
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
15
81
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Lightning over the Boreal Zone: Skill Assessment for Various

Land-Atmosphere Model Configurations and Lightning Indices

Jonas Mortelmans1,1, Michel Bechtold1,1, Erwan Brisson2,2, Barry Hugh Lynn3,3, Sujay
Kumar4,4, and Gabrielle J.M. De Lannoy5,5

1KU Leuven
2Goethe University Frankfurt
3Hebrew University of Jerusalem
4NASA GSFC
5KULeuven, Department of Earth and Environmental Sciences

November 30, 2022

Abstract

Current lightning predictions are uncertain because they either rely on empirical diagnostic relationships based on the present cli-

mate or use coarse-scale climate scenario simulations in which deep convection is parameterized. Previous studies demonstrated

that simulations with convection-permitting resolutions (km-scale) improve lightning predictions compared to coarser-grid sim-

ulations using convection parameterization for different geographical locations but not over the boreal zone.

In this study, lightning simulations with the NASA Unified-Weather Research and Forecasting (NU-WRF) model are evaluated

over a 955x540 km2 domain including the Great Slave Lake in Canada for six lightning seasons. The simulations are performed

at convection-parameterized (9 km) and convection-permitting (3 km) resolution using the Goddard 4ICE and the Thompson

microphysics (MP) schemes. Four lightning indices are evaluated against observations from the Canadian Lightning Detection

Network (CLDN), in terms of spatiotemporal frequency distribution, spatial pattern, daily climatology, and an event-based

overall skill assessment. Concerning the model configuration, regardless of the spatial resolution, the Thompson scheme is

superior to the Goddard 4ICE scheme in predicting the daily climatology but worse in predicting the spatial patterns of light-

ning occurrence. Several evaluation metrics indicate the benefit of working at a convection-permitting resolution. The relative

performance of the different lightning indices depends on the evaluation criteria. Finally, this study demonstrates issues of the

models to reproduce the observed spatial pattern of lightning well, which might be related to an insufficient representation of

land surface heterogeneity in the study area.
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Kumar4, Gabriëlle De Lannoy1
5

1Department of Earth and Environmental Sciences, KU Leuven, Heverlee, B-3001, Belgium6
2Centre National de la Recherche Scientifique, Toulouse, France7

3Department of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401,8

Israel; Weather It Is, Ltd., Jerusalem 9134401, Israel9
4Hydrological Science Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA10

Key Points:11

• The NU-WRF modeling framework is run at two resolutions to predict lightning12

over the boreal zone for the first time.13

• The simulations at the convection-permitting resolution yield more accurate light-14

ning predictions.15

Corresponding author: Jonas Mortelmans, Jonas.mortelmans@kuleuven.be

–1–



manuscript submitted to JGR: Atmospheres

Abstract16

Current lightning predictions are uncertain because they either rely on empirical17

diagnostic relationships based on the present climate or use coarse-scale climate scenario18

simulations in which deep convection is parameterized. Previous studies demonstrated19

that simulations with convection-permitting resolutions (km-scale) improve lightning pre-20

dictions compared to coarser-grid simulations using convection parameterization for dif-21

ferent geographical locations but not over the boreal zone.22

In this study, lightning simulations with the NASA Unified-Weather Research and23

Forecasting (NU-WRF) model are evaluated over a 955x540 km2 domain including the24

Great Slave Lake in Canada for six lightning seasons. The simulations are performed at25

convection-parameterized (9 km) and convection-permitting (3 km) resolution using the26

Goddard 4ICE and the Thompson microphysics (MP) schemes. Four lightning indices27

are evaluated against observations from the Canadian Lightning Detection Network (CLDN),28

in terms of spatiotemporal frequency distribution, spatial pattern, daily climatology, and29

an event-based overall skill assessment. Concerning the model configuration, regardless30

of the spatial resolution, the Thompson scheme is superior to the Goddard 4ICE scheme31

in predicting the daily climatology but worse in predicting the spatial patterns of light-32

ning occurrence. Several evaluation metrics indicate the benefit of working at a convection-33

permitting resolution. The relative performance of the different lightning indices depends34

on the evaluation criteria. Finally, this study demonstrates issues of the models to re-35

produce the observed spatial pattern of lightning well, which might be related to an in-36

sufficient representation of land surface heterogeneity in the study area.37

1 Introduction38

The boreal zone consists of a mosaic of different land cover types, mainly forests39

and peatlands, both storing large amounts of carbon (Turetsky et al., 2015; Scharlemann40

et al., 2014). One of the natural features shaping the boreal landscape is wildfire (Bowman41

et al., 2009). Several studies indicate that lightning is the major source of ignition of wild-42

fires in the boreal zone (Turetsky et al., 2015). It is proposed that lightning may increase43

due to global warming (Flannigan et al., 2013; Loisel et al., 2021; Veraverbeke et al., 2017;44

Krawchuk et al., 2009; Wotton et al., 2010), threatening the carbon pools above (forests)45

and below (peatlands) the ground by possibly shifting wildfire regimes.46

Until the last decade, most lightning predictions are challenged by (i) the coarse-47

scale resolution of climate simulations in which the critical process of deep convection48

is parameterized and the detailed representation of land-atmosphere processes is lack-49

ing (Prein et al., 2015; Weisman et al., 1997), and (ii) the use of empirical relationships50

between uncertain atmospheric variables and lightning, based on the present climate. How-51

ever, in the last decade, the focus of lightning simulations shifted from the coarse-scale52

(100 - 10 km) global and regional models to convection-permitting models, operating at53

a spatial resolution of less than 4 km (Prein et al., 2015). These finer resolution mod-54

els allow for deep convection to be resolved explicitly, resulting in an improved repre-55

sentation of most convection related processes (Brisson et al., 2016; Prein et al., 2015;56

Lucas-Picher et al., 2021). At the fine resolution, convection parameterization schemes57

become obsolete and other processes contributing to deep convection, such as microphys-58

ical (MP) processes, and their formulations become more important (Adams-Selin et al.,59

2013). The finer spatial resolution of convection-permitting models also allows to rep-60

resent more accurately the effect of land surface heterogeneities in the modeled land-atmosphere61

interactions (Vanden Broucke & Van Lipzig, 2017).62

Lightning is the result of a process known as non-inductive charging (Reynolds et63

al., 1957; Takahashi, 1978). This mechanism implies electric charge separation due to64

rebounding collisions between graupel particles and cloud ice crystals in the presence of65
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supercooled liquid water (Mason & Dash, 2000). This process mainly occurs when there66

is high convective activity in the area. It is thus not surprising that the estimation of67

lightning occurrence via lightning indices, is based on atmospheric variables that con-68

trol convective activity (Finney et al., 2018; Romps et al., 2014). All proposed lightning69

indices have in common that they are diagnostic in nature and, thus, strongly depend70

on the accuracy of the representation of the relevant atmospheric input variables. This71

representation is expected to improve when working at a finer resolution (Brisson et al.,72

2016). However, to date the difference between working at a convection-permitting and73

convection-parameterized resolution is barely investigated with a focus on lightning in-74

dices and a systematic evaluation of different lightning indices is lacking completely over75

the boreal zone.76

This study aims to answer the following questions with a focus on a study domain77

in the Canadian boreal zone: (i) What is the difference in performance between light-78

ning simulations at the convection-permitting and convection-parameterized resolution?79

(ii) Since various atmospheric model processes are better resolved at convection-permitting80

resolution, what is the impact of the MP scheme on lightning indices? (iii) Since no light-81

ning index was specifically developed for the boreal zone, which commonly used light-82

ning index performs best in predicting lightning? To answer these questions, the NASA83

Unified-Weather Research and Forecasting (NU-WRF) framework is run with four dif-84

ferent model configurations using two generally well-performing MP schemes, the God-85

dard 4ICE scheme (W. K. Tao et al., 2014) and the Thompson scheme (Thompson et86

al., 2008), at both a convection-parameterized and convection-permitting resolution. Four87

established lightning indices are diagnosed from the different atmospheric simulation out-88

puts and evaluated against lightning observations.89

This paper is organized as follows. In section 2, the model configurations, lightning90

indices, and evaluation procedures are discussed in detail. Section 3 presents and dis-91

cusses the simulation results and the evaluation against observations. Lastly, in section92

4, the main conclusions of this study are given and research needs are discussed.93

2 Methodology94

2.1 Study Domain and Period95

The study domain is chosen in a region with dominantly forests and peatland, around96

the Great Slave Lake in Canada, shown by the red rectangle of approximately 550,000 km2
97

in Figure 1a. This area is characterized by frequent lightning with critical importance98

for wildfire ignition (Veraverbeke et al., 2017). The study domain is embedded within99

two nested simulation domains, using the limited-area approach. The outer (WRF9, full100

extent of Figure 1) and inner (WRF3, white rectangle of Figure 1) domains have a spa-101

tial resolution of 9 and 3 km and a temporal resolution of 36 and 12 s, respectively. The102

double nested scheme follows the recommendations for spatial spin-up as described in103

Brisson et al. (2016); Prein et al. (2013) and allows for a study area within WRF3 for104

which convection-parameterized (9 km) and convection-permitting (3 km) model sim-105

ulations are performed and compared.106

Figures 1b-e show the local topography, Moderate Resolution Imaging Spectroradome-107

ter (MODIS) land use, and National Centers for Environmental Prediction (NCEP) sur-108

face albedo and greenness fraction of the study domain at 3 km resolution. This data109

is used, among others, as input by the land component of the coupled land-atmosphere110

simulations.111

The simulations cover six lightning seasons, i.e. the months June through August112

for the years 2015 through 2020 as these months are known for their high lightning ac-113

tivity in the region of interest (Burrows & Kochtubajda, 2010). For this study, these years114

are chosen because of an improved network of lightning sensors. For the spin-up of the115
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land-component, a 10-year long cold-start spin-up was defined before the start of the light-116

ning season in 2015. The spin-up for the following lightning seasons were started from117

the end of the spin-up of the previous lightning season. To also provide a short-term spin-118

up for the coupled L-A run, the model is started 17 days before the actual start of the119

lightning season. This 17-day period is considered sufficient for the spin-up of the atmo-120

spheric model (Z. Tao et al., 2020).121

Figure 1. (a) The NU-WRF nested domains and study area (red) and its (b) topography (m),

(c) MODIS land use, (d) NCEP surface albedo, and (e) NCEP greenness fraction that is used as

input for the NU-WRF simulations.

2.2 Coupled Land-Atmosphere Model Configuration122

The NU-WRF model is one of the leading state-of-the-art coupled land-atmosphere123

models that allows simulations at both convection-parameterized and convection-permitting124

resolution. It is an observation-driven modeling system that integrates aerosol, cloud,125

precipitation, and land processes at spatial resolutions of 1 – 25 km (Peters-Lidard et126

al., 2015). The NU-WRF model combines the National Center for Atmospheric Research127

(NCAR) Advanced Research WRF (ARW) (Skamarock et al., 2008) dynamical core at-128

mospheric model with the Goddard Space Flight Center (GSFC) Land Information Sys-129

tem (LIS) (Kumar et al., 2006, 2008) for the land component. LIS integrates the use of130

high-resolution satellite data, advanced land surface models (LSMs), and high-performance131

computing tools at high resolution. The LIS framework has multiple LSMs, one of which132

is the Noah-MP LSM (Niu et al., 2011). Table 1 summarizes the most important con-133

figuration options used in this study and the input datasets along with their original res-134

olution.135
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Table 1. Overview of key model configuration and spatial input datasets.

Component G4ICE - G4ICE - THOM - THOM -
9 km 3 km 9 km 3 km

Land surface model Noah-MP version 3.6
Surface layer drag coefficient Chen97

Land use MODIS including lake category (1 km)
Topography Global Multi-resolution Terrain Elevation Data 2010 (30 arcsec)

Surface albedo NCEP Native (0.144°)
Greenness fraction NCEP Native (0.144°)

Microphysics Goddard 4ICE Goddard 4ICE Thompson Thompson
Planetary boundary layer Mellor-Yamada-Janjic
Cumulus parameterization Grell-Dévényi N/A Grell-Dévényi N/A

Longwave and shortwave radiation Goddard 2017 radiation scheme
Meteorological forcing MERRA-2 (0.625°x0.5°)

2.2.1 Land Surface136

In this study, the Noah-MP version 3.6 is used as the LSM. This model has improved137

land physics compared to the standard Noah LSM, i.e. with advancements in the physics138

for surface fluxes, skin temperature, and runoff (Niu et al., 2011). The complete config-139

uration settings can be found in the configuration file that is provided in the open data140

repository (see ’Open Research’ section). The used settings are the default for Noah-MP,141

as outlined in the source code, with the exception of the surface layer drag coefficient.142

Various studies demonstrated the high sensitivity of surface energy fluxes to the choice143

of surface layer drag coefficient, with region-specific performance differences (e.g. Niu144

et al. (2011); Yang et al. (2011)). Tests with the default setup including the Monin-Obukhov145

similarity scheme (Brutsaert, 1982) resulted in a strong underestimation of simulated light-146

ning occurrence for all indices. Tests with the Chen97 scheme (Chen et al., 1997) resulted147

in a more realistic number of lightning occurrences for both convection-parameterized.148

As indicated by Yang et al. (2011), the surface layer drag coefficient is the most impor-149

tant factor for modeling land skin temperature. Therefore, one can conclude that with150

the given model setup, the Chen97 scheme results in a better representation of the land151

skin temperature, and consequently surface energy fluxes. Given the importance of sur-152

face energy fluxes for deep convection, Chen97 was subsequently used for all simulations.153

Because the default NU-WRF sea surface temperature (SST) data input derived154

from microwave and infrared sensors (Wentz et al., 2016) was found to not be reliable155

for the Great Slave Lake in our study area, we used SST data input from the Group for156

High Resolution SST (GHRSST) level 4 SST daily analysis (Hoyer et al., 2014; Danish157

Meteorological Institute, Center for Ocean and Ice, 2007). This SST data is then used158

for those grid cells that are identified as lakes by the land use classification (Table 1) to159

calculate surface energy fluxes (NASA, 2020).160

2.2.2 Atmosphere161

The choices for the atmospheric MP, planetary boundary layer (PBL), and cumu-162

lus parameterization scheme are based on 13 papers on the use of WRF or NU-WRF to163

model convection (Blake et al., 2017; Fierro et al., 2013; Gharaylou et al., 2020; Iguchi164

et al., 2017; Madala et al., 2014; Santanello et al., 2013; W. K. Tao et al., 2016; Z. Tao165

et al., 2020; Wong et al., 2013; Lang et al., 2014; Comin et al., 2018; Dawn & Satyanarayana,166

2020; Gilliland & Rowe, 2007). The literature study indicated that the highest sensitiv-167

ity and uncertainty of the atmospheric simulations was related to the choice of the MP168
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scheme. To address this issue, two MP schemes, the Goddard 4ICE (W. K. Tao et al.,169

2014) and Thompson (Thompson et al., 2008) MP schemes, are used and compared in170

this study. These two schemes are among the most commonly used MP schemes and are171

both proven to be able to represent the atmospheric processes, such as deep convection,172

in both temperate and arctic regions (Lang et al., 2014; He & Loboda, 2020). Since the173

boreal region is geographically and climatologically located between these two regions,174

we decided that these two MP schemes are likely to best represent the atmospheric pro-175

cesses in the boreal zone. To our knowledge, no literature on the boreal region compar-176

ing different MP schemes exists. In terms of PBL and cumulus parameterization, liter-177

ature did show one clear superior option in combination with the selected MP schemes.178

Both MP schemes proved to perform especially well in combination with the Mellor-Yamada-179

Janjic PBL scheme (Mellor & Yamada, 1982). This scheme outperforms other PBL schemes180

in the representation of thunderstorms (Madala et al., 2014). For the convection param-181

eterization of WRF9 (9 km), the Grell-Dévényi cumulus ensemble (Grell & Dévényi, 2002)182

is used.183

The use of two different MP schemes for two spatial model resolutions results in184

four different model configurations: (i) the Goddard 4ICE MP scheme at 9 km (G4ICE -185

9 km), (ii) the Goddard 4ICE MP scheme at 3 km (G4ICE - 3 km), (iii) the Thompson186

MP scheme at 9 km (THOM - 9 km), and (iv) the Thompson MP scheme at 3 km spa-187

tial resolution (THOM - 3 km). Lightning occurences are diagnosed from each of these188

four model configurations using four different lightning indices, resulting in 16 numer-189

ical experiments.190

2.3 Lightning Indices191

Some lightning indices can be used to determine lightning flash densities directly,192

whereas others provide a lightning probability that then needs to be converted into light-193

ning flash densities. Several lightning indices exist with various levels of complexity, span-194

ning from the approach of Price and Rind (1992), based on the convective cloud top height,195

to those approaches based on the evolving electric field in storms, such as the lightning196

index of Fierro et al. (2013).197

In this study, four different lightning indices are compared: (i) the Lightning Po-198

tential Index (LPI) of Yair et al. (2010), (ii) the lightning threat (LT) of McCaul et al.199

(2009), (iii) the Price and Rind (1992) index based on maximal updraft velocity (PR92W),200

and (iv) the product of CAPE and convective precipitation rate (CAPExP) developed201

by Romps et al. (2014). All indices are diagnosed from the hourly NU-WRF output.202

2.3.1 LPI203

The LPI (J kg−1) is an empirical index that is based on ice fractions and super-204

cooled liquid water mixing ratios in the region between 0 and -20 °C. In this tempera-205

ture range, the noninductive mechanisms that involve the collision of ice and graupel par-206

ticles are most effective, because they require the presence of super-cooled liquid water207

to have charge separation due to the rebounding collisions between graupel and cloud208

ice crystals (Saunders, 2008). This index does not directly estimate the flash density but209

is a measure of the potential for charge generation and separation that leads to light-210

ning (Yair et al., 2010; Lynn & Yair, 2010). It is calculated from the vertical updraft ve-211

locity and the mixing ratios of liquid water, cloud ice, snow, and graupel.212

LPI = 1/V

∫ ∫ ∫
ϵw2dxdydz (1)

where V is the volume of air in the layer between 0 and -20°C; w is the vertical up-213

draft velocity (m s−1); dx and dy are the horizontal, and dz the vertical dimensions of214

the grid cell (m); and ϵ is a dimensionless number between 0 and 1:215
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ϵ =
2(QiQl)

0.5

(Qi +Ql)
(2)

where Ql is the total liquid water mass mixing ratio (kg kg−1); and Qi is the ice216

fractional mass mixing ratio (kg kg−1), which is defined as:217

Qi = qg

[(
(qsqg)

0.5

(qs + qg)

)
+

(
(qiqg)

0.5

(qi + qg)

)]
(3)

where qi, qg, and qs are the mass mixing ratios for cloud ice, graupel, and snow,218

respectively (all in kg kg−1).219

2.3.2 McCaul Lightning Threat220

The McCaul Lightning Threat (LT) (flashes (5min ·gridbox)−1) is a linear com-221

bination of (i) the upward fluxes of precipitating ice hydrometeors in the mixed-phase222

region at the -15°C level and (ii) the vertical integral of cloud ice, graupel and snow, as223

follows:224

LT = 0.95k1(wqg)m + 0.05k2

∫
ρ(qg + qs + qi)dz (4)

where k1 = 0.042; k2 = 0.20; w is the vertical updraft velocity (m s−1); ρ is the225

air density (kg m−3); and qi, qg, and qs are the cloud ice, graupel and snow mixing ra-226

tio, respectively. The subscript m indicates the -15 °C level.227

2.3.3 PR92W228

The PR92W index (flashes (min)−1) is based on the relation between maximum229

updraft velocity (wmax; in m s−1) and the number of flashes per minute:230

PR92W = c 5 · 10−6 w4.54
max (5)

where c is a calibration factor used to generalize the original equation from a 5 km spa-231

tial resolution to all possible resolutions (Price & Rind, 1994). The calibration factor c232

is defined as:233

c = 0.97241 e0.048203R (6)

where R is the grid cell area in squared degrees. Price and Rind (1994) state that this234

calibration factor does not depend on the latitude or longitude. These relatively simple235

relations have been shown to perform relatively well at different spatial resolutions (rang-236

ing from 1 - 36 km) by several studies (Ushio et al., 2001; Yoshida et al., 2009; Barthe237

et al., 2010; Wong et al., 2013) and were for a long time the most frequently used light-238

ning indices.239

2.3.4 CAPE×P240

The last lightning index used in this study is the product of convective available241

potential energy (CAPE, in J kg−1) and the convective precipitation rate (P, in kg (m2s)−1),242

expressed in flashes (m2s)−1, as developed by Romps et al. (2014). This product is a good243

proxy for lightning distribution over land when multiplied with a constant of proportion-244

ality (η/E) to convert it to a flash density:245

CAPE× P = η/E · CAPE · P (7)
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where η/E consists of the dimensionless conversion efficiency η and the energy dis-246

charge per flash E (in J). Romps et al. (2014) found that CAPExP correlates best with247

the observed lightning with η/E equal to 1.3 · 10−11J−1 (Romps et al., 2014).248

Since the NU-WRF model only simulates convective precipitation rate when a con-249

vective parameterization scheme is used (only activated for 9 km simulations), the con-250

vective precipitation rate used for the CAPExP index in this study is determined based251

on the method described in Churchill and Houze (1984). They defined convective cores252

as grid cells with twice the rainfall rate of the background (2 grid cells in each direction)253

average or any grid cell with a rain rate of >20 mm h−1. The grid cells directly surround-254

ing the convective center are also considered convective regions. To keep the results of255

the two resolutions comparable, this method was used to determine convective precip-256

itation for both the 3 and 9 km simulations.257

2.4 Evaluation258

2.4.1 Lightning Observations259

The observational data used for evaluation is provided by the Canadian Lightning260

Detection Network (CLDN). The data covers the area between 58 – 66°N and 108 - 125°W261

for the years 2015 – 2020. Earlier data are available but subject to large biases due to262

the use of older sensor technology and therefore not used. The dataset consists of indi-263

vidual flashes measured with a spatial and temporal precision of 0.0001° (approximately264

5 m) and 10−3 s, respectively. A classification into cloud-cloud and cloud-ground light-265

ning is also provided.266

For further evaluation, the observational data is converted to an hourly flash den-267

sity at the two different resolutions. The flashes are summed regardless of the type (cloud-268

cloud or cloud-ground) since the different lightning indices used in this study do not dif-269

ferentiate between types of flashes.270

2.4.2 Rescaling of Lightning Indices271

The lightning indices derived from all experiments are rescaled to the observations.272

This is on the one hand needed to convert the LPI, which represents the potential for273

lightning to occur, to a flash density and on the other hand to allow a conistent com-274

parison across lightning indices. We followed the two-step procedure as described in Brisson275

et al. (2021). First, the excessive small flash densities are eliminated so that the total276

sum (in both space and time) of modeled lightning flashes equals the total sum of ob-277

served lightning flashes. In a second step, a linear function is derived to relate the model278

output to the observed flash densities. Note that each lightning index is rescaled by a279

single linear model for the entire domain which makes overfitting issues very unlikely given280

the large sample size. Note that the approach is applicable to climate change scenarios281

since the same linear equation could be used to rescale future predictions without alter-282

ing the climate change signal as demonstrated in Brisson et al. (2021).283

2.4.3 Evaluation: Precipitation and Surface Energy Fluxes284

The ability of the model to accurately simulate surface energy fluxes is key to the285

quality of lightning predictions. Therefore, the modeled LH and SH as well as total pre-286

cipitation patterns of the different model configurations are evaluated in a first step. This287

is done by comparing the spatial patterns of the 6-year summer averages of the precip-288

itaion, LH, and SH modeled by the different model configurations against MERRA-2 re-289

analysis data.290
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2.4.4 Evaluation: Spatiotemporal Frequency Distribution of Lightning291

To evaluate the frequency distribution of the modeled lightning indices to that of292

the observations, the spatiotemporal probability density functions (PDF; not shown) are293

calculated for each index. The PDFs are then compared to the observations using the294

Perkins skill score (PSS) (Perkins et al., 2007) from a rescaled flash density of 0.1 flashes (h km2)−1
295

onward. The PSS measures the common area between two PDFs as follows:296

PSS =

n∑
i=1

min(zs(i), z0(i)) (8)

where i is the bin index; n is the total number of bins; and zo(i) and zs(i) are the297

relative frequencies of a given bin from the observations and model, respectively. The298

PSS is a measure for non-linearities between two datasets. A PSS of 1 means that two299

PDFs are identical, while a value < 0.7 indicates that the two PDFs differ significantly300

according to Perkins et al. (2007).301

2.4.5 Evaluation: Spatial Pattern and Diurnal Climatology of Lightning302

To evaluate the different experiments in terms of their capability to simulate light-303

ning in space and time, the 6-year average spatial patterns of daily flash densities and304

the 6-year averaged diurnal cycle are computed. The results are compared with the CLDN305

observations by means of the spatial Pearson correlation coefficients (R), for each of the306

experiments. For the diurnal cycle, the 6-year averaged diurnal cycle is for each grid cell307

in space evaluated against the CLDN observations. For consistency, the results of the308

3 km experiments are regridded to match the resolution of the 9 km simulations.309

2.4.6 Evaluation: Event-Based Skill Assessment of Lightning310

Lastly, the predictive performance of the different experiments is also evaluated on311

an ’event-by-event’ (i.e. grid cell per grid cell and time step per time step) basis by us-312

ing the following evaluation metrics: (i) the probability of detection (POD, equation 9),313

(ii) the critical success index (CSI, equation 10), (iii) the bias (equation 11), and (iv) the314

success ratio (SR, equation 12). These four metrics can be easily presented together in315

a single “performance diagram” as shown in Roebber (2009). The POD, CSI and SR all316

range between 0 and 1, with 1 a perfect score. The bias, defined here as the ratio of the317

observed events and the predicted events, ranges from 0 to infinity, but still has 1 as a318

perfect score. Because of the way Roebber (2009) designed their performance diagram,319

predictions that are further to the top-right are more accurate than points closer to the320

bottom-left. Additionally, ideal predictions are located on the bias=1 diagonal. The met-321

rics are calculated as follows,322

POD =
TP

TP + FN
(9)

CSI =
TP

TP + FP + FN
(10)

bias =
TP + FP

TP + FN
(11)

SR = 1− FP

TP + FP
(12)

where TP, FP, TN, and FN are the true positive (hits), false positive (false alarms),323

true negative (correct negatives), and false negative (misses) lightning predictions.324

To calculate these four skill metrics, the model output and the observations are ag-325

gregated to a 72x72 km2 grid and a 6-hourly time interval. This aggregation was done326
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to reduce the effects of the temporal and spatial inaccuracy of the atmospheric inputs327

on the skill of the lightning indices. The performance diagram proposed by Roebber (2009)328

provides a summary of both spatial and temporal simulation performance.329

3 Results and Discussion330

3.1 Precipitation and Surface Energy Fluxes331

Figure 2. 6-year averaged summer precipitation (a-e), latent heat flux (f-j) and sensible heat

flux (k-o) estimated by MERRA-2 and the 4 different model configurations (G4ICE - 9 km,

G4ICE - 3 km, THOM - 9 km and THOM - 3 km). The spatial mean (m) and standard devia-

tion (s) are provided at the top of each figure.

Figure 2 shows the 6-year (2015-2020) averaged daily precipitation, LH, and SH332

from the NU-WRF simulations compared with MERRA-2 data. MERRA-2 (first col-333

umn) has a known yearly average positive bias for the boreal summer LH of 20 W m−2
334

and globally overestimates the SH by 6 Wm−2, on average (Draper et al., 2018). Although335

these biases were not determined specifically for our study domain, they here serve as336

inidication of a possible bias.337

Compared to the MERRA-2 data, the G4ICE - 9 km simulation shows a similar338

mean precipitation (2.92 and 2.97 mm day−1 for G4ICE - 9 km and MERRA-2, respec-339

tively), whereas the G4ICE - 3 km simulation shows a slight underestimation (2.45 mm day−1).340

Both the THOM - 9 km and THOM - 3 km simulations show an overestimation of the341

spatially averaged daily precipitation rate, with 4.33 and 3.25 mm day−1, respectively.342

The THOM simulations mainly show a higher precipitation rate around topographic struc-343

tures in the center and western part of the study domain (see Figure 1b), likely associ-344

ated with orographic precipitation (Smith, 1979). This sensibility to topography is also345

seen for the G4ICE simulations and MERRA-2 but is less pronounced. Orographic clouds346

are primarily composed of supercooled liquid water. Therefore, the representation of this347

microphysical variable by the MP scheme will greatly influence the presence of orographic348

precipitation (Sarmadi et al., 2019). Since the G4ICE MP is a single moment scheme349

and the THOM MP is a double moment scheme, both schemes simulate hydrometeors350

differently (Dawn & Satyanarayana, 2020). Sarmadi et al. (2019) also found that differ-351
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ences in simulated precipitation are mainly due to uncertainties in the physical processes352

of the model. Thus, the difference in simulated hydrometeors explains part of the ob-353

served differences in precipitation.354

Both MP schemes produce a southwest-northeast gradient of decreasing LH, while355

for SH, the gradients disagree. The G4ICE simulations show a southwest-northeast gra-356

dient of decreasing SH, while the opposite is observed for the THOM simulations. For357

both surface energy fluxes, MERRA-2 shows a more uniform pattern of generally higher358

values. The differences are strongest over the Great Slave Lake where both MP schemes359

produce lower surface energy fluxes. Despite their diverging spatial gradients, the spa-360

tial means of the LH of both THOM simulations (84.87 and 80.33 W m−2 for 9 km and361

3 km resolution, respectively) are similar to that of the MERRA-2 (83.33 W m−2), while362

those of the G4ICE simulations are significantly lower (61.07 and 56.81 W m−2, respec-363

tively). Similar conclusions can be made for the average SH, with the G4ICE simula-364

tions showing lower averages compared to both MERRA-2 and the THOM simulations.365

The fact that both LH and SH are lower for G4ICE, indicates that this MP scheme re-366

flects more radiation than the THOM scheme. This consequently results in lower sur-367

face temperatures (not shown here).368

3.2 Lightning Simulations369

3.2.1 Spatiotemporal Frequency Distribution370

Figure 3. Spatiotemporal frequency distributions of the domain average hourly flash rates

for each model configuration as observed (gray), as represented by the LPI, LT3, PR92W, and

CAPExP parameterizations after linear rescaling to match the observations.

Figure 3 compares the spatiotemporal frequency distribution of the observed hourly371

flash density (in gray) and the model output for each experiment. The PSS values of these372

frequency distributions are presented in Table 2. The time dependent graphs in Figure373

3 and the tabular data of PSS in Table 2 together show a clear improvement at 3 km374

compared to 9 km for all experiments, with the exception of PR92W for the THOM MP375

(PSS of 0.88 and 0.87 for 9 and 3 km, respectively), and CAPExP for the G4ICE MP376

(with a PSS value of 0.94 for both resolutions). The largest improvements can be seen377

for the LT index, with PSS values increasing from 0.02 to 0.65 and from 0.08 to 0.78 for378

the G4ICE and THOM simulations, respectively. Note that the PSS is only calculated379

for flash densities higher than 0.1 flashes h−1 km−2, as the lower values were influenced380

by the cutoff value applied during the rescaling (see section 2.4.2).381
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Both MP schemes fail to provide an accurate prediction for LT, with only three or382

four different predicted flash densities at 9 km. For the other indices, the G4ICE - 3 km383

model configuration provides the highest PSS values. This model configuration also cap-384

tures both the lowest as the highest flash densities better than the other configurations,385

as shown in Figure 3. This superiority of the convection-permitting resolution can also386

be seen for the THOM MP scheme.387

Table 2. PSS values for the different model configurations and indices.

Index G4ICE - 9 km G4ICE - 3 km THOM - 9 km THOM - 3 km

LPI 0.89 0.93 0.89 0.91
LT 0.02 0.65 0.08 0.78

PR92W 0.81 0.88 0.88 0.87
CAPExP 0.94 0.94 0.90 0.91

3.2.2 Spatial Patterns388

The spatial pattern of the 6-year average flash density of the CLDN observations389

(Figure 4a-d) shows a southwest-northeast gradient of decreasing lightning. The main390

cluster of lightning for the CLDN observations also shows agreement with the greenness391

fraction shown in Figure 1. This cluster is not seen in the simulation output. For the392

G4ICE simulations, the main area of lightning is in the southern half of the study do-393

main, with relatively few flashes in the northeastern corner. The main cluster for the THOM394

simulations has shifted towards the center of the domain, especially for LPI and CAP-395

ExP. A comparison of the spatial R values shown in Figure 5 shows that the G4ICE -396

3 km configuration (R = 0.43 - 0.57), is superior to the other model configurations in397

terms of predicting the spatial pattern of the CLDN observations, with the exception of398

the CAPExP index, which performs better at a coarser resolution. Even though this model399

configuration also fails to predict the exact cluster of the observed lightning occurrences,400

it does show the southwest-northeast gradient of decreasing lightnig that is also in the401

CLDN observations. THOM - 3 km also shows higher correlations than THOM - 9 km,402

except for CAPExP (R = 0.26 and 0.25 at 9 km and 3 km, respectively). Romps et al.403

(2018) found that CAPExP performed very well at a 0.5° grid, indicating that this in-404

dex might work better at a coarser resolution. Brisson et al. (2021) state that CAPExP405

shows problems at convection-permitting resolutions because explicitly resolving con-406

vection leads to a null CAPE if there is convective precipitation. Prein et al. (2015), on407

the other hand, found that convection-permitting resolutions improved the representa-408

tion of extreme precipitation and summertime convection. Both are directly used by the409

CAPExP index. This better representation of convection at the finer resolution also ex-410

plains the better performance of the indices that depend on the maximum vertical up-411

draft velocity, as convection determines the theoretical maximum updraft velocity (Bao412

& Sherwood, 2019).413

For all four model configurations, LT and PR92W show clear line structures that414

are not seen for any of the other indices. Both indices depend strongly on the maximal415

vertical updraft velocity (see equations 4 and 5). Among all other indices, only LPI is416

dependent on the updraft velocity, but also strongly depends on other atmospheric vari-417

ables (see equation 1). A map of the maximal updraft velocity for each grid cell (not shown418

here) shows very similar line-like structures as those seen for LT and PR92W, support-419

ing this strong dependence on this atmospheric variable. One weather phenomenon that420

is known to go along strong updrafts is a squall line, a line of thunderstorms that forms421

along a cold front and is characterized by frequent lightning and strong updrafts (Newton,422

1950). Another explanation is so-called topographic convergence. The observed line struc-423
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Figure 4. 6-year average total daily flash density for the months of June through August of

2015-2020 for the observations (CLDN), LPI, LT, PR92W, and CAPExP parameterizations and

for each model configuration (G4ICE - 9 km, G4ICE - 3 km, THOM - 9 km and THOM - 3 km).

The spatial mean (m) and standard deviation (s) are provided at the top of each figure.

tures correlate well with the location of terrain height differences, as shown in Figure 1.424

Due to the elevated terrain, the wind flow is forced to go up and around the topographic425

structure, which can cause convective uplift near complex topography (Barthlott et al.,426

2006).427

The CAPExP index shows a very low flash density of < 0.01 flashes h−1 km−2 for428

the THOM simulations over and around Lake Athabasca in the southeast, making it stand429

out from the surroundings. While this is also true for the G4ICE model configurations430

over the lake, these experiments do show lightning at the edge of the lake. This can be431

explained by the difference in relative LH and SH over this lake compared to the sur-432

rounding land for both MP schemes (Figure 2). For the THOM experiments, both LH433

and SH over this lake are smaller than for the surrounding land. This implies that there434

is less energy for the formation of strong thunderstorms over the lake as compared to the435

land (Beringer & Tapper, 2002). For the G4ICE simulations, the LH of the lake is higher436

than that of the surrounding land and SH is only slightly smaller. In absolute values,437

the fluxes over the lake are higher for the G4ICE than for the THOM experiments. Since438

CAPE is highest when both LH and SH are high, this all leads to more predicted thun-439

derstorms around Lake Athabasca for the G4ICE simulations.440
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Figure 5. Spatial Pearson correlation coefficients between the 6-year summer average of each

lightning index and the CLDN observations for the 4 model configurations.

Figure 6. Six-year average diurnal cycle of the domain average flash density for each exper-

iment, diagnosed by the LPI, LT, PR92W, CAPExP indices, and compared to (gray) observa-

tions.

3.2.3 Diurnal Climatology441

Figure 6 shows the diurnal cycles of the lightning indices for each experiment to-442

gether with that of the CLDN observations (in gray). All diurnal cycles exhibit a peak443

in the afternoon around 3-5 pm local time, which matches with the peak in the refer-444

ence observations. Both THOM experiments better predict the diurnal cycle than the445

G4ICE experiments, especially at the coarser resolution and early in the morning. This446

better performance is also shown by the higher temporal R values (see Figure 7).447

The diurnal cycles of the THOM simulations show a very clear peak in the after-448

noon, starting 1 or 2 hours before (for CAPExP and LPI of THOM - 3 km) to 1 hour449

after (for LT of THOM - 9 km) the observed peak. The G4ICE simulations, on the other450
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Figure 7. Temporal Pearson correlation coefficients (R) between simulated and observed

(CLDN) six-year averaged diurnal cycle of flash density calculated for each grid cell, and grouped

by lightning index and experiment.

hand, generally peak one to three hours after the observed peak. These differences be-451

tween the simulated and observed peak are reduced for the 3 km simulations, with the452

exception of CAPExP for the THOM - 3 km experiment, for which the peak is now shifted453

to approximately 2 hours before the observed peak. In terms of absolute values, the CAP-454

ExP index for the THOM - 9 km experiment greatly overestimates the observed peak,455

whereas for the G4ICE - 9 km experiment, all indices, except CAPExP, underestimate456

the peak. The diurnal cycles in Figrue 6 and the Pearson correlation coefficients in Fig-457

ure 7 show the best agreement between CAPExP and the observed diurnal cycle, con-458

firming the findings of Romps et al. (2018) that CAPExP is good at capturing the tim-459

ing of the observed diurnal cycle. However, for the THOM - 3 km simulations, the LPI460

performs better. For all experiments, LT is the least capable of capturing the diurnal cy-461

cle of the observations.462

3.2.4 Overall Event-Based Skill Assessment463

In the previous sections, the performance of the different experiments and light-464

ning indices was evaluated either for a strong aggregation in space (long-term spatial pat-465

tern) or in time (diurnal cycle, frequency distribution), and on the basis of flash densi-466

ties. Here we present an additional assessment on an event-by-event basis using the pre-467

dictive skill scores (POD, CSI, SR, and bias) that do not take into account the absolute468

flash densitites but only the presence or absence of lightning. It is important to note that469

the bias used here is not following the conventional definition of bias in statistics, i.e. it470

is not the difference between the predictions and the observations, but rather the ratio471

of total (in both space and time) predicted grid cells with lightning occurrence over the472

total observed grid cells with lightning. By this definition, the bias does not take the tem-473

poral and/or spatial mismatch between the model and observations into account. This474

mismatch is represented in the POD, CSI, and SR.475

Figure 8 represents the performance diagram as described in Roebber (2009), show-476

ing the POD versus the SR. The blue contours represent the CSI and dashed lines the477

bias. Points further to the top right indicate a better overall accuracy for that exper-478

iment. Figure 8 shows that, by comparing for each index the different model configura-479

tions, the 3 km simulations (green) systematically have a higher POD, SR, and CSI. The480
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Figure 8. Performance diagram of the POD on the y-axis versus SR on the x-axis. The blue

contours represent the CSI and the dashed lines represent the bias. The skills were calculated on

a 72x72 km2 grid and aggregated over six hours. Different colors indicate different experiments,

while different markers indicate the different lightning indices.

bias seems less influenced by the model configuration, but rather depends on the index.481

This indicates that the indices a bias > 1 predict a lot of lightning occurrences, whereas482

those with a bias < 1 predict less lightning occurrences in general, independent of the483

model configuration.484

For all four model configurations, PR92W has a bias very close to 1, indicating that485

it predicts a similar amount of lightning occurrences in space and time as the observa-486

tions. The LPI (only for the G4ICE - 3 km experiment) shows the highest POD, but has487

a rather low SR. The LT, on the other hand, has the highest SR for all model configu-488

rations, but also the lowest POD. It is noticeable that for all lightning indices, there are489

clear clusters of the datapoints for the four model configurations. These clusters are some-490

what expected as the natural tendency of an index to predict more/less lightning would491

not change much with another MP or resolution. The different clusters can be ranked492

in order of decreasing POD, bias, or increasing SR, all resulting in the same order: (i)493

LPI, (ii) PR92W (bias of approximately 1), (iii) CAPExP, and (iv) LT.494

The high bias (> 1) of the LPI, indicates that this index systematically predicts495

more grid cells with lightning than observed after calibration. The LT, on the other hand,496

has a bias < 1, indicating that it predicts less lightning occurrences than observed. By497

predicting much less lightning occurrences than observed, the POD is naturally rather498

low and the SR high, as there are not many mismatches if not a lot of data is available.499

For the LPI, the higher POD can also be explained by the high bias: if more lightning500

is predicted, the probability of detecting observed lightning is naturally higher. But this501

high bias has the trade-off that there are more false alarms, and thus it has a lower SR.502

PR92W and CAPExP are in between the LPI and LT in terms of bias, POD and SR.503

With the bias of the PR92W almost equal to 1 for all model configurations, and SR, POD504

and CSI relatively good, especially for the 3 km simulations, this index shows a lot of505

potential over this study area. The CAPExP has more variability in terms of the skill506

scores, strongly depending on the model configuration.507
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4 Conclusion508

Global warming might enhance lightning activity in the boreal zone and lead to509

more wildfire ignitions. Therefore, there is a need for reliable lightning estimates at the510

different time scales of weather and climate simulations. In this paper, the NU-WRF model511

is evaluated with two MP schemes: (i) the Goddard 4 ICE scheme, and (ii) the Thomp-512

son scheme, both operating at a convection-parameterized (9 km) and convection per-513

mitting (3 km) horizontal resolution, leading to four model configurations: (i) G4ICE -514

9 km, (ii) G4ICE - 3 km, (iii) THOM - 9 km, and (iv) THOM - 3 km. These configu-515

rationss are first compared in their capability to simulate energy fluxes throughout the516

domain, using MERRA-2 data as a reference. To diagnose lightning flash densities from517

the model output, four lightning indices (LPI, LT, PR92W, and CAPExP) are used, re-518

sulting in 16 lightning predictions. These are evaluated for their capability to model the519

frequency distribution, spatial pattern and diurnal cycle of CLDN observations. Addi-520

tionally, four predictive event-based skill scores are compared for all combinations of model521

configurations and lightning indices. The main results can be summarized as follows.522

1. For the evaluation of the precipitation and the surface energy fluxes, the THOM523

simulations show a similar spatially averaged LH and SH as MERRA-2, which how-524

ever has a known positive bias for both LH and SH. The G4ICE simulations do525

not show this bias and result in a spatial average of both LH and SH that is ap-526

proximately 20 and 6 W m−2 lower than those of MERRA-2.527

2. For the spatial pattern, no model configuration predicts the observed cluster of528

high lightning occurrence in the southwestern part of the domain. Only the G4ICE -529

3 km simulations are capable of reproducing the southwest-northeast gradient of530

decreasing lightning that is seen for the observations (with higher spatial R val-531

ues than other for configurations). In general, the convection-permitting resolu-532

tion is superior to the convection-parameterized resolution, except for the CAP-533

ExP index, which is a lightning index that is known to perform better at a coarser534

resolution (Romps et al., 2018).535

3. For the diurnal cycle, the THOM MP scheme performs better than G4ICE. CAP-536

ExP is superior to the other lightning indices, except for the THOM - 3 km setup,537

and LT performs the worst. A clear benefit of using the finer resolution is only538

seen for the G4ICE experiments.539

4. The event-based skill scores, represented in a performance diagram, support that540

the convection-permitting modeling at 3 km resolution leads to a generally higher541

performance for all model configurations and lightning indices.542

5. No MP scheme is found to be superior for all evaluated aspects. Whereas the THOM543

MP scheme results in a better timing for most indices, the G4ICE scheme results544

in a better predicted spatial pattern.545

6. No lightning index is found to be superior for all evaluated aspects.546

Based on those results, we conclude that diagnosing lightning indices from the out-547

put of a convection-permitting model seems to be beneficial. However, we emphasize that548

this conclusion is only valid for the applied model configurations, that is, using another549

MP, PBL, or cumulus parameterization scheme might lead to a different conclusion.550

Furthermore, it is important to note that the performance of all lightning indices551

strongly depends on the capability of the atmospheric model to accurately represent the552

required input parameters for the lightning indices. An error in the model representa-553

tion of e.g. updraft velocity will lead to an error in the PR92W index. Our finding that554

no lightning index was generally superior to another is thus to be seen in light of the at-555

mospheric model skill. The performance of the lightning indices may depend differently556

on forecast skill. Since the model skill of a specific forecast is not well known beforehand,557
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decisionmakers and forest managers might consider to use an ensemble of different light-558

ning indices for the estimation of lightning probability.559

Based on the results from this study, we could also make some suggestions for fu-560

ture work. A first suggestion is based on the relative poor representation of the spatial561

pattern of lightning. An improved representation of the boreal land mosaic, consisting562

mainly of forests and peatlands, might be needed in the land surface modeling compo-563

nent (Bechtold et al., 2019; Qiu et al., 2018; Melton et al., 2019), since peatlands and564

forests substantially differ in their partitioning of energy fluxes (Helbig et al., 2020). A565

second suggestion, directed to future lightning predictions in different climate scenar-566

ios is to not use a linear rescaling to make the different lightning indices comparable. In-567

stead, it might be better to calibrate the different parameters of the different lightning568

indices in order to better account for non-linearities.569
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