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regression techniques that are trained across climate model simulations.
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of historical zonal mean precipitation variability is recovered, in particular over the Northern hemisphere and in parts of the

tropics. Finally, we demonstrate that the reconstructed zonal mean precipitation trends are outside the variability of pre-

industrial control simulations, and are consistent with the range of historical simulations driven by external forcing. Overall,

we illustrate a novel way of estimating seasonally-averaged zonal precipitation from gauge data, and trends therein that show

a signal very likely caused by human influence.
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Key Points:10

• Detection and attribution of multi-decadal changes in the water cycle is challeng-11
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the range of historical climate model simulations.16
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Abstract17

Future projected changes in precipitation substantially impact societies worldwide.18

However, large uncertainties remain due to sparse historical observational coverage, large19

internal climate variability, and climate model disagreement. Here, we present a novel20

reconstruction of large-scale zonal precipitation metrics from sparse rain-gauge data us-21

ing regularized regression techniques that are trained across climate model simulations.22

Subsequently, we test the reconstruction on independent satellite data and reanalyzed23

precipitation, and find a large fraction of historical zonal mean precipitation variability24

is recovered, in particular over the Northern hemisphere and in parts of the tropics. Fi-25

nally, we demonstrate that the reconstructed zonal mean precipitation trends are out-26

side the variability of pre-industrial control simulations, and are consistent with the range27

of historical simulations driven by external forcing. Overall, we illustrate a novel way of28

estimating seasonally-averaged zonal precipitation from gauge data, and trends therein29

that show a signal very likely caused by human influence.30

Plain Language Summary31

When studying changes in the global water cycle due to climate change it is instruc-32

tive to study precipitation along constant latitudes (zonal mean), as the average amount33

and seasonality of precipitation differ strongly across latitudes. When trying to calcu-34

late the zonal mean from observations, we face the problem that observations do not ex-35

ist for many locations at the latitude in question since there may be no precipitation gauges,36

and the number and locations of gauge stations changes over time. Here we present a37

method to reconstruct the zonal mean precipitation from spatially incomplete observa-38

tions, by training a statistical model to predict the zonal mean from only the observed39

grid cells directly. Our reconstructions show high similarity to satellite-based estimates40

of zonal mean precipitation. Further, we find a trend in these reconstructions when an-41

alyzing the pattern of all zonal trends together, which is very likely caused by human42

influence.43

1 Introduction44

Understanding observed historical variability and changes in precipitation on large45

spatial scales is crucially important for detection of climate change and attribution to46

human influence in the hydrological cycle, and in order to evaluate and constrain his-47

torical and future climate model simulations (Hegerl et al., 2015).48

However, understanding historical precipitation variations is challenging because49

of large internal variability (Deser et al., 2012), and climate model disagreement in the50

simulation of variability and the response to external forcings (Bindoff et al., 2013). In51

addition, the observational record is relatively short, often with relatively sparse spatial52

coverage, in particular prior to the onset of the satellite era, making attribution chal-53

lenging.54

Observations of precipitation, both from rain gauges and from satellites, are used55

widely to evaluate precipitation trends and variability. Further, these observations are56

then used to attribute the trends to external forcing and the large-scale modes of inter-57

nal climate variability. However, the observational record is short and sparse. Precip-58

itation attribution studies are based either on spatially complete but short satellite-based59

records post-1979 and spatially complete model data (Marvel & Bonfils, 2013), or on longer60

but spatially incomplete gauge-based observations and climate model output masked to61

the spatial coverage of the observations (Zhang et al., 2007; Hegerl et al., 2015; Wu et62

al., 2013). With the latter approach, it was recognized early on that estimates of global63

or zonal statistics of precipitation from spatially and temporally incomplete observational64
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records with time-varying coverage can lead to biases (Hulme, 1995). In this context, sta-65

tistical approximations to complement historical records are desirable. Techniques have66

been developed to fill in missing data and achieve a full coverage field for various climate67

variables, including temperature or precipitation (Kondrashov & Ghil, 2006; Buttlar et68

al., 2014; Bárdossy & Pegram, 2014; Coulibaly & Evora, 2007; Kim & Pachepsky, 2010;69

Chen et al., 2002; Smith et al., 2012). Such reconstruction approaches exist for directly70

computing large scale metrics such as global mean temperature (Cowtan & Way, 2014;71

Cowtan et al., 2018) and global mean precipitation (Shen et al., 2014) directly from spa-72

tially incomplete data.73

More recently, infilling and reconstruction methods have been based not only on74

statistical relationships or combinations of satellite and in situ records, but also com-75

bined with information from physical climate models or reanalyses (Kadow et al., 2020).76

Moreover, recent research has shown that encapsulating information from climate mod-77

els in statistical models can yield skillful seasonal precipitation forecasts (Gibson et al.,78

2021). The underlying notion of these approaches is to exploit the large available record79

of climate model ensemble simulations (Deser et al., 2020) to augment the short and sparse80

observational record.81

The spatio-temporal information provided by climate model simulations has to our82

knowledge not been systematically exploited for reconstructing large-scale zonal mean83

precipitation (ZMP) statistics. We thus propose and present a new method for the es-84

timation of ZMP from incomplete gauge data: A statistical regression model trained on85

climate model data, where each grid cell in the observational coverage mask serves as86

a predictor for the desired zonal precipitation statistics. Historical observation based zonal-87

mean precipitation time series can be reconstructed using the statistical model and the88

observed precipitation record.89

In addition to the reconstruction of ZMP, a key interest for detection, attribution90

and understanding of the historical precipitation record lies in the identification of forced91

components of precipitation change (Marvel & Bonfils, 2013; Hegerl et al., 2015). While92

physical understanding provides robust constraints on large-scale precipitation change93

in a warming climate, such as an increase in global mean precipitation by about 2-3%94

per degree of warming due to energy balance (Pendergrass & Hartmann, 2014), it is much95

harder to derive insights on forced changes at regional scales. This is because global mean96

precipitation is dominated by the tropics and several large regions that show opposite97

patterns of changes (Muller & O’Gorman, 2011), compensating effects of different ex-98

ternal forcing agents (Salzmann, 2016), and large internal variability (Deser et al., 2012;99

Guo et al., 2019). Studies to date suggest that expected ZMP changes include increas-100

ing precipitation in wet mid latitudes and tropics, and persistence and expansion of dry101

subtropical regions (Held & Soden, 2006; Meehl et al., 2007; Scheff & Frierson, 2012; Berg102

& McColl, 2021).103

Recently, climate model output has been used to train statistical or machine learn-104

ing techniques to estimate the externally forced response from monthly precipitation maps105

on a global scale (Barnes et al., 2019; Sippel et al., 2020; De Vries et al., n.d.). ZMP can106

be a valuable metric to better understand and attribute regional changes in the hydro-107

logical cycle with relatively high signal to noise ratio compared to small-scale regional108

approaches (Marvel & Bonfils, 2013).109

Therefore, in the final part of this paper, we will show the long term trends in ZMP110

reconstructions and compare them to externally forced and unforced climate model pro-111

jections. We limit the estimation of external influence to an outlook for detection and112

attribution of ZMP using this approach. Making a comprehensive attribution statement113

about external influence on ZMP lies outside the scope of this study.114
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2 Data and Methods115

2.1 Observational data and climate model simulations116

The precipitation observations for the reconstructions stem from the Global His-117

torical Climatology Network (GHCN) (Menne et al., 2018) as well as from the Global118

Precipitation Climatology Centre (GPCC) (Schneider et al., 2014). SLP is taken from119

the 20th Century Reanalysis Project (20CRv3) (Compo et al., 2011; Slivinski et al., 2019).120

To evaluate our regression-based reconstructions, we use satellite based precipitation data,121

which is given by the Global Precipitation Climatology Project (GPCP) (Adler et al.,122

2018). This data set is used entirely as an external source of satellite-based precipita-123

tion estimates with global coverage for benchmarking our reconstructions. We compare124

the reconstructions to the ECMWF reanalysis ERA5 (Hersbach et al., 2020), and a grid-125

ded reconstruction of 20th century precipitation provided by Smith et al. (2012), based126

on principal component regression. Further, we include PREC (Chen et al., 2002), a pre-127

cipitation reconstruction provided by NOAA, in the comparison.128

The climate model data used in this study is obtained from the Large Ensemble129

Archive (LENS) (Deser et al., 2020). It consists of seven different climate models with130

a total of 286 ensemble members (See SI, table S1). The climate models are forced with131

historical greenhouse gas and aerosol concentrations and the data is conservatively re-132

gridded onto a 5x5° grid. The variables used are precipitation, surface air temperature133

and sea level pressure (SLP). We compute the seasonal means for the months Decem-134

ber, January and February (DJF) and June, July and August (JJA). We chose these pe-135

riods since they capture two opposite states of the climate system thus covering a range136

of processes driving precipitation. We calculate seasonal ZMP for each year and ensem-137

ble member for each latitudinal zone of width 5◦. To establish a baseline of an unaltered138

climate the pre-industrial control (piControl) runs from the CMIP5 and CMIP6 archive139

are used.140

2.2 Regularized linear regression for the reconstruction of zonal mean141

precipitation142

We frame the reconstruction problem in the following way: ZMP is a discrete set143

of time series at varying latitudes. The time series ZMP at a given latitude (lat) can be144

expressed as a function f of the observed grid cells XObs plus a certain error ε (Equa-145

tion 1).146

ZMPlat = flat(XObs) + ε = XObsβ + ε (1)

XObs is a n×p matrix containing n observations at p locations. We choose f to147

be a vector β containing p regression coefficients, i.e. ZMPlat is a linear combination148

of the entries of XObs. The coefficients are estimated from climate model data, where149

the predictor matrix is composed of climate models seasonal mean time series reduced150

(masked) to match the observed locations p (for a given, fixed observational mask) and151

the target is the “true” seasonal ZMP calculated from the unmasked data. Seasonal mean152

precipitation, our predictors, is temporally and spatially correlated, which violates one153

of the criteria for the ordinary least squares (OLS) estimator to be valid, leading to over-154

fitting. To address this we employ a regularized regression technique, often referred to155

as ridge regression. It imposes a penalty on the magnitude of the coefficients, reducing156

the degrees of freedom of the regression model. This is achieved via an alteration of the157

cost function, adding an additional weighted penalty on the sum of squared coefficients158

(L2-norm) besides the penalty on the sum of squared residuals (RSS) (Eq. 2).159

argmin RSS + λ

p∑
j=1

β2
j (2)
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The first term is the cost function of an OLS regression. The second term is referred to160

as the penalty term where βj is the j-th of p fitted coefficients. The hyperparameter λ161

determines the magnitude of the penalty term. For λ > 0 minimization of this cost func-162

tion results in smaller coefficients than those obtained with OLS, and coefficients for cor-163

related predictors tend to be evenly distributed between the predictors by nature of the164

cost function. Thus, when training on spatially correlated climate data, the coefficients165

are smoothed in space.166

2.3 Training procedure for regression models167

In order to train the regression models we mask the LENS data such that its cov-168

erage includes only those locations for which an uninterrupted observational record from169

1950-2014 exists. This allows the use of a single mask for the full time span of a recon-170

struction.171

We use two different reconstruction setups: One based on precipitation data alone,172

and another which also uses SLP. For the precipitation-only reconstruction setup we mask173

the training data to represent grid cells for which precipitation observations are avail-174

able between 1950 and present. Until 1950 station coverage steadily increased, but around175

1980 it started to decrease. Using 1950 as a start point means that the reconstruction176

is less sensitive to low coverage bias than for earlier starting points. As the observational177

coverage varies in time we use the continuously observed grid cells of a data set. For GHCN178

this leads to 344 continuous grid cells from 1950-present in GHCN, covering 13% of the179

entire globe. For GPCC the same criteria yield 467 grid cells. For an overview of the frac-180

tion of grid cells containing observations, see figure S1.181

The second configuration allows the use of SLP data as predictors in addition to182

precipitation for the estimation of ZMP. We do not apply a mask for SLP and instead183

assume that the 20th Century Reanalysis provides reliable seasonal SLP data for the en-184

tire observational period of precipitation. This setup is repeated with both precipitation185

masks for the different precipitation data sets and leads to a regression model with 2936186

predictors (344 precipitation + 2592 SLP) for GHCN and 3059 predictors (467 precip-187

itation + 2592 SLP) for GPCC. Thus, the ZMP at a given latitude is calculated in part188

by precipitation and in part by SLP. The respective weighting is determined via the re-189

gression model.190

The regression model is trained using the masked climate model data. The train-191

ing data represents the historical period in the CMIP5 models (1920 to 2005). The tar-192

get of the regression model is the zonal mean DJF/JJA precipitation. The predictors193

consist of the masked output of mean DJF/JJA precipitation (and PSL) per grid cell194

from single ensemble members. Every masked ensemble member is tasked to predict its195

own unmasked zonal mean precipitation and a model is trained for every latitude indi-196

vidually.197

The hyperparameter λ is determined via cross-validation as follows. The training198

data is split up into groups (”folds”) which are successively excluded from the model fit199

in order to the test regression model’s performance on unseen data. In our application,200

each of the seven models is assigned to one fold each of which is each successively ex-201

cluded from the fitting process. Subsequently, the root mean squared error (RMSE) for202

each unseen fold is evaluated and traditionally the λ parameter is chosen to minimize203

the RMSE. For this study we chose a larger λ resulting in a smaller, more regularized204

model, which still performs well (Hastie & Qian, 2014). This setup ensures that the re-205

gression model does not learn features of a single climate model, thus allowing a better206

transfer to observations. For an application in a similar context, see Sippel et al. (2020).207

208
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3 Results and Discussion209

In this section, we first show the regression coefficients of the statistical models (Sec-210

tion 3.1). We evaluate the performance of our ZMP reconstructions across climate mod-211

els (Section 3.2). Next, we apply the ZMP reconstruction technique to observations, and212

evaluate the ZMP estimates against satellite data (Section 3.3). Finally, we calculate the213

trend in the reconstructions and compare the observed zonal trend statistics to forced214

and unforced climate model simulations (Section 3.4).215

3.1 Illustration of regularized regression models216

To illustrate the ridge regression technique, we map out the regression coefficients217

based on their locations, both for a setup based on precipitation alone (Pr) and for a setup218

that includes precipitation and SLP as predictors (Pr+SLP), for three target latitudes219

representative for the Southern hemisphere, tropics and Northern hemisphere (Figure220

1). In general, positive coefficients are assigned to precipitation grid cells (Pr) at the pre-221

diction target’s latitude, which implies that local information plays an important role222

for the respective ZMP. This result is to be expected but also encouraging to see, as the223

regression model is not given any information about the spatial location of the predic-224

tors nor the latitude of the target variable. The precipitation grid cells just north and225

south of the target latitude tend to be weighted negatively. For example, the model at226

47.5°S (Fig. 1a) mainly relies on the few grid cells available in South America and south-227

ern Australia, giving positive weights to grid cells close by and negative ones to grid cells228

further away. For the tropical model (2.5°S) (Fig. 1d) the reconstruction mainly draws229

from the negative correlation to close-by grid cells north and south, owing to the lack230

of local grid cells. Positive weights are given to the mid-latitudes. The model for 47.5°N231

(Fig. 1g) most clearly displays the pattern of having positive weights at the latitude it-232

self and negative ones surrounding it, likely related high local coverage at this latitude.233

We next consider the second model setup (Pr+SLP), with spatial patterns of SLP234

and masked precipitation as joint predictors. As we assume that global-scale SLP vari-235

ations back to 1950 are reliably reconstructed, we do not mask this data. We first fo-236

cus on the combined model’s precipitation coefficients, shown in the middle row of fig-237

ure 1. The coefficient patterns are very similar to the ones for the Pr-only setup, espe-238

cially at 47.5°N (Fig. 1h), where the distribution of the coefficients is hardly distinguish-239

able. The SLP coefficients show negative weights at the predicted zonal band, consis-240

tent with low pressure anomalies that are associated with precipitation. The SLP co-241

efficients north and south of the zonal band are positive, reflecting a possible tele-connection242

pattern in SLP. For all latitudes, SLP predictors receive higher weights in regions where243

precipitation is not available, thus filling in information in unobserved regions. This can244

be best seen in the coefficients of the model reconstructing mid latitude northern hemi-245

sphere zonal precipitation (47.5 N) (Fig. 1i). Over land, where precipitation grid cells246

are given to the model, SLP is weighted close to zero. Over the ocean, where no precip-247

itation grid cells are available, SLP is weighted more in comparison. This feature could248

also occur due to zonal precipitation being dominated by precipitation over the ocean,249

which the regression model then gravitates to.250

3.2 Model-as-truth testing of ZMP reconstruction with climate mod-251

els252

To test how well this method performs for the reconstruction of ZMP, we use a model-253

as-truth approach, where one climate model is excluded from the training process. The254

statistical model trained on models except holdout model M is applied to model M. Re-255

sults from such a reconstruction for two selected latitudes with CESM-CAM5 as left-out256

model are shown in Fig. 2 (a and d). “Zonal mean Pr” represents the “true” zonal mean257

precipitation, obtained from the ensemble member’s unmasked precipitation data. The258
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Figure 1. Coefficients of the ridge models trained to predict seasonal DJF precipitation

mapped onto their location based on GHCN coverage. The coefficients are scaled by subtracting

the mean and dividing by the range from the smallest to largest coefficient for every map respec-

tively. The coefficients are used to predict zonal mean precipitation at -47.5°, -2.5°, or 47.5° from

top to bottom. The dashed line indicates the target latitude.

reconstructed time-series are very similar with Pearson correlation values of the recon-259

structions to the “true” zonal means of 0.63 or higher. To evaluate the performance of260

the reconstructions for all latitudes we will from now on focus on the Pearson correla-261

tion as a summary statistic of how well the reconstructed time series corresponds with262

the “true” ZMP as simulated by the respective climate model, as shown in Fig. 2 b and263

c. Both the Pr and Pr+SLP reconstruction approaches show high correlations with the264

“true” zonal mean in the Northern hemisphere, due to the large number of grid cells avail-265

able. Pr shows a slightly lower median correlation in the tropics than in the Northern266

hemisphere in addition to an increased inter-model spread. This decrease in prediction267

accuracy likely arises due to the limited observational/mask coverage in the tropics but268

could also be reinforced by model disagreement on tropical precipitation (Pendergrass269

& Hartmann, 2014). Pr+SLP performs more consistently across all latitudes and dis-270

plays higher correlation with the true ZMP overall. Interestingly, the model spread is271

substantially higher in the tropics than in the mid-latitudes, which again could point to272

model disagreement on tropical precipitation impeding robust prediction of ZMP across273

models from land precipitation only. The differences between the two model setups, Pr274

and Pr+SLP, become most apparent in the Southern hemisphere, where the additional275

coverage from SLP yields the largest performance increase. The Pr model also struggles276

to reconstruct high latitude precipitation, owing to the lack of observational coverage277

in those regions. This is remedied in the Pr+SLP model. It is also worth noting that the278

high latitudes cover less area on the globe, and might thus be subject to higher inter-279

nal variability.280

3.3 Zonal mean precipitation reconstruction with observations281

Next, we present the application of the trained models to two different sources of282

gauge observations, resulting in two reconstructions (GHCN and GPCC). We again dif-283
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Figure 2. Reconstruction of zonal mean precipitation in the first ensemble member of

CESM1-CAM5 at two selected latitudes (a and d). The ridge models use masked precipita-

tion only (Pr) or masked precipitation and unmasked sea level pressure (Pr+SLP) to reconstruct

zonal mean precipitation. CESM1-CAM5 model data was excluded from the training. The result-

ing regression coefficients are then applied to the masked CESM1-CAM5 data. Zonal Mean Pr

represents the “true” zonal mean precipitation, calculated from the ensemble member’s unmasked

data. Plot b and c show the multi-model ensemble average correlation of reconstructions with

the “true” zonal mean precipitation of a climate model excluded from training. The thick line

represents the median ensemble average correlations and the shading indicates the range from the

lowest to the highest ensemble average correlation.
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Figure 3. Correlation of observational reconstructions with the satellite based GPCP data

from 1979 to 2008. Colors denote the two different rain-gauge data sets used. Subplots a and c

are based on only precipitation data (Pr) and b and d based on combining these gauge data sets

with reanalysis SLP. Smith and PREC are alternative reconstructions of precipitation and ERA5

is taken from ECMWF’s Reanalysis. Note that the black reference lines do not differ between Pr

and Pr+SLP.

ferentiate the models trained based on precipitation alone (Pr) and precipitation with284

the addition of SLP (Pr+SLP). SLP observations come from 20CRv3 in all cases.285

The global satellite observations from the Global Precipitation Climatology Project286

(GPCP) (Adler et al., 2018) serve as the independent verification data set and are as-287

sumed to be our most reliable source of global observations. The consistency of our two288

reconstructions with these “best observations” are assessed by correlating them with ZMP289

derived from GPCP. To assess the relative performance of our method ZMP derived from290

three external sources of augmented global precipitation observations – a reconstruction291

by Smith et al. (2012) (Smith), by NOAA (PREC) (Chen et al., 2002) and ERA5 Re-292

analysis (ERA5) (Hersbach et al., 2020) – are also correlated with GPCP.293

The reconstruction method applied to observations results in accurate estimates294

of observed ZMP judging from the high correlations with the verification data set GPCP,295

indicating the method generalizes well from models to observations. Pr performs sub-296

stantially better in the Northern than in the Southern hemisphere while Pr+SLP shows297

a smaller difference in correlation between the two hemispheres. Adding the SLP infor-298

mation from 20CRv3 to the ridge reconstruction increases the correlation with GPCP299

for all latitudes. The biggest impact of using SLP information can again be seen in the300

Southern hemisphere. The performance of the reconstruction is roughly similar for DJF301

and JJA.302

3.4 Estimating trends in the reconstructions303

In the previous subsection, we demonstrated the skill of the historical ZMP recon-304

structions. Here, we address the possibility of estimating the response of ZMP to exter-305

nal forcing. This follows earlier research that aims to detect forced signals from spatial306
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patterns of climate variables such as temperature or precipitation (Barnes et al., 2019;307

Sippel et al., 2020), but here we focus on ZMP, which has already been used in attribu-308

tion studies with satellite data (Marvel & Bonfils, 2013), which were able to detect a sig-309

nal of external influence in ZMP. They find that expected ZMP changes include increas-310

ing precipitation in wet mid latitudes and tropics, and persistence and expansion of dry311

subtropical regions. We build upon this work, using rain gauge instead of satellite data,312

to identify trends in ZMP from records starting as early as 1950. We thus calculate lin-313

ear trends in the previously shown reconstructions (1950-2014) for every latitude from314

the ”Pr + SLP” reconstruction (Figure 4). Trends from the ”Pr” reconstruction can be315

seen in the SI (Figure S2). We additionally apply the masked climate models large en-316

semble onto the obtained fingerprints and calculate trends for the same time period as317

for the observations. Additionally, we calculate 65 year trends of unforced pre-industrial318

control (PiC) data projected onto the fingerprint to reconstruct ZMP in each zonal band.319

The trends of the reconstructions show an increase in ZMP in the mid latitudes320

and the tropics, as well as some decreases in the subtropical latitudes. Only few of the321

individual latitudes fall outside the range of the possible trends in a pre-industrial sim-322

ulation. Yet, the pattern across all latitudes shows clear alignment with externally forced323

climate models: the covariance of the zonal pattern of reconstructed trends with the multi-324

model mean ZMP trends lies well within the distribution of forced simulations, but would325

be very unlikely to occur in pre-industrial control simulations for both data sets and both326

seasons (Figure S3 and S4). The shifts from positive to negative to positive trends be-327

tween the tropics and the mid-latitudes implies large regions with small trends - which328

are however still part of the pattern of the response to forcing. The two observational329

data sets are in general agreement but do display some differences, showing the need for330

high quality precipitation observations.331

4 Conclusions and Outlook332

In this paper, we have outlined an approach to reconstruct zonal mean precipita-333

tion on a seasonal scale based (1) on land-based precipitation records only, and (2) aug-334

mented with reanalyzed SLP. The reconstruction performs very well for the Northern335

Hemisphere, and especially the addition of SLP produces adequate results for the Trop-336

ics and Southern Hemisphere. We have verified the approach by assessing prediction ac-337

curacy in a model-as-truth setup, and we have shown that the reconstruction performs338

well in observations with independent global satellite observations. In the climate model339

comparison, Pearson correlations are on average around 0.75 and 0.85 for Pr and Pr+SLP340

reconstructions, respectively, for the tropics and Northern mid-latitudes (but with lower341

values in the Southern hemisphere). Comparing against satellite data, the reconstruc-342

tions perform equally well or better to calculating zonal means from existing, alterna-343

tive precipitation reconstructions (Smith et al., 2012; Chen et al., 2002), and with over-344

all moderately lower skill compared to ERA5 (Hersbach et al., 2020). Our method thus345

offers a valuable complement for inferring large-scale precipitation metrics.346

Human influence on precipitation has long been detected on a global scale (Zhang347

et al., 2007; Hegerl et al., 2015) but more regional detection and attribution is desirable348

in order to provide information to policy makers. Our method allows to assess trends349

in ZMP from station-based data from 1950 onwards, and we identify a strong signal of350

forced change in the zonal pattern of precipitation. While previous studies have used satellite-351

based precipitation to detect forced changes in ZMP (Marvel & Bonfils, 2013), our method352

allows the use of rain-gauge data and further explanatory variables.353

Future work could extend the present approach towards estimating regional trends354

from incomplete observations in various water cycle variables, focusing either on a re-355

construction of long-term trends (as illustrated here) or specifically targeting forced or356
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Figure 4. Decadal trends in the reconstructed zonal mean precipitation between 1950 and

2014 based on two different observational data sets GHCN (a and c) and GPCC (b and d) is

represented by the thick line. The blue shading indicates the 2.5% to 97.5% quantile range of

climate models forced with historical greenhouse gas and aerosol concentration (LENS) from 1950

to 2014. The grey shading indicates 65-year trends in unforced climate models representing pre-

industrial conditions (PiC). The reconstructions are based on precipitation and SLP. The panels

a and b show the trends during the period of July to August (JJA) and the panels c and d show

the respective trends during the months of December to February (DJF).
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internal components on a regional scale (Guo et al., 2019; Bonfils et al., 2020; De Vries357

et al., n.d.), and possibly extended with multivariate predictors or observations358
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• The Multi-model large ensemble archive used for this study is described by Deser371

et al. (2020) and can be accessed here:372

https://www.cesm.ucar.edu/projects/community-projects/MMLEA/373

• The rain gauge observations are taken from the following two sources. GPCC, as374

described by Schneider et al. (2014), accessible through375

https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation376

-climatology-centre377

GHCN, as described in Menne et al. (2018) accessible through378

https://www.ncei.noaa.gov/products/land-based-station/global-historical379

-climatology-network-monthly380

• The satellite based precipitation observations (GPCP) are described in Adler et381

al. (2018) and can be accessed here:382

https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global383

-precipitation-climatology-project384

• We use two reanalysis products.385

ERA5 is described by Hersbach et al. (2020) and is accessible through https://386

cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels387

-monthly-means388

The 20th Century Reanalysis v3, described by Slivinski et al. (2019), accessible389

through:390

https://psl.noaa.gov/data/gridded/data.20thC ReanV3.html391

• We employ two precipitation reconstructions.392

The first reconstruction is described by Smith et al. (2012), accessible through393

http://cics.umd.edu/~tsmith/recpr/eof1/full/394

The second reconstruction is described by Chen et al. (2002), accessible through:395

https://psl.noaa.gov/data/gridded/data.prec.html396
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