more

importantly, b) how an incorrect or incomplete approximation of the properties of such a layer

can lead to large errors in the overall prediction of the recycling process.

1 Introduction

Methane hydrates are one of the most complex natural geosystems whose formation and

dynamics is characterized by a wide range of strongly coupled and competing multi-physics

processes such as gas migration through an evolving GHSZ, rapidly changing pressure-temperature-

salinity fields, gas-water-hydrate (i.e., fluid-fluid-solid) phase transitions, locally appearing and

disappearing phases, and evolving sediment properties (like permeability, capillary pressure,

effective flow pathways, reaction surface area, etc.). Methane hydrates form an organic car-

bon repository in the earth, and have a significant contribution to the global carbon cycle. Be-

sides, methane is an important greenhouse gas with drastic implications for climate (Wuebbles

et al., 2017; Fuente et al., 2022), such as global warming, ocean acidification and de-oxygenation

(Biastoch et al., 2011; Dickens, 2003). It has been estimated that the amount of carbon trapped

in gas hydrates is more than twice the amount available in all other fossil fuels combined (Piñero

et al., 2013; Burwicz et al., 2011; Archer et al., 2009), which has led to an increasing inter-
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est in gas hydrates as a potential energy resource (Collett et al., 2009; Boswell & Collett, 2011).

Due to massive over-pressure generation, salt water freshening, and/or changes in sediment

mechanical characteristics upon destabilization, gas hydrates have also been linked to local and

regional slope failures (Grozic, 2010; Geissler et al., 2015) and other subsurface features like

pockmarks and pingos (Ostanin et al., 2013; Riboulot, 2018; Serié et al., 2012; Waage et al.,

2019), pipes and chimneys (Yoo et al., 2013; Kang et al., 2015; Paganoni et al., 2018; Crutch-

ley et al., 2021), and salt domes and diapirism (Lewis & Sager, 2012), among others. It is,

therefore, abundantly clear that gas hydrates play a crucial role in the solid Earth system.

A key question in nearly any study of the dynamics and impacts of gas hydrates is that

of its distribution: How does it form, where does it form, how did it evolve over gelogical time

scales, and how much does it exist today. Microbial biodegradation of sedimentary organic

matter in the deep biosphere generates biogenic methane gas. This generated methane migrates

upward towards the sea-floor as a free gas or by advection of the porewater. Methane hydrates

form where sufficient methane reaches the GHSZ where pressure, temperature, and salinity

allow the formation of hydrate (You et al., 2019; Schmidt et al., 2022) e.g., in the permafrost

regions and the marine sediments in the oceans and deep lakes. However the continuous sed-

imentation over geological time scales pushes this layer below the stability zone where methane

gas is released and flows back to the new GHSZ. This process of burial-driven recycling of

gas hydrates is believed to generate a high methane hydrate saturation which is economically

interesting for gas production e.g., in the Gulf of Mexico with saturation of up to 90% (Flemings

et al., 2020). Although the upward flow of methane gas into the GHSZ is, in general, blocked,

as hydrates fill pore volumes and fractures (Nimblett & Ruppel, 2003; Burwicz et al., 2017),

methane can still escape from hydrate layers within the GHSZ and reach the sea-floor (Liu

& Flemings, 2006) which has huge environmental impacts. Infact, Schmidt et al (Schmidt et

al., 2022) have shown that the gas hydrate (GH) layers act as a mechanical nozzle in the path

of upward migrating gas where, given sufficient free gas below the hydrate layer, the gas hy-

drate peak acts as the throat of the nozzle and divides the gas hydrate layer into a converg-

ing part (below the throat) where gas experiences deceleration, and a diverging part (above the

throat) where gas experiences acceleration. This GH-nozzle introduces an interesting dynam-

ics that leads to a cyclic rebuilding of the gas hydrate layers under continuous burial.

Given the vast complexity of the gas hydrate systems, the modeling of gas hydrate dy-

namics in general, and burial-driven recycling in particular, poses multiple conceptual and com-

putational challenges. One interesting challenge that is central to gas hydrate dynamics is that
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of gas-water-hydrate phase transitions. In such situations methane can dissolve into and ex-

solve from porewater leading to a locally appearing and disappearing free-gas phase, and the

gas hydrates can melt or precipitate, leading to an appearing, disappearing, and evolving solid

phase. These fluid-fluid and fluid-solid interactions occur at different time scales, e.g., methane

dissolution-exsolution is a fast process governed by vapor-liquid equilibrium on the geolog-

ical time scales, while gas hydrate phase change is a slower process where the equilibrium as-

sumption may not hold under rapid sedimentation, and is therefore, modeled as a kinetically-

controlled process (Gupta et al., 2020). These phase transitions are in permanent competition

that drives the aforementioned cyclic rebuilding of gas hydrates.

The numerical challenges related to the phase transitions are discussed in (Class et al.,

2006; Marchand et al., 2013). Different numerical techniques have been constructed to over-

come the phase transitions in multi-phase multi-components porous media models, e.g., pri-

mary variable switching (PVS) (Wu & Forsyth, 2001; Class et al., 2002), negative saturations

(Panfilov & Panfilova, 2014), method of persistent variables (Neumann et al., 2013; Huang et

al., 2015) and non-linear complementary problem approaches (Kräutle, 2011; Lauser et al.,

2011; Ben Gharbia & Jaffré, 2014). PVS schemes are implemented in many of the hydrate

reservoir simulators such as TOUGH-Hydrate (Moridis et al., 2008). Gupta et al. (Gupta et

al., 2020) extended the non-linear complementary constraints approach of (Lauser et al., 2011)

to gas hydrate systems, and showed that under rapidly switching phase states, this approach

seems to be capable of handling the gas-water-hydrate phase transitions more accurately, ro-

bustly, and efficiently compared to the more traditional PVS schemes. Furthermore, with the

help of this newly developed simulator, they were able to demonstrate the mechanics of the

hydrate nozzle and its implications for gas migration through GHSZ during continuous burial.

Conventionally, however, gas hydrate recycling has been largely studied in 1D geolog-

ical settings and the underlying sediments are assumed to be either homogeneous (Schmidt

et al., 2022) or with vertically stacked topography (You et al., 2019, 2021) that is represen-

tative of the different granular materials, debris, and organic matter that was deposited over

different geological times in the past. However, complex fault systems, fluid escape structures,

and anomalous sediment layers have been observed in the seismic profiles cross-cutting the

buried layers within the GHSZ worldwide (Paganoni et al., 2018; Portnov et al., 2019; Crutch-

ley et al., 2021; Waage et al., 2019). In fact, the formation and propagation of focused flow

pathways (pipes, chimneys) and their implications on gas migration, hydrate dynamics, and

slope stability remains an important open question. Numerically, handling such anomalous lay-
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ers is quite challenging in terms of how the underlying heterogeneity and anisotropy is phys-

ically modeled, how the numerical scheme approximates the related fluxes and any material

interfaces and/or discontinuities, and how much additional computational effort is introduced

for handling the such layers. In the past, we have used the cell centered finite volume (FV)

methods for numerical discretization of our gas hydrate models (Gupta et al., 2015, 2020) be-

cause of their inherent simplicity for implementation of non-linear complementary problems

(NCP), local mass conservation property, monotonicity, and low computational costs due to

their low order and small two-point stencils. While FV methods offer a very robust, efficient,

and reliable numerical framework for simple geological media, it is notoriously difficult to ex-

tend to unstructured meshes, fully anisotropic media, and discontinuous material interfaces.

Forms of finite element (FE) (Cheng et al., 2013; Fang, 2010) and finite difference (FD) (Yu

et al., 2017; Holder & Angert, 1982) methods are also commonly used for methane hydrate

models, but they also face challenges related to phase transitions, local mass conservation, over-

shoots and undershoots (which further complicate the phase change problem), mesh sizes and

local mesh anisotropy, and material interfaces. The discontinuous Galerkin (DG) finite element

method generalizes the FE method by omitting continuity constraints, allowing potential jumps

through numerical fluxes (Cockburn et al., 2000). Moreover, DG methods are locally conser-

vative and a consistent flux across the element interfaces can be easily constructed. Therefore,

DG methods, which are generalization of both FV and FE methods, appear to be more suit-

able for the numerical solution of the methane hydrate model not only because it can handle

complex geometries and meshes (including hanging nodes), full material anisotropies, and jumps

across material interfaces in a natural manner without additional computational overheads, but

also because it preserves the local mass conservation property of the FV method while at the

same time provides higher order approximations like FE methods. Moreover, DG schemes of-

fer massive parallelization capability (Bey et al., 1996), which is very important for practical

applications. In this manuscript, we, therefore, present a DG-based numerical scheme for our

gas hydrate model, extended with the NCP-based semi-smooth Newton solver to handle the

inequality constraints related with the phase transitions. In Section 2, we present the methane

hydrate model based on (Gupta et al., 2020). In Section 3, we outline our numerical algorithm

based on the DG discretization scheme summarized in the Appendix A. Finally, in Section 4,

we present our numerical results. Firstly, we validate the numerical scheme and its implemen-

tation by considering a 1D scenario of burial-driven recycling that was analyzed in (Gupta et

al., 2020), and secondly we simulate synthetic 2D scenarios of burial-driven recycling with
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different configurations of anomalous anisotropic high-permeability layers in the path of up-

ward migrating gas. With these numerical examples, we demonstrate the numerical capabil-

ities of our DG-scheme, and also highlight the necessity of handling such layers with preci-

sion and care.

2 Mathematical model

We consider the gas hydrate model developed by Gupta et al.,(Gupta et al., 2020). This

model is based on the theory of porous media and accounts for the following multiphysics pro-

cesses: a) Dynamic evolution of the GHSZ due to changes in thermodynamic pTS states, b)

migration of dissolved and gaseous methane through evolving GHSZ, c) rate-based gas hy-

drate phase transitions, d) exsolution-dissolution of methane in pore-water, and associated ap-

pearance and disappearance of free gas phase, e) thermal effects, including the heat of hydrate

phase change, f) salinity changes, including feedbacks on methane solubility as well as hy-

drate stability, and g) changing sediment properties due to changes in pore-voids due to hy-

drate phase changes. A detailed model description including underlying assumptions can be

found in (Gupta et al., 2020). For completeness, a summary of the main governing and con-

stitutive equations is presented in Table 1b-1c. We show the functional dependencies of the

model parameters in Table 1d.
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Table 1: Summary of Mathematical Model

Preliminaries
Let Ω be a bounded domain with Lipschitz boundary in Rd, d = {1, 2}. ∂ΩD and ∂ΩN denote

the Dirichlet and Neumann parts of the boundary respectively and T := [0, tend] denotes the

time interval. Subscript β ∈ {h, g, w} denotes three pore-filling phases (gas(g), water(w) and

hydrate (h)), subscript α ∈ {g, w} denotes two fluid phases (gas(g), water(w)) and superscript

κ ∈ {M,H, c} denotes three components (Methane(M ), Water(H) and salts(c)) in a porous

medium. We introduce the following functions as model variables,

sβ : Ω× T −→ [0, 1] Saturation of phase β

χκα : Ω× T −→ [0, 1] Mole fraction of component κ in phase α

pα : Ω× T −→ R Pore-pressure distribution of phase α

T : Ω× T −→ R Temperature

(1)

Let U be the vector of model primary variables, which is some subset of the above introduced

functions.

(a) Summary of mathematical model, preliminaries

Governing Equations

Mass balance for each

component κ = M,H, c

Aκ(U) :=
∑
α

∂t
(
φ ρα χ

κ
α sα

)
+
∑
α

∇.
(
ρα χ

κ
α vα

)
+
∑
α

∇.
(
φ sα J

κ
α

)
− ġκ = 0, in Ω× T (2)

Mass balance for hydrate-

phase
Ah(U) := ∂t

(
φ ρh sh

)
− ġh = 0, in Ω× T (3)

Energy balance

Ae(U) := ∂t
(
(1− φ) ρs us + φ

∑
β

ρβ uβ sβ
)

−∇.
(
ktheff∇T

)
+
∑
α

∇.
(
ρα hα vα

)
− Q̇h = 0, in Ω×T (4)

NCP related to appearance-

disappearance of free-gas

phase

Ancp1(U) := sg −max
{

0, sg − 1 +
∑
κ

χκg
}

= 0 in Ω×T,

(5)

NCP related to appearance-

disappearance of pore-water

phase

Ancp2(U) := sw −max
{

0, sw − 1 +
∑
κ

χκw
}

= 0 in Ω×T,

(6)

(b) Summary of mathematical model, governing equations
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Closure and constitutive relationships

Closure relationships For

each α

∑
β

sβ = 1 (7)

∑
κ

χκα = 1 if sα > 0 or
∑
κ

χκα < 1 if sα = 0 (8)

Phase velocities based on

Darcy’s law

vα = −Kkrα
µα

(∇P − ραg)

with K = K0 (1− sh)
5m+4

2m ,

krw = s
2+3λ
λ

we , krg = (1− swe)2
(
1− s

2+λ
λ

we

)
and swe =

sw −
∑
α Sαr

1− sh −
∑
α Sαr

(9)

Diffusive solute flux based

on Fick’s law

Jκα = −τDκ
αρα∇χκα s.t.,

∑
α

Jκα = 0 (10)

Capillary pressure based on

Brooks-Corey model
pg − pw = pc = P0 s

−1/λ
we (1− sh)

−mλ−1
mλ (11)

Hydrate phase change

kinetics

ġM = krArsM
M (pe − pg) , ġH = ġMNh

MH

MM
,

ġh = −ġM Mh
MM

, Q̇h =
ġh
Mh

(a1 + a2T ) (12)

Vapour-Liquid Equilibrium

(VLE)

Henry’s law: zMχMg pg = HM
w χMw (13)

Raoult’s law: χHg pg = PHsatχ
H
w (14)

(c) Summary of mathematical model, closure and constitutive relationships

List of model parameters
Mκ →Molar masses ; ρβ (pβ , T, χ

c
w)→ phase densities; µα (pα, T )→ fluid dynamic vis-

cosities; Dκ
α (pα)→ Fickian diffusion coefficient of component κ in fluid phase α; τ (x)→

sediment tortuosity; K0 (x)→ absolute permeability tensor; Sαr(x) → residual phase satura-

tion; λ (x)→ material parameter related to sediment grain-size distribution; 0 < m (x) ≤ 3→

material parameter related to sphericity of hydrate growth; P0 (x)→ capillary entry pressure;

kr → intrinsic reaction rate of hydrate phase change; Ars (x, sβ)→ reaction surface area avail-

able for hydrate phase change; pe (T, χcw)→ hydrate equilibrium pressure; a1, a2→ empirical

constants related to heat of hydrate phase change; HM
w (pw, T, χ

c
w)→ Henry’s solubility coef-

ficient for methane gas in water; PHsat (pg, T, χ
c
w)→ saturated vapour pressure; and zM (pg, T )

→ compressibility factor for methane gas, evaluated using Peng-Robinson equation of state.

We assume that χcg = 0, ġc = 0. For brevity of presentation, we only show the functional

dependencies of the model parameters. The exact functional relationships can be found in detail

in (Gupta et al., 2020).

(d) Summary of mathematical model, list of model parameters
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To solve the 7 governing equations (2-6), we choose from the set of all model variables

(1),

U :=
(
pw, T, sg, sh, χ

M
w , χ

H
g , χ

c
w

)
=
(
U1,U2, ...,U7

)
as the primary variables.

Let C = {M, H, h, c, e, ncp1, ncp2} be the set of indices of the corresponding

equations (2-6). We remark that the number of equations is equal to the number of primary

variables and thus after discretization we obtain a quadratic system matrix. Moreover, let ∂ΩDi ⊆

∂Ω and ∂ΩNi ⊆ ∂Ω be the corresponding Dirichlet and Neumann boundary conditions for

Ui.

Then, we have the following nonlinear problem,

Problem 1. Find U : Ω× T −→ R7 such that

A(U) := [Aι(U)]ι∈C = 0 in Ω× T,

U(x, 0) = U0 in Ω,

Ui(x, t) = UD
i on ∂ΩDi × T,

∇Ui.~ni = UN
i on ∂ΩNi × T,

(15)

where U0 , UD
i and UN

i are given functions.

Note that this problem is composed of a strongly coupled and highly nonlinear system

of differential algebraic system of equations with four partial differential equation (2,4), one

ordinary differential equation (3), and two algebraic constraints (5-6).

3 Numerical Algorithm

Problem (1) is discretized in space using a DG method of order q defined on a quadri-

lateral mesh with Nh elements. A fully Implicit Euler (IE) method is used to discretize the ODE

system resulting from the spatial DG discretization. A brief description of the discretization

scheme is given in Appendix (A). The resulting nonlinear residual equations can be represented

in compact form as follows, (A22),:

R(Un+1,Un) = 0, Un+1, Un ∈ RNh , (16)

where Un is the solution vector at time tn.

The nonlinear system (16) is linearized using a semi-smooth Newton solver, see (Wohlmuth,

2011) and references therein, which ensures that the rapidly switching phase states due to phase
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transitions remain consistent within each Newton step. Time step sizes ∆tn are adaptively ad-

justed according to heuristical rules based on the Newton performance, i.e., ∆tn increases by

20% if the Newton method converges in less than 5 iterations, decreases by 20% if the New-

ton method converges in more than 8 iterations, remains unchanged if the number of iterations

of the Newton method is between 5 and 8, compared to ∆tn−1. If the Newton Solver does

not converge within 10 iterations, then we redo the time step with a step length of ∆tn
2 .

In the following, we outline our numerical algorithm for solving Equation (16). U0 is

the initial solution vector, k is the Newton iteration superscript, and J (Uk,n) is the Jacobian

matrix of the residual vector R at Uk,n. Moreover, the algorithm contains the following nu-

merical parameters: ∆tmax,∆tmin → maximum and minimum time-steps allowed for the adap-

tive time-stepping; tol → maximum error accepted for the residual functional R; kmax → max-

imum number of Newton steps considered at each time-step; k1, k2 → number of newton steps

to adapt time-step sizes.

The numerical algorithm 0 is implemented using the software framework DUNE-PDElab

(Bastian, 2010), version 2.7.0, (https://www.dune-project.org/modules/dune

-pdelab/). To solve the linear system in line (8) of the algorithm, we use an in-built bicon-

jugate gradient stabilized method (BiCGSTAB), (Blatt et al., 2016), as iterative solver for the

linearized system. In all numerical examples presented in this manuscript, the parameters of

the DG scheme and the numerical algorithm are chosen as

kmax = 10, k1 = 4, k2 = 8, tol = 10−6,

σp = σs = σx = σT = 10, Θ = 0.

(17)

–10–
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Algorithm 0: Newton Method, Adaptive Time Control

Input: ∆tmax > ∆t0 > ∆tmin > 0, tol > 0, kmax, k1, k2 ∈ N, U0

Output: Un, n = 1, 2, 3, · · ·

1 n← 0,

2 While tn+1 ∈ T do
{

3 if ∆tn < ∆tmin do {

4 stop . change the discretization parameters, see Appendix (A)

5 }

6 k ← 0, Uk,n+1 ← Un . initializing Newton method

7 While ‖R(Uk,n+1)‖ > tol do
{

8 Solve J (Uk,n+1)Ek = −R(Uk,n+1) . linearization

9 Uk+1,n+1 ← Uk,n+1 + Ek

10 k ← k + 1

11 if k > kmax do {

12 ∆tn ← (0.5×∆tn) . reducing time step size

13 restart from (3)

14 }

15
}

16 if k < k1 do {

17 ∆tn+1 ← (1.2×∆tn) . increasing time step size

18 }

19 if k2 < k ≤ kmax do {

20 ∆tn+1 ← (0.8×∆tn) . reducing time step size

21 }

22 Un+1 ← Uk,n+1

23 n← n+ 1

24
}

4 Numerical Results

Our main motivation for the development of this new simulation framework based on

the DG method arose from the need for accurate and robust handling of the multiphysics dy-

namics of the MHR problems in complex geological media, especially in relation with large

local anisotropy and material heterogeneities. Our existing simulation environment (Gupta et
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al., 2020) is based on a finite volume based numerical scheme which offers many advantages

like being fully locally mass-conservative, monotonic (i.e., no overshoots and undershoots, even

with coarse mesh), conceptually simpler (in terms of implementation of active/in-active sets

related with the semi-smooth Newton method), and computationally cheaper (due to low or-

der and therefore fewer degrees of freedom). However, it has a major limitation when the sub-

surface properties show large local anisotropies and other complex material properties such

as cross-cutting features like fractures and brecciated layers. With that in mind, we present here

two numerical examples: 1) Example 1 considers a simplified 1D MHR scenario in a fully

homogeneous medium with continuous burial at a constant rate. This example is used as a bench-

mark to validate the implementation of our DG scheme against our FV simulator, and 2) Ex-

ample 2 simulates MHR scenarios in a more complex 2D setting where two different config-

urations of idealized anomalous anisotropic material layers are considered in the GHSZ. The

goal of Example 2 is to demonstrate the capability of our simulator in handling such complex

sediment structures, and to highlight the impacts on prediction accuracy that can arise from

incomplete and/or inaccurate approximation of the properties of these complex sediment struc-

tures.

Example 1. Validation scenario: MHR in a homogeneous domain

This scenario, developed and analyzed in (Gupta et al., 2020), is based on the geolog-

ical setting of a buried channel-levee (BCL) complex in the Danube paleo delta (Black Sea)

that is believed to have deposited its levees between 320 and 75 kilo-annum before present

(ka BP) (Zander et al., 2017). Here, we simulate how a continuous deposition of sediment lay-

ers over the past 300 ka could have affected the MHR though the gas hydrate stability zone

(GHSZ). Hence, the initial setting is based on the paleo conditions existing at 300 ka BP, and

the top of the computational domain is pinned at the corresponding paleo seafloor. We con-

sider a 1D domain Ω = [−500, 0]. The problem schematic is shown in Figure 1.

–12–
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Figure 1: Problem setting for Example 1, recreated from . left: The initial state of the system and

the corresponding hydrate layer inside the GHSZ, t = t0 = 0 (i.e., 300 ka BP). right: The state of

the system at t = tn > 0, indicating how the GHSZ shifts as a result of sedimentation over time.

Initial and boundary conditions are specified in Table 2. For the prescribed paleo pTS

conditions, the base of the GHSZ (bGHSZ) (i.e., depth at which pe = pg) lies at 400 m be-

low seafloor (mbsf). At t = 300 ka BP, we assume that there is no free gas anywhere in the

domain, and methane hydrate is located in the interval [320 , 400] mbsf, directly above the bGHSZ.

Furthermore, we assume that the deposition of the sediment layer at z = 0 (i.e., paleo seafloor)

occurs with constant sedimentation rate vs,z = 1mm/year over a period of 300 ka (i.e. from

300 ka BP to present day).

–13–



manuscript submitted to JGR: Solid Earth

Initial conditions t = 0
pw = 15MPa+ ρwg(zsf − z)
T = 4◦ C + dzTG(zsf − z)
sg = 0

Ω = [−500, 0] χcw = 0.0096
χMw = 0
χHg = χHg,sat(pg, T )

−400m ≤ z ≤ −320m sh = 1.2( z+320
−400+320 )( z+400

−320+400 )
−400m ≥ z or z ≥ −320m sh = 0

Boundary conditions x ∈ ∂Ω, t > 0

pw = 15MPa+ ρwgvs,z(tn + ∆t)
z = zsf T = 4◦ C + dzTGvs,z(tn + ∆t)

sg = 0
χcw = χcw|t=0

vw = 0
vg = 0

z = −500 ∇χcw= 0
∂zT= dzTG

Table 2: Initial and boundary conditions for Example 1, dzTG = 35◦ C/km, vs,z = 1mm/year

As sedimentation occurs, more and more sediment layers accumulate above the paleo

seafloor, leading to an increasing pressure and temperature at the paleo seafloor boundary. These

changes cause the bGHSZ to shift upwards and destabilize the overlying gas hydrate layer. As

gas hydrates melt, methane is released, which in sufficiently high quantity can lead to a free-

gas phase to form and accumulate at the base of the gas hydrate layer. Schmidt et al., 2022,

(Schmidt et al., 2022), have shown that gas migration through the GHSZ in this scenario is

highly dynamic and occurs in cycles. The gas hydrate layer acts as a converging-diverging noz-

zle in the path of upward migrating free gas.

In Figure 2, snapshots of methane hydrate dissociation → gas migration → hydrate ref-

ormation is shown from 300 ka BP to present day. To be consistent with the mathematical model,

Problem 1, we consider sedimentation time period of 300 ka from t = 0 to t = 300 Kyr

where t = 0 corresponds to the 300 ka BP.

The process of gas migration through GHSZ and MHR can be summarized as follows:

Free gas phase appears below the melting gas hydrate layer and flows upwards due to buoy-

ancy. However, as the gas flows through the hydrate layer, the gas velocity continuously de-

creases because of decreasing permeability due to increasing hydrate saturation (converging
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part of the hydrate nozzle). Once the gas phase passes the point with maximum hydrate sat-

uration sh (throat of the hydrate nozzle), the gas velocity starts to increase (diverging part of

the hydrate nozzle). As gas escapes the hydrate layer into the overlying GHSZ, reformation

of methane hydrate starts. The new hydrate layer continuously grows consuming the free gas

provided by the dissociation of the previous methane hydrate layer, as shown in Figure 2.

Figure 2: MHR process from t = 0 to 300 Kyr for Example 1. The horizontal dashed lines show

the base of GHSZ. q = 2, h = 0.5(m)

While the increase of temperature by the geothermal gradient has a global effect on the

equilibrium pressure, salinity has a local effect on the equilibrium pressure. This is due to the

fact that heat diffuses much faster than salt (see Figure 3).
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Figure 3: Upward shifting of GHSZ of Example 1. left: Gas pressure (dashed), Equilibrium pres-

sure (solid); middle: Salinity; right: Temperature. The horizontal dashed lines show the base of

GHSZ. q = 2, h = 0.5(m).

Figure 4 shows linear to fourth order approximation of the solution of Example 1. The

reference solution obtained on a fine mesh, h = 0.25 (m), and order q = 4 is plotted with

the dashed line. To reduce the spurious oscillations, we implemented a linear polynomial re-

construction for the gas saturation based on the weighted mean derivatives of the solution in

the neighboring elements (Frerichs & John, 2021). In Figure 5, snapshots of gas saturation are

plotted for h = 0.5 and q = 1 at t = 100 Kyr with and without slope limiter. We chose

t = 100 Kyr, because as it is shown in Figure 2, the maximum gas saturation occurs around

t = 100 Kyr and the escaping of gas from hydrate layer leads to oscillatory sharp front. It

shows that sharp gradients of gas saturation are avoided by implementing the slope limiter.
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Figure 4: Linear to forth order approximation of the solution of Example 1, t = 100 (Kyr).

Figure 5: Slope limiter, from , implemented for gas saturation for the solution of Example 1, t =

100 (Kyr), q = 1, h = 0.5(m) .
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In Figure 6, the convergence behavior of the nonlinear solver for a mesh with h = 0.125(m)

is shown. Time step sizes drop when gas phase appears. However, they mostly remain big-

ger than 10 years, while in (Gupta et al., 2020) Figure 4.b, Gupta et al., compared the time

step size of NCP and PVS approaches which showed that even for the bigger mesh size h =

0.3125(m) the maximum time step size of 10 years was scarcely achieved.

Figure 6: Numerical results for Example 1, the evolution of the time-step size during the simula-

tion, q = 1, h = 0.125(m). Time step sizes drop when gas phase appears, however, they mostly

remain bigger than 10 years,

Example 2. 2D scenario: Gas flow through GHSZ with heterogeneous material property

Here, we extend the above 1D scenario by introducing an anomalous material layer with

high-permeability and large anisotropy within the paleo GHSZ. The problem schematic is shown

in Figure 7, and the initial and boundary conditions are similar to Example 1 and for com-

pleteness are given in Table 3. Two different configurations are considered for the permeabil-

ity tensors of the anomalous material layer, as shown in Figure 7, where K2 is a rotation of

a by KF scaled K1 and θ is the rotation degree of K1.

K1 =

[
K0 0
0 K0

]
, K2 =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
KFK0 0

0 KFK0

]
, (18)

K0 is the absolute scalar permeability of the background sediment and KF is a scaling fac-

tor for the absolute permeability of the anomalous layer.
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Initial conditions t = 0
pw = 15MPa+ ρwg(zsf − z)
T = 2.2◦ C + dzTG(zsf − z)
sg = 0

Ω = [0, 400]× [−500, 0] χcw = 0.0096
χMw = 0
χHg = χHg,sat(pg, T )

−460m ≤ z ≤ −380m sh = 1.2( z+380
−460+320 )( z+460

−380+460 )
−460m ≥ z or z ≥ −380m sh = 0

Boundary conditions x ∈ ∂Ω, t > 0

pw = 15MPa+ ρwgvs,z(tn + ∆t)
z = zsf T = 2.2◦ C + dzTGvs,z(tn + ∆t)

sg = 0
χcw = χcw|t=0

vw = 0
x = 0 or x = 400 or z = −500 vg = 0

∇χcw= 0
z = −500 ∂zT = dzTG

Table 3: Initial and boundary conditions for both configurations case-1 and case-2 of Example 2,

with regional thermal gradient dzTG = 35◦ C/km and burial velocity vs,z = 1mm/year.

(a) Heterogeneous domain, θ = 0◦ (b) Heterogeneous domain, θ = 45◦

Figure 7: Schematic setting of Example 2 showing the anomalous anisotropic layer where vg is

the gas velocity, K1 and K2 are permeability tensors.
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In the first configuration, the degree of rotation is 0◦. This is the simplest form of anisotropy,

and the only form that can be handled by our finite volume based numerical solver with lin-

ear two-point flux approximations. This form, however, ignores the strongly directional prop-

erties of such a layer (e.g., flow through fractures). The second configuration accounts for this

by rotating the permeability tensor along the layer axis. Such form of anisotropy (with full

tensor) cannot be handled with a linear two-point flux approximation in a finite volume scheme,

and instead, requires advanced methods like multi-point flux approximations or non-linear two-

point flux approximations, both of which are computationally more expensive and conceptu-

ally more complicated. However, in DG discretization, any form of material anisotropy can

be handled easily without additional overheads. The direction of the gas velocity depends on

the permeability tensor of the layers, as schematically shown in Figure 7. When gas reaches

the high permeable layer in case of the rotated permeability tensor, it will flow dominantly along

the layer, bypassing the regions above the layer, as shown in Figure 7b.

Figure 8 shows snapshots of the MHR and gas migration processes for configuration with

θ = 0◦, and Figure 9 shows snapshots for the configuration with θ = 45◦. Notice how in

the former, more gas is transported to the region above the anomalous layer and a thicker hy-

drate layer with higher saturation develops, while in the latter, gas is completely diverted through

the anomalous layer, and the gas migration through the GHSZ is fully localized within a fo-

cused flow channel that looks strikingly similar to the chimney-like fluid escape structures ob-

served in seimic profiles, see (Crutchley et al., 2021; Waage et al., 2019). Notice also that the

gas ascent towards the seafloor is much faster in the latter configuration compared to the for-

mer. What is especially interesting is that even though the anomalous layer has the same ge-

ometry and same heterogeneity in both configurations, the gas migration shows completely dif-

ferent behaviour due to the nature of the anisotropy. These idealized scenarios clearly demon-

strate how the approximation of the properties of the complex sediment structures can lead to

remarkably large deviations in the system dynamics.
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(a) t = 65 Kyr (235 ka BP)

(b) t = 90 Kyr (210 ka BP)

(c) t = 150 Kyr (150 ka BP)

(d) t = 230 Kyr (70 ka BP)

Figure 8: Numerical results for case-1 of Example 2. The figure shows snapshots of (from left to

right): GHSZ, sh, sg, χcw within the domain of interest Ω = [0, 400] × [−500, 0] at different

times. Note, for GHSZ, a value of 1 indicates an unstable zone, and 0 indicates a stable zone.
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(a) t = 65 Kyr (235 ka BP)

(b) t = 75 Kyr (225 ka BP)

(c) t = 85 Kyr (215 ka BP)

(d) t = 90 Kyr (210 ka BP)

Figure 9: Numerical results for case-2 of Example 2 with one heterogeneous layer. The fig-

ure shows snapshots of (from left to right): GHSZ, sh, sg, χcw within the domain of interest

Ω = [0, 400] × [−500, 0] at different times. Note, for GHSZ, a value of 1 indicates unstable zone,

and 0 indicates stable zone. Strong anisotropy leads to development of focused gas flow.
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In fact, the development of focused gas flow in Figure 9c is a particularly interesting re-

sult with direct implications for real world scenarios. For example, seismic data of the gas hy-

drate system in New Zealand’s southern Hikurangi subduction margin shows a network of nor-

mal faults lying within the GHSZ (Crutchley et al., 2021). Data shows a broad zone of both

negative- and positive-polarity reflections (interpreted as sediment layer with coexisting free

gas and gas hydrate). This zone lies directly beneath sub-vertical gas-flow conduits (possibly

a combination of gas-charged normal fault and gas pipe/chimney), and extends up to the base

of the regional GHSZ. In their analysis of this data, Crutchley et al. (2021) highlight the im-

portance of considering the structural heterogeneity within GHSZ and in particular, the im-

pact of normal faults on the gas migration through the GHSZ. Similarly, high resolution 3D

seismic data from the Storfjordrenna gas hydrate pingos field in northwestern Barents Sea shows

that the pingos lie on top of gas chimneys that are connected to inclined faults within the un-

derlying free gas and hydrate?bearing sedimentary rocks (Waage et al., 2019), highlighting once

again the relationship between gas hydrate dynamics and regional fault system. Our numer-

ical scheme capture this dynamics quite well and results illustrate the role of structural het-

erogeneity on dynamics of gas hydrates and gas migration through GHSZ. Moreover, our re-

sults emphasize the dramatic deviations that can appear in simulated system behavior if the

structural heterogeneities are not appropriately handled.

5 Conclusion

Natural gas hydrate systems are characterized by strongly coupled and highly dynamic

multiphysics interactions that require sophisticated numerical schemes to capture the system

behavior accurately and robustly. A particular challenge is related to the complex structure of

the geological subsurface. Classically, problems like burial driven recycling are studied in ho-

mogeneous sediments, or sediments with a layered stratigraphy that follows the paleo and present

seafloor topographies. Existence of strongly anisotropic anomalous layers with large contrasts

in properties within the gas hydrate stability zone can lead to significant deviations in the sys-

tem dynamics. An accurate prediction of these deviations is critical for estimating the present

day geological carbon repositories, response of hydrate-bearing sediments to changing envi-

ronmental and climate stressors, and their geomechanical stability in response to natural and

anthropogenic activities. In this manuscript, we present a new numerical scheme based on the

DG method for our methane hydrate model (Gupta et al., 2020). The motivation for the de-

velopment of this new numerical scheme was to enhance the flexibility compared to FV ap-
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proaches so that we can handle the structural complexities of the sediments more accurately,

and therefore, be able to consider more realistic geological settings. The choice of the DG scheme

was specifically inspired by the fact that it is locally mass conservative (like the finite volume

method on which our earlier simulators are based), and can approximate the fluxes in anisotropic

fields more generally without additional overheads (like larger stencils that are needed for ex-

tending finite volume schemes with methods like multi-point and nonlinear two-point flux ap-

proximations in order to capture material anisotropy). Here we show that a) the semi-smooth

Newton solver for handling gas-water phase transitions performs well with a DG based dis-

cretization, b) the presented DG scheme is able to capture the multiphysics dynamics of the

methane hydrate systems accurately, and c) the presented DG scheme is able to accurately cap-

ture the gas migration and hydrate recycling processes through strongly anisotropic materi-

als. We also demonstrate that layer properties influence sensitively the numerical simulation

results and incomplete knowledge can result in very large prediction errors of the recycling

process.
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Appendices
A Discontinuous Galerkin Method

In this section we present a discontinuous finite element method for Problem 1. In the

following, all functions and parameters are assumed to be non-dimensional. The domain, Ω ⊂

Rd, will be partitioned into quadrilateral elements Ωl ∈ Th where Th is a mesh of the do-

main and l = 1, ..., |Th|. Broken Sobolev spaces and Bochner spaces can therefore be writ-

ten as

H1(Ω, Th) =

{
v ∈ L2(Ω)

∣∣∣ v|Ωl ∈ H1(Ωl), ∀Ωl ∈ Th

}
,

H1
b(Ω, Th) =

{
v ∈ H1(Ω, Th)

∣∣∣ 0 ≤ v ≤ 1 a.e. in Ω

}
,

C(T;H1(Ω, Th)) =

{
v : T −→ H1(Ω, Th)

∣∣∣ v is continuous

}
.

(A1)

F is called an interior interface if |F | 6= 0 and there exist Ω−F and Ω+
F in Th such that F ⊆

Ω−F ∩Ω+
F . nF is the unit normal vector to the interface F and the direction is arbitrary but
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fix. Let FI be the set of all interior interfaces. Similarly, let FB = FD∪FN be the set of

all the boundary faces including Dirichlet FD and Neumann FN boundary faces. Let F ∈

FI and F ⊆ Ω−F ∩ Ω+
F then ∀v ∈ H1(Ω, Th), we introduce

v−
F

= v|
Ω
−
F

, v+
F

= v|
Ω

+
F

{v}
F

=
1

2
(v−
F

+ v+
F

), [v]
F

= v−
F
− v+

F

(A2)

Moreover, the definitions for all boundary faces has to be adopted in a proper way. In the fol-

lowing, we consider flux continuity on the interfaces, i.e.,

[∇v]
F
.nF = 0, (A3)

Figure A1: Two neighboring cells with F as common interface

therefore, ∀F ∈ FI and ∀u, v ∈ H1(Ω, Th), we have

nF .∇u−F v
−
F
− nF .∇u+

F
v+
F

= nF .{∇u}F [v]
F

+ nF .[∇u]
F
{v}

F
= nF .{∇u}F [v]

F
. (A4)

Let V = C(T;H1(Ω, Th)) be the Bochner space for pw, T and Vb = C(T;H1
b(Ω, Th)) be

the Bochner space for sg, sh, χMw , χ
H
g , χ

c
w, then ∀i ∈ C, we consider the following function-

als to define variational formulation for Problem 1,

bi : V2 × V5
b ×H1(Ω, Th) −→ R ,

ai : V2 × V5
b ×H1(Ω, Th) −→ R ,

aσ,i : V2 × V5
b ×H1(Ω, Th) −→ R ,

li : V2 × V5
b ×H1(Ω, Th) −→ R ,

(A5)

Thus, variational formulation for Problem 1 can be written as follows

Problem 2. (Variational Formula) Find U ∈ V2 × V5
b such that ∀v ∈ H1(Ω, Th) and ∀i ∈

C

∂tb
i(U; v) + ai(U; v) + aσ,i(U; v) = li(U; v) + aσ,iD (U; v) (A6)
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hold, where for κ = M, H, c

bM (U; v) :=
∑
Ωl

(
φρw χ

M
w sw + φρg χ

M
g sg, v

)
Ωl
,

aM (U; v) := −
∑
Ωl

(
ρwχ

M
w vw + ρg χ

M
g vg,∇v

)
Ωl

−
∑
Ωl

(
φ sw JMw + ρg sg J

M
g ,∇v

)
Ωl

+
∑

F∈FI∪D

({
ρw χ

M
w vw + ρg χ

M
g vg

}
.n , [v]

)
F

−Θ
({
ρw χ

M
w K

krw
µw
∇v
}
.n , [pw]

)
F

+
∑

F∈FI∪D

({
φ sw JMw + φ sg J

M
g

}
.n , [v]

)
F

+
∑
F∈FN

(
(ρw χ

M
w vw + φ sw JMw + ρg χ

M
g vg + φ sg J

M
g ).n , v

)
F
,

aσ,M (U; v) :=
∑

F∈FI∪D

(
σp [pw], [v]

)
F
, aσ,MD (U; v) :=

∑
F∈FD

(
σp p

D
w , v

)
F
,

lM (U; v) :=
∑
Ωl

(ġM , v)Ωl ,

(A7)

bh(U; v) :=
∑
Ωl

(
φ ρh sh, v

)
Ωl
,

ah(U; v) := 0 ,

aσ,h(U; v) :=
∑
F∈FI

(
σs [sh], [v]

)
F
, aσ,hD (U; v) := 0,

lh(U; v) :=
∑
Ωl

(ġh, v)Ωl ,

(A8)
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bH(U; v) :=
∑
Ωl

(
φρw χ

H
w sw + φρg χ

H
g sg, v

)
Ωl
,

aH(U; v) := −
∑
Ωl

(
ρwχ

H
w vw + ρg χ

H
g vg,∇v

)
Ωl

−
∑
Ωl

(
φ sw JHw + ρg sg J

H
g ,∇v

)
Ωl

+
∑

F∈FI∪D

({
ρw χ

H
w vw + ρg χ

H
g vg

}
.n , [v]

)
F

−Θ
({
ρg χ

H
g K

krg
µg
∇v
}
.n , [sg]

)
F

+
∑

F∈FI∪D

({
φ sw JHw + φ sg J

H
g

}
.n , [v]

)
F

+
∑
F∈FN

(
(ρw χ

H
w vw + φ sw JHw + ρg χ

H
g vg + φ sg J

H
g ).n , v

)
F
,

aσ,H(U; v) :=
∑

F∈FI∪D

(
σs [sg], [v]

)
F
, aσ,HD (U; v) :=

∑
F∈FD

(
σs s

D
g , v

)
F
,

lH(U; v) :=
∑
Ωl

(ġH , v)Ωl ,

(A9)

be(U; v) :=
∑
Ωl

(
(1− φ) ρs us + φ (ρw uw sw + ρg ug sg + ρh uh sh), v

)
Ωl
,

ae(U; v) := −
∑
Ωl

(
ρw hw vw + ρg hg vg − ktheff∇T,∇v

)
Ωl

+
∑

F∈FI∪D

({
ρw hw vw + ρg hg vg − ktheff∇T

}
.n , [v]

)
F

+ Θ
({
− ktheff∇v

}
.n , [T ]

)
F

+
∑
F∈FN

(
(ρw hw vw + ρg hg vg − ktheff∇T ).n , v

)
F
.

aσ,e(U; v) :=
∑

F∈FI∪D

(
σT [T ], [v]

)
F
, aσ,eD (U; v) :=

∑
F∈FD

(
σT T

D, v
)
F
,

le(U; v) :=
∑
Ωl

(Q̇h, v)Ωl ,

(A10)

bncp1(U; v) := 0,

ancp1(U; v) :=
∑
Ωl

(
sg −max{0, sg − 1 + χMg + χHg } , v

)
Ωl
,

aσ,ncp1(U; v) :=
∑
F∈FI

(
σx [χHg ], [v]

)
F
, aσ,ncp1D (U; v) := 0,

lncp1(U; v) := 0 ,

(A11)
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bncp2(U; v) := 0,

ancp2(U; v) :=
∑
Ωl

(
sw −max{0, sw − 1 + χMw + χHw + χcw} , v

)
Ωl
,

aσ,ncp2(U; v) :=
∑
F∈FI

(
σx [χMw ], [v]

)
F
, aσ,ncp2D (U; v) := 0,

lncp2(U; v) := 0 ,

(A12)

bc(U; v) :=
∑
Ωl

(
φρw χ

c
wsw, v

)
Ωl
,

ac(U; v) := −
∑
Ωl

(
ρwχ

c
w vw + φ sw Jcw,∇v

)
Ωl

+
∑

F∈FI∪D

({
ρw χ

c
w vw + φ sw Jcw

}
.n , [v]

)
F

−Θ
({
φ sw τD

c
wρw∇v

}
.n , [χcw]

)
F

+
∑
F∈FN

(
(ρw χ

c
w vw + φ sw Jκw).n , v

)
F
,

aσ,c(U; v) :=
∑

F∈FI∪D

(
σx [χcw], [v]

)
F
, aσ,cD (U; v) :=

∑
F∈FD

(
σx χ

c,D
w , v

)
F
,

lc(U; v) :=
∑
Ωl

(ġc, v)Ωl ,

(A13)

and σs, σp, σx, σT are the positive penalty coefficients corresponding to the saturation,

pressure, mole fraction and temperature functions respectively, Θ = 1,−1, 0 in the cases of sym-

metric, nonsymmetric and incomplete forms of variational formulation for Problem 1.

We introduce the following vector notations:

b(U; v) =
[
bi(U; v)

]
i∈C , a(U; v) =

[
ai(U; v)

]
i∈C ,

l(U; v) =
[
li(U; v)

]
i∈C , aσ(U; v) =

[
aσ,i(U; v)

]
i∈C , aσD(U; v) =

[
aσ,iD (U; v)

]
i∈C

(A14)

Let qi ≥ 0 be an integer for every i ∈ C. We consider the finite-dimensional subspace of

broken Sobolev spaces (A1)

Sqih =

{
v ∈ L2(Ω)

∣∣∣ v|Ωl ∈ Pqi , ∀Ωl ∈ Th

}
, Sqih ⊂ H

k(Ω, Th), k ≥ 1

Kqih =
{
v ∈ Sqih

∣∣∣ 0 ≤ v ≤ 1, a.e. in Ω
}
, Kqih ⊂ H

k
b (Ω, Th), k ≥ 1.

(A15)
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Let {φl,j , l = 1, ..., |Th|, j = 1, ..., d(qi)} be the basis of Sqih , such that

Sqih = span
{
φl,j
}
, φl,j : Ωl −→ R,

∀v ∈ Sqih , v|Ωl =

d(qi)∑
j=1

vl,j(t)φl,j(x),
(A16)

where d(qi) is the number of basis functions defined on one element of triangulation (Ωl ∈

Th), for example, if qi = 1 and Ωl is a quadrilateral, then d(1) = 2, 4 in 1D and 2D do-

main. After extending the basis functions to the domain, Ω, ∀k = (l−1)d(qi)+j, we write:

ϕk : Ω −→ R, ϕk(x) =


φl,j(x) x ∈ Ωl

0 x /∈ Ωl

∀v ∈ Sqih , v =

N
qi
h∑

k=1

vk(t)ϕk(x),

Sqih = span Sib, Sib =
{
ϕik, j = 1, ..., Nqih

}
(A17)

where N
qi
h = |Th|d(qi). The primary variables can be written in terms of the basis functions

as follows:

Ui(x, t) =
∑
k

Ui,k(t)ϕik(x) , i ∈ C (A18)

Let Vih = C(T;Sqih ) be the finite dimensional Bochner subspace for i ∈ {pw, T} and Vih,b =

C(T;Kqih ) be the finite dimensional Bochner subspace for i ∈ {sg, sh, χMw , χHg , χcw}. Now

interior and boundary penalty discontinuous Galerkin (IPDG) method for the system (15) can

be written as follows

Problem 3. (DG formula) Find U ∈ VMh × Veh × VHb,h × Vhb,h × V
ncp1
b,h × Vncp2b,h × Vcb,h such

that ∀ψij ∈ Sib and ∀i ∈ C

∂tb
i(U;ψij) + ai(U;ψij) + aσ,i(U;ψij) = li(U;ψij) + aσ,iD (U;ψij) (A19)

hold.

A1 Implicit Euler Method

In this section, we apply Implicit Euler method for the system (A19). To do so, we con-

sider a partition t0 := 0 < t1 < ... < tm := tend of the time interval T. By defining

∆tn := tn+1 − tn, We use finite difference approximation of the time derivative,

∂tb(U;ψ) ≈ ∆t−1
n

(
bh(Un+1;ψ)− bh(Un;ψ)

)
(A20)
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where Un := U(tn). Let U be the coefficient vector of the primary variables U w.r.t basis

functions in Sib, i.e., U is a row vector with Nh =
∑
i∈C

N
qi
h elements.

Using finite difference approximation of the time derivative (A20), we introduce the resid-

ual functional Rij(Un+1,Un) for every ψij ∈ Sib, j = 1, ..., Nqih and ∀i ∈ C as follows:

Rij(Un+1,Un) :=∆t−1
n

(
bi(Un;ψij)− bi(Un+1;ψij)

)
+ li(Un+1;ψij)

− ai(Un+1;ψij)− aσ,i(Un+1;ψij) + aσ,iD (Un+1;ψij) = 0,

(A21)

The nonlinear residual equations can then be written in compact form as follows:

R(Un+1,Un) =
[
Rij(Un+1,Un)

]
i,j

= 0, i ∈ C, j = 1, ..., Nqh, R(Un+1,Un) ∈ RNh .

(A22)
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