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Abstract

The structure of the lowermost mantle and the core-mantle boundary (CMB) has profound implications for Earth’s evolution

and current-day dynamics. Whilst tomographic studies of Vs show good agreement in the lowermost mantle, consensus as to

Vp and especially CMB radius has not yet been reached. We perform a hierarchical Bayesian inversion for Vp in the lowermost

300 km of the mantle and the radius of the core-mantle boundary using differential travel time data. Concurrent with finding

Vp perturbations of 0.56% RMS amplitude that spatially agree with previous studies in areas of low posterior variance, we find

4.5 km RMS amplitude core-mantle boundary radius perturbations with a broadly north-south hemispherical character, with

spherical harmonic power evenly distributed between degrees 1-3. These results suggest that CMB radial processes are set by

a longer scale process than the Vp perturbations.
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Key Points:

• We derive a Bayesian inversion of lowermost mantle VP structure and core-mantle
boundary (CMB) topography with differential traveltime data.

• The spectra of VP perturbations is wide, while CMB perturbations are mainly con-
strained to l = 1–3.15

• These results suggest the CMB is strongly deformed by dynamic topography, and
do not require a low viscosity channel in the lowermost mantle.
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Abstract
The structure of the lowermost mantle and the core-mantle boundary (CMB) has pro-
found implications for Earth’s evolution and current-day dynamics. Whilst tomographic20

studies of VS show good agreement in the lowermost mantle, consensus as to VP and es-
pecially CMB radius has not yet been reached. We perform a hierarchical Bayesian in-
version for VP in the lowermost 300 km of the mantle and the radius of the core-mantle
boundary using differential travel time data. Concurrent with finding VP perturbations
of 0.56% RMS amplitude that spatially agree with previous studies in areas of low pos-25

terior variance, we find 4.5 km RMS amplitude core-mantle boundary radius perturba-
tions with a broadly north-south hemispherical character, with spherical harmonic power
evenly distributed between degrees 1–3. These results suggest that CMB radial processes
are set by a longer scale process than the VP perturbations.

Plain Language Summary30

The most important internal bounday of the Earth is the core-mantle boundary
(CMB), between the liquid iron outer core and the rocky mantle above it. The shape
of this boundary has important implications for how the Earth has evolved through time,
in particular due to being an indication about how heat flows out of the core and into
the mantle. However, determining this shape has remained stubbonly difficult for the35

past 40 years. In this paper, we use a dataset that is particularly targeted towards this
region to image the CMB shape and the lowermost mantle using a robust statistical method.
We find that the CMB boundary has large hills and valleys, but is relatively smooth com-
pared to the complex structure of the lowermost mantle above it.

Introduction40

The core-mantle boundary (CMB) to lowermost mantle interface is the most sig-
nificant internal discontinuity of the Earth, defining an abrupt shift between the extremely
viscous silicate mantle and the comparatively inviscid liquid iron-nickel alloy of the outer
core. The abrupt shift in viscosity furthermore induces a thermal boundary layer in the
highly heterogenous base of the mantle, presumptively with lateral variability in heat45

flux through the CMB contributing to mantle convection patterns. Heat flux patterns
at the CMB, in turn, imprint themselves on the rapid dynamics of outer core convec-
tion and potentially on the crystallization of the inner core.

In particular, determination of CMB topography may help to distinguish the dy-
namical behaviour of lowermost mantle convection and lowermost mantle density Koele-50

meijer (2021). For example, Deschamps et al. (2018) studied the correlation between ob-
served CMB topography, and the predicted topography from geodynamical simulations
with varying viscosity and density profiles, including both static and dynamic effects.
They found that CMB topography was more consistent with a thermochemical LLSVP
model with high density contrast, rather than models with lower density contrasts or purely55

thermal models. However, due to the large discrepancies between published CMB to-
pographic maps, explicit the characteristics of spatial correlations between LLSVP and
CMB topography have not yet been determined. Multiple methodologies have been em-
ployed to attempt to resolve CMB topography (and the coupled LLSVP density prob-
lem), from body wave seismic studies (Morelli & Dziewonski (1987); Doornbos & Hilton60

(1989); Obayashi & Fukao (1997); Sze & van der Hilst (2003); Tanaka (2010); Schlaphorst
et al. (2016)), coupled body wave / geodynamic parametrizations (Obayashi & Fukao
(1997); Soldati et al. (2012, 2014)), normal mode studies (Ishii & Tromp (1999); Kuo &
Romanowicz (2002); Koelemeijer et al. (2017)) and tidal tomography (Lau et al. (2017)),
with typically contradictory results. There is currently little consensus as to the spatial65

distribution of CMB radius and density anomalies in the lowermost mantle, beyond gen-
eral agreement from recent works that CMB topographic fluctuations are probably con-
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strained to be < 10 km in peak to peak amplitude, and have generally been found to be
smaller — a comprehensive review of extant seismic observations of CMB topography
and related lowermost mantle density inversions is provided by Koelemeijer (2021). Con-70

sequently, further body wave tomographic studies are required to provide independent
constraints on CMB topography. In particular, due to the dependence of CMB topog-
raphy to the viscosity profile of the lowermost mantle (Yoshida (2008)), coupling CMB
topography to lowermost mantle velocity perturbations via a geodynamical parametriza-
tion scheme (e.g. Soldati et al. (2012)) renders the resultant CMB image highly sensi-75

tive to the assumed viscosity profile of the lowermost mantle, which remains largely un-
known — assuming pure isostasy (e.g. Obayashi & Fukao (1997)) is insufficient due to
the significant effect of dynamic topography at long wavelengths.

Towards providing better constraints on the effect of the CMB on the dynamics
of both the outer core and the mantle, our study performs a joint, spatially resolved in-80

version of lowermost mantle VP perturbations and CMB radius using handpicked body
wave differential travel times. The large tradeoff between CMB radius and lowermost
mantle velocity perturbations suggests that a joint inversion, using data highly sensitive
to CMB radius perturbations, is required to adequately discriminate between both pro-
cesses (Garcia & Souriau (2000)). Indeed, in a careful study of ISC travel times, Rodgers85

& Wahr (1993) found that contributions from mantle heterogeneity dominated the CMB
signal which were both in turn dominated by random noise; we aim to improve this sit-
uation both by using higher quality handpicked data and by performing joint inversion.
Past body wave inversions have typically relied on absolute travel times for P phases.
Because of the potentially significant accumulated perturbations to absolute travel times,90

large residuals in absolute data are not uncommon. We use three differential travel time
datasets (PcP-P, PKPab-PKPbc, P4KP-PcP), carefully chosen to have complementary
sensitivity for the joint inversion problem, while having restricted sensitivity to poten-
tial contamination from the upper mantle and core. In order to appropriately weight the
datasets for their unknown uncertainties, we employ a hierarchical Bayesian formulation,95

using Hamiltonian Monte Carlo to efficiently traverse the inverse problem posterior dis-
tribution. We use a data-driven posterior predictive performance metric (PSIS-LOO) to
estimate the required complexity of the inversion and appropriately truncate our model
parameterization, avoiding spurious detail. The resulting inversion rigorously quantifies
the uncertainties associated with this tailored dataset.100

Data and Methods

We use three complementary datasets of differential body-wave travel time picks
for this study. The first two datasets are the PcP-P and PKPab-PKPbc described in J. Muir
& Tkalčić (2020), which in turn derive from Tkalčić et al. (2002) and Young et al. (2013)
for the PcP-P data, Tkalčić et al. (2002), Leykam et al. (2010) and Young et al. (2013)105

for the PKPab-PKPbc data, and Tanaka (2010) for the P4KP-PcP data. All data is cor-
rected for the Earth’s ellipticity (Dziewonski & Gilbert (1976)), referenced to the ak135
1D velocity model (Kennett et al. (1995)) and further corrected for large scale mantle
velocity structure using the model of Della Mora et al. (2011) to maintain consistency
with Young et al. (2013) and J. Muir & Tkalčić (2020). The PcP-P dataset consists of110

680 measurements with an epicentral distance of 55◦–70◦, derived by hand-picked wave-
form matching of either 0.5–2 Hz bandpass filtered traces or unfiltered traces. The PcP-
P dataset provides the most comprehensive coverage of the lower mantle, but is also the
most affected by 3D heterogeneity of the upper mantle. The PKPab-PKPbc dataset was
synthesized from finding common source/receiver pairs in a collection of PKPab-PKPdf115

and PKPbc-PKPdf data, resulting in 385 measurements. The original dataset was again
hand-picked (by matching unfiltered waveforms with the Hilbert transform applied to
the PKPab phase). The PKPdf contribution was removed to avoid contamination by the
significant heterogeneity in the upper layers of the inner core. The PKPbc phase only
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exists in an epicentral distance range of 145◦–155◦ and consequently the PKPab-PKPbc120

dataset is constrained to this range. The P4KP-PcP consists of 362 sets of differential
travel time measurements, using 34 events and 242 stations. The data were selected us-
ing only unambiguous PcP and P4KP identifications, to minimize onset picking error.
The distribution of the stations is predominantly concentrated in Japan, Australia and
North America, and the events are concentrated in the Western Pacific and northern South125

America. Hence the paths of the P4KP and PcP phases in the lowermost mantle are pri-
marily in Asia and Central America. P4KP ray paths sample the CMB in both trans-
mission and bottomside reflection, which renders the P4KP-PcP dataset very sensitive
to CMB topography. Of the various “PmKP” phases, P4KP is particularly insensitive
to lowermost mantle heterogeneity when using differential travel time measurements, as130

its path is extremely close to the PcP ray at the same epicentral distance, as can be seen
in Figure 1. High-frequency measurements of P4KP can be made due to very low, near
zero, attenuation in the outer core. Consequently, P4KP-PcP is a good complementary
dataset to PcP-P and PKPab-PKPbc which are more sensitive to lowermost mantle het-
erogeneity. Tanaka (2010) estimates a measurement error of approximately 0.5 s for this135

dataset, and notes that previous CMB radius inversions (Morelli & Dziewonski (1987);
Doornbos & Hilton (1989); Sze & van der Hilst (2003)) do not significantly reduce the
residuals of this data. The P4KP data contains waves that propagate beyond the ray-
theoretical distance limit due to a tunneling effect at the CMB (Aki & Richards (2002)).
These waves may be assumed to travel at the P-wave velocity of the lowermost mantle140

directly above the CMB (Phinney & Alexander (1966); Tanaka (2010)). The effect of
topography on the travel time is included by splitting the interaction with the CMB into
two parts; a contribution from the first half of the transmission at the start of the diffracted
path, and then from the second half of the transmission at the end. This approximation
does not take into account the topography along the path. However, this approximation145

is necessary to avoid recalculating the diffracted paths as topography changes, which is
computationally unfeasible in the MCMC sampling context.

To study the three datasets described above, we performed a joint inversion for low-
ermost mantle VP structure and CMB topography, following the study of J. Muir & Tkalčić
(2020), which we summarize here, noting the adjustments performed to include the in-150

version for CMB radius. We modeled perturbations to the CMB radius and slowness rel-
ative to the ak135 (Kennett et al. (1995)) reference model using a spherical harmonic
expansion of maximum degree l′, with the optimal l′ calculated as part of the inversion
process. We calculated linear sensitivity kernels relating these perturbations to the dif-
ferential travel times using rays drawn using the AK135 reference model by the Obspy155

taup module (Beyreuther et al. (2010)), which can account for the diffracted P4KP waves.
We used the correction equations of Dziewonski & Gilbert (1976) to calculate kernels Gδr

in respect to perturbations in CMB radius at pierce points, and integrated along the ray-
paths to calculate kernels Gδs in respect to perturbations in slowness. After Young et
al. (2013), we perturbed slowness in the lowermost 300 km of the mantle only, and as-160

sumed that slownesses were radially constant within that depth range. The reference ve-
locity for these perturbations is the radial average over the lowermost 300 km, which gives
13.61 km/s. For computing the effect of radius perturbations, we used a velocity of 13.66
km/s above the CMB and 8.0 km/s below the CMB, and a reference radius of 3479.5
km. While anisotropy is an important consideration for a full description of the lower-165

most mantle, the effect on P-wave energy is likely dominated by short scale structures
associated with flow gradients (e.g. Garnero et al. (2004)), that will be smoothed by the
long-wavelength tomography we investigate in this study; therefore we do not include
the effect of anisotropy in our forward predictions.

The forward model prediction ∆t∗(qδr, qδs) for the inversion for the collected dif-170

ferential travel time data ∆t is then

∆t∗(qδr, qδs) =

[
Gδr

Gδs

]T [
qδr
qδs

]
, (1)
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a)

b)

Figure 1. Summary of data used in this study. a) shows characteristic ray paths through the

lowermost mantle, and their CMB pierce points. b) shows the map projection of these paths and

pierce points in the lowermost 300 km of the mantle. HALF PAGE WIDTH
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for spherical harmonic expansion coefficients of CMB radius qδr and lowermost mantle
slowness qδs. The PcP-P dataset contributes heavily to the VP sensitivity and relatively
little to CMB radius sensitivity; P4KP-PcP is the opposite, while PKPab-PKPbc con-
tributes moderately to sensitivity to both components and also adds additional sensi-175

tivity to odd-degree CMB radius structure. Of note are the large number of similar PKPab-
PKPbc rays that form a subset with nearly the same sensitivity, and the relative lack
of sensitivity of P4KP-PcP to odd-degree CMB structure. Recent work on finite-frequency
kernel calculations for CMB sensitive phases (e.g. Koroni et al. (2021)) have also stressed
the relative lack of sensitivity of “traditional” phases (PKP, PcP) to CMB structure com-180

pared to their sensitivity to volumetric lowermost mantle velocity perturbations, high-
lighting the importance of tailoring the dataset to the CMB through the inclusion of P4KP.
The relative sensitivity of the three datasets to VP and CMB radius is shown in Supple-
mentary Figure S1.

We use a hierarchical Bayesian modeling framework to account for the unknown185

data uncertainties σPcP−P , σPKPab−PKPbc and σP4KP−PcP , and a priori unknown scales
σδr and σδs of qδr and qδs respectively. These five unknown scales σ act as hyperparam-
eters for the inversion, and are simultaenously with the main parameters. The posterior
probability distribution is calculated via Bayes’ theorem as the product of data likeli-
hood, prior distribution and hyperprior distribution:190

P (qδr, qδs,σ|∆t) = P (∆t|qδr, qδs,σ)P (qδr, qδs|σ)P (σ). (2)

This hierarchical modeling framework makes the inversion non-linear despite the linear
foward model, but has the advantage of marginalizing over unknown errors when the pos-
terior statistics are calculated. The data are assumed to follow a Gaussian distribution,
so that the data likelihood for e.g. the PcP-P dataset is calculated by multiplying the
likelhood for each datum as follows:195

P (∆tPcP−P |qδr, qδs, σPcP−P ) =

#PcP−P∏
i=1

1√
2πσ2

PcP−P

exp

[
−

(∆tPcP−P −∆t∗PcP−P (qδr, qδs))
2
i

2σ2
PcP−P

]
.

(3)
Given that we are inverting for perturbations about a well established reference model,
we set the prior distributions for qδr and qδs to be normal distributions with zero mean
and standard deviations of σδr and σδs, respectively. Following J. Muir & Tkalčić (2020),
we use half-normal distributions with wide standard-deviations for the hyperprior dis-
trubutions. The hyperprior for e.g. σδr is given by200

P (σδr) =

√
2√

π2ν2δr
exp

[
− σ2

δr

2ν2δr

]
, σδr > 0, (4)

with the five ν set to the values in Supplementary Table S1. The total posterior distri-
bution is given by multiplying the three data likelihoods, two priors and five hyperpri-
ors together. The total number of parameters is therefore 2(2l′ + 1) + 5. Due to the
aforementioned non-linearity of the posterior, we characterise the parameters by using
Markov-Chain Monte-Carlo (MCMC) methods to sample from the posterior distribu-205

tion. Expectation values (e.g. the posterior mean perturbations velocity and CMB ra-
dius) are easily computed from MCMC chains, and automatically marginalize over the
unknown hyperparameters. MCMC sampling is computationally expensive, and for this
problem the number total parameters could be in excess of 100, which is infeasible for
classical MCMC methods such as the Metropolis-Hastings method. In order to efficiently210

sample, we used Hamiltonian Monte-Carlo (HMC), which uses gradient information in
the posterior to improve the rate of mixing of the MCMC chains (Neal (2011); M. Be-
tancourt et al. (2017)). The efficiency of HMC in sampling large, weakly nonlinear prob-
lems make it eminently suitable for many geophysical problems (e.g. Sen & Biswas (2017);
Biswas & Sen (2017); Fichtner & Simutė (2018); Fichtner et al. (2019); J. Muir & Tkalčić215

(2020); Fichtner et al. (2021)). In this study, we used the STAN (Carpenter et al. (2017))
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language to define the model and automatically compute the posterior gradients. The
efficiency of sampling is further improved by transforming the parameters into a non-
centered coordinate system (M. J. Betancourt & Girolami (2013)), by defining qδr =
σδrq

′
δr and qδs = σδsq

′
δs. The prior distribution for the auxiliary variables q′δr and q′δs220

are standard normal distributions with zero mean and unit standard deviation. This co-
ordinate transform avoids the “funnel” effect (Neal (2003)) that is a common pathology
for hierarchical Bayesian models with relatively large data uncertainty. To check that
MCMC chains are appropriately sampling, we used a variety of diagnostics as suggested
by the STAN team, including confirming inter-chain consistency with the R̂ metric, en-225

suring a lack of divergences during sampling etc. (Gelman et al. (2013)).

In order to appropriately match the complexity of the model parametization to the
data, we performed the inversion for expansions of maximum degree l′ = 0–15. As in J. Muir
& Tkalčić (2020), we use the PSIS-LOO estimator (Vehtari et al. (2017)) of the leave-
one-out cross-validation (LOO-CV) score for each degree to assess model complexity. The230

LOO-CV score for a collection of data d is given by

LOO-CV(d) =
∑
i

logP (di|dj 6=i) (5)

where the posterior predictive for the left-out data di is given by

P (di|dj 6=i) =

∫
P (di|q)P (q|dj 6=i)dq. (6)

Explicit computation of LOO-CV is expensive, as it requires marginalization (i.e. a full
MCMC run) over model parameters for each data point to compute the integral in Equa-
tion 6; the PSIS-LOO estimator gives accurate results for the great majority of data points235

using a single MCMC run. The remaining data points for which PSIS-LOO fails may
be identified and sampled normally, overall resulting in a substantial computational sav-
ing (Vehtari et al. (2017)). We apply Occam’s razor to the LOO-CV results, taking the
lowest l′ for which no higher tested l′ give a better result within a 2 standard deviation
uncertainty in LOO-CV predicted performance.240

Results and Discussion

We first investigate the estimated LOO-CV curve for different maximum degrees
l′ to set the expansion degree for the rest of the analysis. Figure 2 shows the estimated
LOO-CV score, relative to a maximum degree l′ = 8. Error bars in the difference of
the score are given at the 2 standard deviation level. We see that the score rapidly im-245

proves up to l′ = 8, and then saturates for higher degrees, with no statistically signif-
icant improvement of the score on adding more parameters to the inversion. As such,
the remainder of this study takes l′ = 8 as the highest degree of expansion for both CMB
and lowermost mantle inversion that can be supported by the data. We note that it is
possible to perform the expansion at different maximum degrees for the lowermost man-250

tle and CMB radius inversions, however this complicates comparison between the com-
ponents of the model and so we do not investigate it here. A similar alternative method-
ology would be to marginalize over the maximum expansion degree using automatic rel-
evance determination (ARD), which uses additional hyperparameters to dynamically re-
move complexity from within the MCMC chain (Valentine & Sambridge (2018)). How-255

ever given the rapid saturation of performance l′ = 8 appears not to warrant the ad-
ditional computational expense of ARD in this case.

The resulting VP model (in Figure 3, with residual histograms in Supplementary
Figure S2) is strongly similar to J. Muir & Tkalčić (2020), which is an inversion of the
lowermost-mantle only and does not include the P4KP-PcP dataset but otherwise uses260

the same methodology. Consequently, the model is also similar to Young et al. (2013),
from which the PcP and PKPab-PKPbc datasets were derived, although Young et al.
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Figure 2. Relative LOO-CV performance for degrees l′ = 0–15. LOO-CV scores are given rel-

ative to l′ = 8, with error bars showing the uncertainty in the difference at a 2 standard deviation

level. HALF PAGE WIDTH

(2013) used a transdimensional Bayesian approach and inverted PKPab and PKPbc data
relative to the PKPdf phase, which also samples the highly heterogenous outer layers
of the inner core. The VP RMS perturbation is 0.56%, which is smaller than the 0.71%265

reported in J. Muir & Tkalčić (2020) and the 0.87% reported in Young et al. (2013), po-
tentially as the residuals in previous inversions contained unmodelled contributions from
the CMB topography (and inner core for Young et al. (2013)), but also potentially due
to smoothing induced by truncation of the model to a lower degree. That spatial dis-
tribution of velocity perturbations is very similar between the three models suggests that270

the errors induced by not taking into account CMB perturbations did not significantly
impact the conclusions drawn by the two previous studies using these data for Bayesian
inversion. As earlier discussed in J. Muir & Tkalčić (2020), this spatial pattern is dom-
inated by a large fast patch underneath Asia, and broad areas of low velocity that cor-
respond with the locations of the large low velocity provinces albeit with greater con-275

nectivity, as suggested by the model of Hosseini et al. (2020). The fast velocities under
the east Pacific in this model are in the region of the highest model uncertainty due to
a lack of ray coverage, and are not in disagreement with the general shape of the Pacific
LLVP at a statistically significant level. Following J. Muir & Tkalčić (2020), the most
interesting outcome of this VP inversion is that when this diverse collection of short-period280

differential travel times is used for lowermost mantle VP inversion, the resulting power
spectrum is relatively flat rather than being red — degree 2 power is the strongest but
is not dominant — which tends to support a view of a thermally driven lowermost man-
tle with multiscale structure (Tkalčić et al. (2015)). The large degree 0 component is likely
due to the ray-average velocity being different to the vertical-average velocity in the low-285

ermost 300 km of the mantle.

Contrary to the distribution of VP perturbations, our inversion for CMB radius,
shown in Figure 3 shows a map dominated by power distributed between degrees 1-3,
again with a large degree 0 component that can be regarded as a static correction as the
CMB mean radius is not constrained. The RMS CMB perturbation is 4.5 km, and the290

pattern has strong qualitative resemblance to Tanaka (2010), although with significantly
increased amplitude. Given that we believe degree 8 is potentially resolvable given our
data, this suggests that the inversion in Tanaka (2010) is oversmoothed due to basis trun-
cation. Figure 4 shows the correlation structure between velocity and CMB radius per-

–8–



manuscript submitted to Geophysical Research Letters

a)

c)

e)

b)

d)

f)

Figure 3. Summary of the outcomes of the inversion; a) shows the mean percentage pertur-

bation in VP , c) shows the standard deviation of the MCMC chain for percentage perturbation

of VP , and e) shows the power spectrum as a function of l. All assume a reference velocity of

13.61 km/s. b), d) and f) show the equivalent for the perturbation in CMB radius. All assume a

reference CMB radius of 3479.5 km. FULL PAGE WIDTH
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a)

b)

Figure 4. Correlations between CMB radius and lowermost mantle velocity. a) shows the

correlation between P slowness perturbations and topographic perturbations per degree in the

MCMC chain. b) shows the spatial correlation between VP and radius after the spherical har-

monic components are summed. The reference VP is 13.61 km/s and the reference CMB radius is

3479.5 km. HALF PAGE WIDTH
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turbations, as a function of both model parameter and spatial location. In both cases,295

we see that the correlation is relatively small in both cases, indicating that both veloc-
ity and radius perturbations do not strongly trade off. The exceptions (in well resolved
areas), seen in Figure 4 b) occur primarily underneath northern Africa and Asia where
there is a significant negative correlation between velocity perturbations and CMB ra-
dius. For PcP-P data, higher lowermost mantle velocities can be compensated by a lower300

CMB radius to maintain a constant travel time along a PcP phase. The effect is the op-
posite for P4KP, for which a lower CMB produces a faster travel time, so areas with many
rays of both PcP-P and P4KP-PcP should have better constraints on the tradeoff be-
tween CMB radius and Vp perturbations. The strong African negative correlation can
then be explained the presence of PcP-P and lack of P4KP-PcP rays. The weaker neg-305

ative correlations in Asia, where P4KP is present, may be indicative of the PcP data hav-
ing a stronger control on the posterior than P4KP; note that the posterior standard de-
viations in Asia are some of the lowest in the inversion, so despite the negative corre-
lation the absolute size of the tradeoff is relatively small. The strong positive velocity
anomaly underneath Asia is accompanied by a large positive CMB perturbation, despite310

the negative correlation. There is as yet little concordance between maps of CMB to-
pography inverted from seismic travel times, despite increasing coupled treatment of low-
ermost mantle heterogeneity. This observation remains true whether relying purely on
seismic data (Morelli & Dziewonski (1987); Doornbos & Hilton (1989); Sze & van der
Hilst (2003); Tanaka (2010)) or geodynamically coupled tomography (Soldati et al. (2012,315

2014)). This study complements previous work by performing the inversion with only
the highest quality available data, and using an inversion technique that gives us a fuller
picture of the remaining tradeoffs and uncertainties in the lowermost mantle and CMB.

The low degree structure of the CMB perturbations, in contrast to the spatially
broadband power spectrum of VP perturbations, suggests that its structure is set by longer320

wavelength processes. The lack of correlation between VP and CMB radius spatial vari-
ations also strongly suggests that the impact of isostasy on the CMB is minimal (assum-
ing scaling between density and VP perturbations), and that instead dynamic topogra-
phy is the primary contributor to the CMB radius. The amplitude of dynamic topog-
raphy due to instantaenous mantle flow scales with viscosity and the gradient of verti-325

cal flow velocity. Yoshida (2008) required either reductions of mantle viscosity compared
to a 1021Pa reference, or lateral viscosity variations, to suppress CMB amplitudes to match
the low values found by Sze & van der Hilst (2003). Our results permit a significantly
larger range of CMB radial perturbations and so do not infer a significant depression in
lowermost mantle viscosity near the CMB. From the perspective of the outer core, Calkins330

et al. (2012) showed that negative CMB topography may induce strong, persistent flow
features within the outer core convection, scaling with topographic amplitude. This to-
pographic effect significantly increases the vigour of outer core convection and hence the
rate of heat flow, providing an additional (potentially coupled) top-down control on outer
core convection beyond laterally varying heat flux due to mantle heterogeneity, and in335

turn further contributes downward pressure on estimates of inner core nucleation age (Ol-
son (2016)). Tarduno et al. (2015) invoked flux expulsion from small-scale flow struc-
tures associated with a high-topographic gradient isostatic African LLSVP to explain
the historical persistence of the South Atlantic geomagnetic Anomaly (SAA) — intrigu-
ingly, the largest negative topographic anomaly in our model is also coincident with the340

SAA, and the long wavelength topographic flow effects studied by Calkins et al. (2012)
acting on this feature may present an alternative stabilizing mechanism for persistent
geomagnetic anomalies in this region even if the African LLSVP is uplifted by dynamic
topography.

As noted by Lassak et al. (2007, 2010), the morphology of the CMB depends on345

a complex mix of density, temperature and viscosity profiles. Our model, whilst expanded
to a higher degree than previous CMB profiles, does not permit the falsification of the
various end members of potential CMB morphology without further constraints on at
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least some of these parameters. Further development of the joint tomography presented
in this work will require greater density of data coverage, especially CMB radius sensi-350

tive phases such as P4KP that require careful processing in excess of that provisioned
by catalogue data (Tanaka (2010); Schlaphorst et al. (2016)).

Conclusions

We have obtained the lowermost mantle structure along with the radial perturba-
tions of the CMB, finding that lowermost mantle velocity structure is highly multiscale,355

while the CMB radial perturbations are dominated by l < 3. Velocity amplitude per-
turbations with RMS 0.56% are in line with previous estimates of lowermost mantle het-
erogeneity, while CMB radial perturbations of 4.5 km are relatively large by the stan-
dards of recent inversions, which may be ascribed to the data-driven regularization of
the problem and appropriate joint treatment of lowermost mantle heterogeneity. These360

long wavelength CMB structures present a complementary top-down driven control on
outer core convection, in addition to lateral heat-flux variability due to structural het-
erogeneity in the lowermost mantle, and suggest a CMB landscape dominated by dynamic
topography due to mantle overturning, without a low-viscosity channel in the lowermost
mantle. Further studies of CMB topographic anomalies and their relationship to low-365

ermost mantle structure are contingent on development of larger high-sensitivity datasets
for this region, and in particular more comprehensive observations of the elusive fam-
ily of PmKP waves that have strong sensitivity to the CMB radius.

Model Availability

The model is available on Zenodo as J. B. Muir et al. (2022a) at the following URL:370

https://zenodo.org/record/6525050. The data and code used for generating the model
are also on Zenodo as J. B. Muir et al. (2022b) at the following URL: https://zenodo.org/record/6619144.
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Table S1. Table of hyperprior scales used to in the inversion.

Figure S1. Relative scale of the G kernel matrix elements shows the sensitivity of

different degrees to different rays. Elements are plotted on a symmetric log scale, other

than between ±0.03 which is on a linear scale. The VP and CMB radius kernels are

separately normalized to the maximum amplitude value of Gδs and Gδr, respectively.

The vertical axis ticks show the edges of harmonic degree l, which are ordered from

m = −l to m = l from bottom to top.
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Figure S2. Travel time residuals for the 3 datasets used in this study. a) PcP-P, b)

PKPab-PKPbc, c) P4KP-PcP Black histograms show the initial distribution of residuals,

and green histograms show the deciles of remaining residual distributions after inversion.
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: X - 3

Hyperprior scale Value (Unit)
νδr 5 (km)
νδs 5 (s/Mm)
νPcP−P 2 (s)
νPKPab−PKPbc 2 (s)
νP4KP−PcP 2 (s)

Table S1. Table of hyperprior scales used to in the inversion.
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Figure S1. Relative scale of the G kernel matrix elements shows the sensitivity of different

degrees to different rays. Elements are plotted on a symmetric log scale, other than between

±0.03 which is on a linear scale. The VP and CMB radius kernels are separately normalized to

the maximum amplitude value of Gδs and Gδr, respectively. The vertical axis ticks show the

edges of harmonic degree l, which are ordered from m = −l to m = l from bottom to top.
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Figure S2. Travel time residuals for the 3 datasets used in this study. a) PcP-P, b) PKPab-

PKPbc, c) P4KP-PcP Black histograms show the initial distribution of residuals, and green

histograms show the deciles of remaining residual distributions after inversion.
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