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Abstract

Chemical and biological composition of surface materials and physical structure and arrangement of those materials determine

the intrinsic spectral reflectance of Earth’s land surface at the plot scale. As measured by a spaceborne or airborne sensor, the ap-

parent reflectance depends on the intrinsic reflectance, the surface texture, the contribution and attenuation by the atmosphere,

and the topography. Compensation or correction for the topographic effect requires information in digital elevation models

(DEMs). Available DEMs with global coverage at ˜30 m spatial resolution are derived from interferometric radar and stereo-

photogrammetry. Locally or regionally, airborne lidar altimetry, airborne interferometric radar, or stereo-photogrammetry from

airborne or fine-resolution satellite imagery produces DEMs with finer spatial resolutions. Characterization of the quality of

DEMs typically expresses the root-mean-square (RMS) error of the elevation, but the accuracy of remote sensing retrievals is

acutely sensitive to uncertainties in the topographic properties that affect the illumination geometry. The essential variables

are the cosine of the local illumination angle and the shadows cast by neighboring terrain. We show that calculations with

globally available DEMs underrepresent shadows and consistently underestimate the values of the cosine of illumination angle;

the RMS error increases with solar zenith angle and in more rugged terrain. Analyzing imagery of Earth’s mountains from

current and future missions requires addressing the uncertainty introduced by errors in DEMs on algorithms that estimate

surface properties from retrievals of the apparent spectral reflectance. Intriguing potential improvements lie in novel methods

to gain information about topography from the imagery itself.
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Key	Points:	12 

• Mountain topography causes apparent remotely sensed reflectance to differ from 13 the intrinsic reflectance of the surface. 14 
• Errors in solar geometry derived from globally available digital elevation models 15 introduce substantial uncertainty into analyses. 16 
• Retrieval of the intrinsic reflectance and surface biogeophysical properties requires 17 assessment of and correction for topographic effects. 18   
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Abstract	19 Chemical and biological composition of surface materials and physical structure and 20 arrangement of those materials determine the intrinsic reflectance of Earth’s land surface. 21 the apparent reflectance—as measured a spaceborne or airborne sensor that has been 22 corrected for atmospheric attenuation—depends also on topography, surface roughness, 23 and the atmosphere. Especially in Earth’s mountains, estimating properties of scientific 24 interest from remotely sensed data requires compensation for topography. Doing so 25 requires information from digital elevation models (DEMs). Available DEMs with global 26 coverage are derived from spaceborne interferometric radar and stereo-photogrammetry 27 at ~30 m spatial resolution. Locally or regionally, lidar altimetry, interferometric radar, or 28 stereo-photogrammetry produces DEMs with finer resolutions. Characterization of their 29 quality typically expresses the root-mean-square (RMS) error of the elevation, but the 30 accuracy of remotely sensed retrievals is sensitive to uncertainties in topographic 31 properties that affect incoming and reflected radiation and that are inadequately 32 represented by the RMS error of the elevation. The most essential variables are the cosine 33 of the local solar illumination angle on a slope, the shadows cast by neighboring terrain, 34 and the view factor, the fraction of the overlying hemisphere open to the sky. Comparison 35 of global DEMs with locally available fine-scale DEMs shows that calculations with the 36 global products consistently underestimate the cosine of the solar angle and 37 underrepresent shadows. Analyzing imagery of Earth’s mountains from current and future 38 spaceborne missions requires addressing the uncertainty introduced by errors in DEMs on 39 algorithms that analyze remotely sensed data to produce information about Earth’s 40 surface. 41 
Plain	Language	Summary	42 Earth’s mountain regions significantly influence the planet’s climate, hydrology, ecology, 43 and geology. Studying them with remote sensing requires that we compensate for the 44 influence of topography on the reflection of solar radiation. Digital Elevation Models 45 (DEMs) are used across scientific disciplines to understand topography’s effect on the 46 remotely sensed signal. Small errors in the estimates of elevation lead to larger errors in 47 calculations of the solar illumination on the terrain and portions that are in shadow, 48 thereby leading to misinterpretation of remotely sensed imagery from satellites and 49 airplanes. Here, we present estimates of the errors and uncertainty in DEM retrievals, and 50 we identify some outright mistakes. Compensating for uncertainty will inform algorithms 51 that consider the effect of Earth’s topography, improving the characterization from satellite 52 missions of attributes of the planet’s surface.	53 
1 Introduction	54 We use remotely sensed data to derive geophysical and biological properties of 55 importance to the study of Earth and other planets. On Earth these analyses must include 56 mountains, which play a key role in the planet’s climate, hydrology, ecology, and geology.  57 For example, mountains drive orographic enhancement of precipitation and lead to 58 their function as the world’s water towers, resources at risk in a warming climate 59 (Immerzeel et al., 2020; Viviroli et al., 2007). About a quarter of Earth’s land surface is 60 
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mountainous (Wrzesien et al., 2019, 12% to 39% depending on the definition of 61 "mountainous"), but mountain snowmelt supplies water resources for more than one 62 billion people (Mankin et al., 2015), serving an important water storage role as climate 63 warming transitions some snow to rain (Barros, 2013). Further, vegetation changes in high 64 mountains indicate carbon-dioxide fertilization in areas where the partial pressure of all 65 gases is lower (Shugart et al., 2001). Combinations of drought and fire affect mountain 66 forests and sources of water (Moody & Martin, 2001). The critical role that mountains 67 serve as water towers and vegetation hotspots may change under climate change, 68 contributing to hazards to people living in or relying on mountain resources (Kirschbaum 69 et al., 2020). 70 The recent National Academies’ Decadal Survey for Earth science and applications, 71 
Thriving on our Changing Planet, reflects these multiple concerns, with recommendations 72 calling for observations “at scales driven by topographic variability” to reflect the 73 heterogeneity of ecological, hydrological, and geological dynamics in Earth’s mountains 74 (National Academies of Sciences, Engineering, & Medicine, 2018). Investigating these 75 processes via remote sensing requires spatial resolutions fine enough to characterize the 76 variability, recognizing that the topography affects the reflected signals, thereby affecting 77 the retrieval algorithms that interpret the state variables and fluxes of energy and mass.  78 Analysis of the topographic effect requires information in digital elevation models of 79 the bare surface, usually but not universally meaning DEMs, as distinct from digital surface 80 models (DSMs) that include vegetation, buildings, or other features. We consider two 81 globally available DEM datasets: the NASADEM (Buckley, 2020) and the Copernicus DEM 82 (European Space Agency, 2021), both distributed at a resolution of 1 arcsecond (~30 m at 83 the Equator). Locally or regionally, finer-resolution DEMs are available, so we consider 84 three of those, which were derived by lidar, interferometric synthetic aperture radar, and 85 structure-from-motion stereo photogrammetry from fine-resolution images. Our analysis 86 considers the fine-resolution DEMs, in three different terrains, to provide the best 87 assessment of the topographic effects on solar illumination geometry, and we compare 88 those assessments to those derived from the two globally available datasets. 89 Characterization of the quality of DEMs typically assesses the vertical accuracy of 90 the elevation. Uuemaa et al. (2020), through comparison of globally available products with 91 fine-resolution lidar elevations, estimated root-mean-square (RMS) errors of 8-10 m for 92 the NASADEM and TanDEM-X datasets (TanDEM-X is the primary source of data for the 93 Copernicus DEM). Guth and Geoffroy (2021) compared several datasets with airborne lidar 94 and ICESat-2 data and preferred the Copernicus DEM based on its ability to penetrate 95 vegetation canopies and retrieve bare-Earth elevations. 96 However, the focus on elevation errors misses the effect of the topography on 97 remotely sensed information in the wavelengths of the solar spectrum, which lies with the 98 solar illumination geometry. The cosine of the local solar angle and the shadows cast by 99 neighboring terrain are the most important variables for remote sensing of Earth’s surface 100 in the reflective domain. On clear days, most of the irradiance is direct, but the diffuse 101 component is significant (~30%) at the blue end of the solar spectrum. The surrounding 102 landscape causes multiple reflections, which can be represented by the sky view factor—103 
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the fraction of the overlying hemisphere open to the sky. The topographic variables that 104 affect the solar angles also affect the viewing angles from the sensor. 105 We therefore assess the DEMs based on their ability to provide insight into the ways 106 that topography affects our ability to retrieve properties of the surface important to the 107 study of Earth science. Fundamentally, retrievals that are sensitive to the magnitude of the 108 spectral reflectance will be most affected. Examples include snow albedo (Bair et al., 2021; 109 Painter et al., 2013) and ecosystem composition (Bogan et al., 2019). Retrievals that utilize 110 the shape of the reflectance spectrum, characterized for example by the spectral angle 111 (Kruse et al., 1993), will be less affected but not entirely immune because the fraction of the 112 incident irradiance that is diffuse vs. direct is sensitive to the topography. Finally, retrievals 113 that depend on the wavelength of absorption features do not depend on the magnitude of 114 the reflectance. The primary example is mineral identification in soils and vegetation, 115 which requires enough illumination to identify spectral features (Clark et al., 2003; Mulder 116 et al., 2013). 117 
2 Data	and	Methods	118 2.1 Acronyms 119 ASO Airborne Snow Observatories ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer AVIRIS-NG Airborne Visible and Infrared Imaging Spectrometer – Next Generation CHIME Copernicus Hyperspectral Imaging Mission for the Environment DEM Digital elevation model of the bare Earth surface DSM Digital surface model including vegetation, buildings, etc. DTM Same as DEM EMIT Earth Surface Mineral Dust Source Investigation EnMAP Environmental Mapping and Analysis Program EROS Earth Resources Observation and Science HMA High Mountain Asia IFSAR Interferometric synthetic aperture radar InSAR Same as IFSAR ISRO Indian Space Research Organization NASA National Aeronautics and Space Administration NOAA National Oceanic and Atmospheric Administration OLI Operational Land Imager SBG Surface Biology and Geology mission SRTM Shuttle Radar Topography Mission USGS US Geological Survey UTC Coordinated Universal Time 
Ellipsoids and Geoids EGM2008 Earth Gravitational Model 2008 EGM96 Earth Gravitational Model 1996 GRS80 Geodetic Reference System 1980 NAD83 North American Datum of 1983 
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NAVD88 North American Vertical Datum of 1988 WGS84 World Geodetic System 1984 2.2 Elevation data 120 We consider two spatial resolutions of digital elevation models: fine and coarse. The 121 coarse-resolution datasets are available globally, whereas the fine-resolution data are 122 available selectively in specific locations. Table 1 summarizes the information sources for 123 three fine-resolution and two global coarse-resolution datasets.  124 
Insert Table 1 near here 125 For the fine-resolution imagery, data are derived from three different methods: lidar 126 altimetry, interferometric synthetic aperture radar, and structure-from-motion using fine-127 resolution commercial satellite imagery. 128 1. Airborne Snow Observatories Inc. (Painter et al., 2016) maps snow depth with lidar 129 altimetry over drainage basins in the Western U.S., Switzerland, and Norway. The 130 operation acquires elevation data during the snow-free summer and then 131 periodically measures the snow-on elevation during the winter and derives snow 132 depth by subtraction. The company provided a 3 m DEM of the Carson River 133 Watershed in the Sierra Nevada of California/Nevada, covering 2052 km2. 134 2. The U.S. Geological Survey’s Alaska Mapping Initiative acquired airborne 135 interferometric synthetic aperture radar (InSAR) data over much of Alaska in 2010 136 and 2012 (USGS EROS Archive, 2018). InSAR acquisitions can take place even in 137 cloudy weather, and the data from a high latitude provide a broad range of solar 138 illumination angles during the year. We downloaded and spliced tiles at 5 m 139 resolution for a 2582 km2 area in the Wrangell Mountains in Southeast Alaska. 140 3. Shean et al. (2016) employ structure-from-motion to measure elevation using 141 commercial fine-resolution satellite imagery. From the National Snow and Ice Data 142 Center, we downloaded part of the High Mountain Asia 8 m DEM for a 3514 km2 143 area in the Himachal Pradesh state in the Indian Himalaya that covers 9 flight lines 144 of the 2016 NASA-ISRO AVIRIS-NG campaign (Space Applications Centre, 2017). 145 For the coarse resolution imagery, we used two global data sources at one 146 arcsecond resolution distributed in geographic (latitude-longitude) format. In cropping to 147 the boundaries of each fine-resolution area, we added 5 km to each edge to minimize edge 148 effects in calculating topographic parameters. 149 1. We spliced 1° × 1° tiles from the NASADEM (Buckley, 2020) together because our 150 areas of interest crossed latitude or longitude tile boundaries. The NASADEM 151 combines information from the Shuttle Radar Topography Mission (Farr et al., 152 2007) and stereo-photogrammetry from ASTER imagery (NASA & METI, 2019). 153 2. We downloaded Copernicus DEMs (European Space Agency, 2021) that were 154 spliced and distributed by Open Topography. The Copernicus DEM is derived from 155 TanDEM-X imagery. 156 Figure 1 shows the Copernicus DEM on the left and the ASO DEM on the right for the 157 Carson River Watershed. The red rectangle in the left-hand image shows the area that the 158 ASO DEM illustrates the detail of the topographic data at 3 m spatial resolution. 159 
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Insert Figure 1 near here 160 2.3 Notation 161 We selected or calculated the following variables for each grid point in each 162 elevation dataset. 𝜃଴, 𝜙଴, 𝜇ௌ, 𝐹ௗ௜௙, and 𝐼 vary with date; the other variables are independent 163 of date and thus the solar illumination. Deep snow can smooth the topography, but our 164 comparisons of snow-off with snow-on elevations find only a few grid cells with 165 significantly different slope and azimuth. At the 3 m spatial resolution of the Carson River 166 DEM, the RMS difference in slopes between the snow-on and snow-off elevations is 1.8°, 167 and the 99th percentile absolute difference is 6.8°. Resampled to 10 m spatial resolution, 168 the RMS difference is 1.3°, and the 99th percentile absolute difference is 5.3°. 169 𝜃଴, 𝜙଴ Solar zenith and azimuth angles, 𝜇଴ = cos 𝜃଴ 𝜇ௌ Cosine of solar illumination angle on a slope, set to zero for slopes that are in shadow, either by adjacent terrain or when 𝜇ௌ is negative 𝜌 Spectral directional-hemispherical or bihemispherical reflectance, depending on subscripts (Schaepman-Strub et al., 2006) 𝐹ௗ௜௙ Fraction of incoming spectral irradiance that is diffuse 𝐻థ Angle to the topographic horizon, upward from horizontal, in azimuth direction 𝜙 𝐼 Spectral irradiance, incoming or reflected depending on subscript 
RMS Root-mean-square value 𝑅𝑀𝑆ሺ𝑥ሻ = ටଵே ∑ |𝑥௡|ଶே௡ୀଵ  𝑆, 𝐴 Slope angle, upward from horizontal, and slope azimuth, south at 0°, eastward positive and westward negative, consistent with a right-hand coordinate system 𝑉ஐ Sky view factor, hereafter just view factor, the fraction of the upward hemisphere open to the sky 
Z Elevation of the surface 2.4 Methods 170 We compared topographic variables by reprojecting both fine- and coarse-171 resolution data to an intermediate resolution approximating the geometric mean of the two 172 resolutions, thereby to include the range and distribution of topographic values in the 173 landscape. The one-arcsecond resolution of the NASADEM and Copernicus DEM translate 174 to about 30 m. For the Carson River Watershed, the intermediate resolution between the 3 175 m ASO lidar and the globally available data is 10 m. For the InSAR data at 5 m over the 176 Wrangell Mountains in Alaska, the intermediate resolution is 12 m. For the 8 m data in the 177 HMA DEM, the intermediate resolution is 15 m. We assume the fine DEM is more accurate, 178 particularly because variables derived over multiple points are compared to those derived 179 from an individual location in the coarse DEM; therefore, the RMS of the difference 180 between the coarse and fine estimates of a variable is considered the RMS error in the 181 coarse-resolution data. 182 

Insert Figure 2 near here 183 
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We calculated 𝜇ௌ for seven dates between the winter and summer solstices, spaced 184 so that the intervals between the solar declinations were equal (Figure 2). For every date, 185 we chose 10:45 in the local time zone to match typical mid-morning acquisition times of 186 satellites: Pacific Standard (UTC–8:00) for the Carson River, Alaska Standard (UTC–9:00) 187 for the Wrangell Mountains, and India Standard (UTC+5:30) for the Himachal Pradesh. 188 Figure 3 shows cosine of solar illumination angles for the Himachal Pradesh on the seven 189 dates in Figure 2. The pixels are more illuminated as the solar illumination angle gets closer 190 to zenith, and the fraction of diffuse illumination decreases, thereby affecting the 191 relationship between intrinsic and apparent reflectance . 192 
Insert Figure 3 near here 193 

3 An	Illustration	of	the	Problem	194 
Insert Figure 4 near here 195 Figure 4 shows two images and two graphs. The upper left (Figure 4a) shows band 5 196 (center wavelength 865 nm) of a Landsat 8 OLI image of the Indian Himalaya, acquired on 197 22 February 2016 over the Himachal Pradesh state of India. We chose band 5 because of 198 the small fraction of diffuse illumination in the solar spectrum in those wavelengths. Figure 199 4b shows a calculation of 𝜇ௌ, the cosine of the solar illumination angle at the same date and 200 time as the Landsat image, using elevation data from NASADEM (Buckley, 2020). The 201 cosines are calculated from the slope and aspect of the terrain and the solar zenith and 202 azimuth angles on a flat surface. Where shaded by local horizons or by the slope itself, the 203 cosines are set to zero. Superficially, the two images appear to match, allowing that some 204 illuminated areas are dark because that surface material is dark, whereas shadows are dark 205 even if the surface material is bright. The bright areas in the Landsat image correspond to 206 highly illuminated pixels. However, the scatter density plot (Figure 4c) indicates some 207 problematic values. The high reflectance values in the upper left corner of Figure 4c 208 correspond to pixels either in shadow or with highly oblique solar illumination, indicating 209 that the solar angle calculated from the DEM is wrong. The low reflectance values in the 210 lower right corner of the scatter plot tell a similar but more ambiguous story. These dark 211 pixels are well illuminated; they could represent a dark surface, or they might not truly be 212 well illuminated. Figure 4d shows probability density functions (pdf) of the reflectance 213 values in areas of low ሺ𝜇ௌ < 0.2ሻ and high ሺ𝜇ௌ > 0.87ሻ illumination (each threshold 214 represents 14% of the image). Each pdf has a long tail. Those in the tail of the low 215 illumination category indicate that 𝜇ௌ is not correctly estimated and is too small. With a 216 correct DEM, we would not see such high reflectance values at highly oblique solar 217 illumination, because of the low values of incident irradiance at those locations. 218 Algorithms that retrieve land surface properties analyze the spectral “reflectance,” 219 broadly defined to cover the several possible angular reflectance configurations that 220 Schaepman-Strub et al. (2006) articulate. In their study of the effects of surface roughness 221 on snow albedo, Bair et al. (2022) defined intrinsic reflectance of a substance independent 222 of effects of roughness or topography. The corresponding apparent value, as one might 223 measure at a plot, incorporates artifacts caused by roughness or topography. For example, 224 the intrinsic reflectance of clean snow in the visible wavelengths cannot drop to 0.2, but the 225 apparent reflectance of shadowed snow can reach such low values. Corrected for 226 



manuscript submitted to JGR Biogeosciences 

8  

atmospheric effects, measurements of spectral top-of-atmosphere radiance by a satellite 227 sensor can be converted to apparent values of, for example, bihemispherical reflectance or 228 bidirectional reflectance (Schaepman-Strub et al., 2006). Retrieval of a parameter of 229 interest at Earth’s surface using these data requires an estimate of the intrinsic spectral 230 reflectance, interpreted by a combination of topographic information and the apparent 231 value derived from the satellite sensor data (Brodrick et al., 2021). For some pixels, 232 however, incorrect or imprecise topographic information could cause those retrievals of 233 the surface properties to produce incorrect interpretations, an issue addressed in Section 5, 234 Discussion. This study characterizes the errors in the solar angles in globally available 235 digital elevation models and recommends steps to mitigate these uncertainties in retrieval 236 of Earth’s properties in mountainous terrain. 237 
4 Results	238 Tables 2 and 3 summarize results for all fine- and coarse-resolution datasets 239 analyzed. Figures 5 and 6 illustrate examples of the results, comparing pairs of variables 240 derived from a fine- and a coarse-resolution image. We include examples from each of the 241 three study sites: Carson River Watershed, Himachal Pradesh in the Indian Himalaya, and 242 Wrangell Mountains in Southeast Alaska. 243 4.1 Topographic variables independent of solar illumination 244 Variations in elevation across topography create sloping terrain, so we characterize 245 each pixel by its slope S upward from the horizontal and its aspect A as the direction the 246 slope faces. Slope and aspect combine with the solar angles to create variability in local 247 illumination. The varying terrain also creates the view factors 𝑉ஐ, the fraction of the sky 248 hemisphere open above a point. The view factor controls the re-reflection of solar radiation 249 that strikes the surface and the fraction of the diffuse irradiance that reaches the surface. 250 The view factor is also important in modeling the thermal infrared radiation in the 251 mountains (Robledano et al., 2022). The terrain geometry affects the incoming irradiance 252 and the reflected radiation, so the errors in elevation itself are less important than errors in 253 slope, aspect, and view factor. Based on the differences between the fine-resolution and 254 coarse-resolution DEMs, Table 2 shows the RMS error for elevation, differences in elevation 255 between neighbors, slope, aspect, and view factor. Because the differences between the 256 datum sources (Table 1) for elevation exceed 25 m and because we are mostly interested in 257 the internal differences within an elevation grid, we subtract the mean elevation of each 258 grid from that grid’s values before calculating the RMS errors for elevation.  259 Errors in elevation are small fractions of the elevation values themselves, but the 260 errors in slope and aspect indicate significant errors in the differences between elevations 261 of neighboring points. Calculation of the slope S and aspect A of a topographic pixel 262 considers the spatial derivative of elevation Z in two or more directions x and y (Dozier & 263 Frew, 1990), which could be projection coordinates or longitude and latitude distances 264 computed from the coordinates and the dimensions of the ellipsoid: 265 tan 𝑆 ≡ |∇௓| = ඥሺ𝜕𝑍 𝜕𝑥⁄ ሻଶ + ሺ𝜕𝑍 𝜕𝑦⁄ ሻଶ  (1) 
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tan 𝐴 = − 𝜕𝑍 𝜕𝑦⁄− 𝜕𝑍 𝜕𝑥⁄   
Including the signs for the numerator and denominator separately enables calculation of 266 aspect A over the full circle. From topographic data, the derivatives are calculated 267 numerically. In a matrix Z with grid spacing ∆ℎ representing topography and the rows 268 running west-east and columns north-south, the derivatives at point ሾ𝑖, 𝑗ሿ, as calculated by a 269 central difference method, are: 270 𝜕𝑧𝜕𝑥 = 𝒁௜,௝ାଵ − 𝒁௜,௝ିଵ2∆ℎ  (2) 𝜕𝑧𝜕𝑦 = 𝒁௜ାଵ,௝ − 𝒁௜ିଵ,௝2∆ℎ  
The grid spacing ∆ℎ is usually known accurately, so assessment of errors that affect 271 topographic radiation depends on the error distribution of the differences between 272 neighboring elevations. We estimated the RMS error of the differences by calculating the 273 numerators of Equation (2) in each direction and then the hypotenuse of the x- and y-274 direction differences in each pixel. Table 2 shows that the RMS errors in the differences 275 between neighboring elevations are smaller than the RMS errors in the elevations 276 themselves, thereby indicating some spatial coherence in the elevation errors. Otherwise, if 277 the RMS errors of the elevations were indeed independent, then the variance of the 278 differences would be the sum of the variances in the elevations themselves (Weisstein, 279 2021) and the RMS error of the differences would be √2 × the RMS error of the elevations. 280 However, the RMS errors of the differences are much smaller. 281 Results for the NASADEM and the Copernicus DEM are similar, but both show outliers that 282 translate into outliers in calculating illumination angles. 283 

Insert Table 2 near here 284 The variability in the data indicates variation within the topographic grid. Figure 5 285 shows the scatter diagrams for the row in Table 2 that summarizes the statistics for the 286 Copernicus DEM for the Carson River Watershed in the Sierra Nevada. The x-axes represent 287 values from the fine-resolution ASO DEM, the y-axes the values from the globally available 288 Copernicus DEM. For elevation, the spread around the regression in Figure 5a is small. For 289 the other variables, however, the spread is much larger. The outliers in the scatter plots for 290 slope and aspect imply that outliers are present in the local solar angles. Figure 5c shows 291 that some slopes less than 20° in the ASO 3 m DEM correspond to slopes greater than 40° in 292 the Copernicus 1 arcsecond DEM, and conversely some slopes greater than 50° in the finer-293 resolution DEM correspond to slopes less than 20° in the Copernicus DEM. Similar 294 differences occur in the aspects and view factors.  295 
Insert Figure 5 near here 296 The regression lines in Figure 5bcd for differences in elevation between neighbors, 297 slope, and aspect are constrained to go through the origin. For elevation (Figure 5a) the 298 



manuscript submitted to JGR Biogeosciences 

10  

datasets do not use the same datum (Table 1), so the regression includes an intercept. For 299 the view factor (Figure 5c) all values are above about 0.6, so that regression is constrained 300 to go through (1,1) instead of (0,0). In all cases except elevation, the slopes of the 301 regression lines that characterize the relationship between the coarse- and fine-resolution 302 variables are less than 1.0, indicating generally that the Copernicus DEM and NASADEM 303 slightly underestimate the magnitudes. The section on Bias in Table 2 therefore indicates a 304 negative bias in the coarser-resolution datasets (i.e., a regression slope of 0.90 corresponds 305 to a bias of –10%). 306 Aspect values and their RMS errors must be treated with caution, because aspect 307 has negligible effect on solar radiation when the slope is small but a huge effect when the 308 slope is steep. In our formulation, we follow the right-hand convention that 0° aspect 309 represents south, from which eastward aspects are positive and westward aspects are 310 negative. 311 4.2 Effect of topography on illumination and reflection 312 The two crucial topographic variables in order of importance are 𝜇ௌ, the cosine of 313 the local illumination angle measured from normal to the slope, and 𝑉ஐ, the fraction of the 314 hemisphere over a point that is open to the sky. The equation for 𝑉ஐ uses the horizon 315 angles 𝐻థ for all directions 𝜙 (Dozier, 2022b): 316 For slopes facing in the direction toward the Sun, i.e., cosሺ𝐴 − 𝜙ሻ ≥ 0, the limits of integration ሾ𝜙ଵ, 𝜙ଶሿ being constrained to those azimuths:  
𝑉ஐ = 12𝜋 න ቂcos 𝑆 cosଶ 𝐻థ + sin 𝑆 cosሺ𝐴 − 𝜙ሻ ቀ𝜋2 − 𝐻థ − sin 𝐻థ cos 𝐻థቁቃ 𝑑𝜙థమ

థభ  (3) 
For the slopes where cosሺ𝐴 − 𝜙ሻ < 0, the slope itself might obscure the horizon, so in integrating across those values with the limits of integration corresponding to those azimuths, for each azimuth 𝜙, 𝐻థ is set to  

max ቎𝐻థ, sinିଵ ቌඨ1 − 11 + cosଶሺ𝐴 − 𝜙ሻ tanଶ 𝑆ቍ቏   
Over a flat unobstructed surface, 𝑉ஐ = 1. 317 The local illumination angle is related to the topography and the solar illumination 318 geometry as:  319 𝜇ௌ = maxሾ0, 𝜇଴ cos 𝑆 + sin 𝜃଴ sin 𝑆 cosሺ𝜙଴ − 𝐴ሻሿ (4) The max function accounts for slopes facing away from the sun by setting 𝜇ௌ = 0 in 320 situations where the equation would yield 𝜇ௌ < 0. To account for points where neighboring 321 horizons block the Sun, we also set 𝜇ௌ = 0 where sin 𝐻థబ ≥ 𝜇଴.  322 The variables 𝜇ௌ and 𝑉ஐ affect the relationship between the apparent reflectance of 323 the surface and its intrinsic reflectance that would be measured independent of any 324 topographic effects (Bair et al., 2022). The apparent reflectance of a topographic surface 325 
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involves multiple reflections, especially for bright surfaces such as snow. Let 𝜌 indicate 326 spectral reflectance, omitting a wavelength identifier, and 𝐹ௗ௜௙ as the fraction of the 327 spectral irradiance that is diffuse. Set the initial irradiance on a horizontal surface to I. The 328 spectral radiation that initially escapes into the overlying hemisphere without being re-329 reflected is: 330 𝐼௘௦௖ሺ଴ሻ = 𝐼𝑉ஐ ൤𝜇ௌ𝜇଴ ൫1 − 𝐹ௗ௜௙൯𝜌௜௡௧௥௜௡௦௜௖ሺௗ௜௥௘௖௧ሻ + 𝐹ௗ௜௙𝜌௜௡௧௥௜௡௦௜௖ሺௗ௜௙௙௨௦௘ሻ + ሺ1 − 𝑉ஐሻ ቀ𝜌௜௡௧௥௜௡௦௜௖ሺௗ௜௙௙௨௦௘ሻቁଶ൨ (5) The equation assumes that 𝜌௜௡௧௥௜௡௦௜௖ is approximately isotropic averaged over the field of 331 view, it neglects atmospheric attenuation within the topography, and it ignores variation in 332 albedo and irradiance within the neighborhood. The superscripts designate the reflectance 333 to direct vs. diffuse irradiance. The right-most term inside the brackets accounts for 334 reflected radiation within a point’s field of view impinging on the point. The direct and 335 diffuse spectral albedos might differ slightly, for example for snow. 336 Not all the initially reflected radiation escapes into the overlying hemisphere. 337 Instead, some of it re-reflects and eventually escapes or is trapped by the topography, in 338 which case it is subject to internal reflection. At the first iteration, its value is: 339 𝐼௜௡௧௘௥௡௔௟ሺ଴ሻ = 𝐼௘௦௖ሺ଴ሻ ൬1 − 𝑉ஐ𝑉ஐ ൰. (6) To account for multiple reflections, at each reflection the value of the incident 340 radiation is multiplied by the fraction ሺ1 − 𝑉ஐሻ that accounts for the reflection remaining 341 within the topography, the fraction 𝑉ஐ that escapes, and the intrinsic spectral reflectance. 342 An orders-of-scattering approach to the multiple reflections lets some reflected radiation 343 escape at each iteration n and some remains available for re-reflection: 344 escaped 𝐼௘௦௖ሺ௡ሻ = 𝐼௜௡௧௘௥௡௔௟ሺ௡ିଵሻ 𝜌௜௡௧௥௜௡௦௜௖ሺௗ௜௙௙௨௦௘ሻ𝑉ஐremaining 𝐼௜௡௧௘௥௡௔௟ሺ௡ሻ = 𝐼௜௡௧௘௥௡௔௟ሺ௡ିଵሻ 𝜌௜௡௧௥௜௡௦௜௖ሺௗ௜௙௙௨௦௘ሻሺ1 − 𝑉ஐሻ (7) 
This series converges in a half dozen iterations because 𝐼௜௡௧௘௥௡௔௟ሺ௡ሻ  declines in 345 proportion to ሺ1 − 𝑉ஐሻ௡. The apparent reflectance for the pixel is 𝜌௔௣௣௔௥௘௡௧ = ∑ 𝐼௘௦௖ 𝐼⁄ . 346 4.3 Errors in estimating 𝜇ௌ, the cosine of local illumination 347 RMS errors and outliers in the topographic variables combine with the solar 348 illumination geometry to propagate into the calculation of each pixel’s illumination. The 349 most important variable whose accuracy affects the interpretation of the remotely sensed 350 signal is the cosine of the local illumination angle. The ratio 𝜇ௌ 𝜇଴⁄  appears in Equation (5), 351 but 𝜇଴ is usually known accurately. The view factor 𝑉ஐ affects the diffuse irradiance from 352 the sky and the internal reflections within the topography. 353 Therefore, the accuracy of the cosine of illumination from the DEM affects our ability 354 to calculate or correct for the topographic effects. For example, attempting to invert 355 Equation (5) to solve for 𝜌௜௡௧௥௜௡௦௜௖ would involve the ratio 𝜇଴ 𝜇ௌ⁄ ; uncertainty in the 356 denominator of a fraction often has significant consequences, especially if the denominator 357 is small (Richter & Schläpfer, 2021, chapter 7). Table 3 shows the RMS errors for the cosine 358 of illumination, along with the fraction of the terrain that is shadowed, for the dates in 359 
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Figure 2 that extend from the winter to the summer solstice in equal changes of the solar 360 declination. The RMS error for 𝜇ௌ varies inversely with the value of 𝜇଴; the errors in slope S 361 and aspect A have a greater effect when 𝜇଴ is smaller. 362 
Insert Table 3 near here 363 The full extent of errors in the results indicates issues with outliers that the RMS 364 errors do not reveal. Figure 6 shows scatter diagrams of 𝜇௦ calculated from the Copernicus 365 DEM vs 𝜇௦ calculated from the Alaska IFSAR DEM. On all dates but particularly early in the 366 year, some pixels that are illuminated ሺ𝜇ௌ ≫ 0ሻ in the Copernicus DEM are in the dark 367 ሺ𝜇ௌ < 0.1ሻ in the Alaska IFSAR DEM. Similarly, some pixels that the Alaska IFSAR DEM 368 shows to be illuminated are dark in the Copernicus DEM. A popular text on surveying 369 published six decades ago (Davis et al., 1966) calls these kinds of mistakes “blunders” 370 rather than “errors,” because they cannot be characterized by an error distribution. 371 

5 Discussion	372 Although errors or blunders in the NASADEM and Copernicus DEM are minor 373 compared to the elevation values, their impact on remote sensing can be large. Thus, the 374 small dispersion around the 1:1 line in the scatter diagram for elevation in Figure 5a 375 translates to much greater dispersion in the slope, aspect, and view factor (Figure 5cde), 376 which in turn translates to large dispersion in the illumination angles that Figure 6 shows. 377 Therefore, small errors in slope or aspect can then significantly affect estimated 378 reflectance, especially wherever 𝜇ௌ is small. 379 Algorithms to retrieve surface properties differ in their sensitivities to topographic 380 uncertainty. The effect is mostly a shift in spectral reflectance magnitude, so algorithms 381 that rely on relative spectral shapes may escape significant harm. These include detection 382 of materials based on diagnostic spectral absorptions, as in mineral identification (Clark et 383 al., 2003). On the other hand, studies that rely on absolute radiometry, such as surface 384 energy balance investigations (Wang et al., 2015) or retrieval of snow properties (Bohn et 385 al., 2021), could be more severely affected. Moreover, errors in 𝜇ௌ change the estimated 386 balance between diffuse and direct illumination onto the surface. Therefore, they can 387 distort the estimated reflectance spectrum in visible wavelengths, harming snow or 388 vegetation studies that rely on features in this spectral range.  389 Solar illumination geometry in mountains affects current satellite imagery from 390 Landsat 8/9 and Sentinel-2A/B, it affects data from imaging spectrometers EnMAP 391 (Chabrillat et al., 2020) and EMIT (Connelly et al., 2021), and it will affect data from future 392 missions SBG (Cawse-Nicholson et al., 2021; Stavros et al., 2022) and CHIME (Rast et al., 393 2021). Locally, fine-resolution DEMs will be available from lidar, InSAR, or structure-from-394 motion deployed from drones or aircraft, and slightly coarser DEMs will be available using 395 structure-from-motion from spaceborne data. However, the prospect is unlikely for 396 globally available data to accurately estimate the solar illumination geometry for these 397 imaging satellites. A chapter in Thriving on our Changing Planet (National Academies of 398 Science, Engineering, & Medicine, 2018, p. 513) identifies applications that “would benefit 399 from multibeam, space-based lidar to obtain global coverage of bare-earth topography and 400 of the biomass/canopy at <<5 m spatial and 0.1 m vertical resolutions.” However, no such 401 
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recommendation carried through to that report’s Executive Summary, and no future NASA 402 mission is in the planning stages. 403 Therefore, we face a future where the globally available DEMs at ~30 m resolution 404 are what we have now, at least through the launches and initial few years of the 405 spectrometers SBG and CHIME and future versions of Landsat and Sentinel. If we could 406 trust the variables calculated from DEMs and consider only the RMS errors, we could 407 implement topographic correction algorithms that estimate 𝜌௜௡௧௥௜௡௦௜௖ from measurements 408 of atmospherically corrected 𝜌௔௣௣௔௥௘௡௧ and thereby recover the geophysical and biological 409 properties of the surface that govern spectral reflectance, with known uncertainty. 410 However, we face the problem of outliers in the calculations of 𝜇ௌ and less crucially 𝑉ஐ, so 411 applying any correction algorithm globally on entire images would produce some incorrect, 412 thus misleading, retrievals. 413 Strategies to mitigate the impact of topographic errors in processing and 414 distributing image data and products must be considered. The list is deliberately terse; any 415 bullet point could be expanded to a whole journal article: 416 
• In the basis documents for algorithms for geophysical and biological products, 417 assess their sensitivity to uncertainty in illumination geometry and distinguish 418 between topographic effects that change the spectral shape of the signal vs. those 419 that change the magnitude only (Lamare et al., 2020).  420 
• Gain a better understanding of the use of shade endmembers (Adams et al., 1986) in 421 spectral mixture analysis, which implicitly acknowledge the limitations of available 422 DEMs by solving for an illumination adjustment on modeled values of a pixel’s 423 reflectance. 424 
• Understand the relative magnitudes of topographic effects on angular properties of 425 the reflectance vs. the effects of illumination and viewing geometry on the intrinsic 426 reflectance (Roupioz et al., 2014; Schaepman-Strub et al., 2006). 427 
• Develop and validate image processing methods that identify pixels where errors in 428 the underlying DEM would lead to incorrect calculations of the illumination 429 geometry, for example detection of shadowed terrain (Hagolle et al., 2017; Hollstein 430 et al., 2016; Shahtahmassebi et al., 2013). 431 
• Avoid exclusively prescribing global topographic correction solutions. Preserve the 432 flexibility, within the mission science data system, for investigators to apply new 433 regional DEMs of higher accuracy as these become available, or to ignore 434 topography. 435 In the longer term, future research may reduce DEM-induced reflectance errors 436 through strategies such as the following: 437 
• Implement topographic corrections in superpixels, thereby smoothing out the 438 errors in individual pixels (Gilmore et al., 2011). 439 
• Continue efforts to improve DEMs globally, especially in mountainous areas, for 440 example the USGS 3D elevation program in the U.S. (Stoker & Miller, 2022). 441 
• Examine and validate novel methods to estimate illumination geometry directly 442 from images, for example by simultaneously solving for unknown atmospheric and 443 
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topographic properties in retrieval of surface reflectance from top-of-atmosphere 444 radiances. 445 
6 Conclusions	446 Our analyses show that calculations in the globally available DEMs miss shadows 447 and consistently underestimate cosines of solar illumination angles, RMS error increasing 448 with solar zenith angle. Analyzing imagery of Earth’s mountains from current and future 449 missions requires addressing the uncertainty introduced by errors and outliers in the 450 DEMs on algorithms that retrieve surface properties from measurements of the apparent 451 spectral reflectance. Intriguing potential improvements lie in assessing the uncertainties in 452 retrievals of geophysical and biological properties and in novel methods to gain 453 information about topography from the imagery itself. 454 
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Table	Captions	650 
Table	1. Information sources for digital elevation models used in the analysis.	651 
Table	2. RMS error statistics for topographic variables that are independent of solar illumination. 652 
Table	3. Shadowed fraction and RMS error of 𝜇𝑆 (cosine solar illumination) for each date in each 653 dataset, varying monotonically with the solar zenith angle 𝜇଴ = cos 𝜃଴. 654 
Figure	Captions	655 
Figure	1. Example of the elevation sources for the Carson River Watershed. The left image shows 656 the Copernicus DEM, whose spatial resolution is 1 arcsecond; the right image shows a segment of 657 the ASO 3 m DEM, corresponding to the red rectangle in the left image. Both images are in a UTM 658 projection, Zone 11N. 659 
Figure	2. Dates and their solar declinations (degrees) used in the analysis, spaced in equal latitude 660 intervals from the winter solstice to the summer solstice (NOAA, no date, solar calculator). 661 
Figure	3. Values of 𝜇ௌ (cosine of local solar illumination angle, including shadowing by horizons) 662 over the Indian Himalaya at 10:45 am on the dates shown in Figure 2, from the winter to the 663 summer solstice. Solar zenith angles varied from winter to summer: 60°, 55°, 48°, 41°, 33°, 27°, 23°. 664 The area coincides with 9 flight lines by AVIRIS-NG during the 2016 ISRO-NASA campaign. The 665 solar illumination values are calculated from the High Mountain Asia 8 m DEM, whose tiles are in an 666 Albers Equaconic Projection, an equal area projection with origin 36°N 85°E and standard parallels 667 25°N and 47°N. 668 
Figure	4. (a) Top-of-atmosphere reflectance (𝜋 × radiance/irradiance) in Landsat 8 OLI band 5 669 (851-879 nm) in the Indian Himalaya acquired on 22 February 2016 at UTC 05:24. (b) Cosine 𝜇𝑆 of 670 the solar illumination, including cast shadows, at the same time over a NASADEM matching the 671 Landsat image. The solar zenith angle on a flat surface was 49.3°. (c) Scatter density diagram with 672 the Landsat reflectance on the vertical axis and 𝜇𝑆 on the horizontal axis. The colors show density of 673 points, with bright yellow indicating high concentrations. The blank area eliminates the values 674 within 1 RMS error of the linear regression fሺ𝑥ሻ = 𝑎𝑥 + 𝑏. (d) Probability density functions (pdf) of 675 the reflectance values in two illumination categories, 𝜇𝑆 < 0.2 and 𝜇𝑆 > 0.87, covering the same 676 fractions (14%) of the image’s values. 677 
Figure	5. Detailed illustration supporting one row in Table 2 for the Copernicus DEM in the Carson 678 River Watershed in the Sierra Nevada. The x-axes show data for the ASO 3 m DEM; the y-axes show 679 the same information derived from the Copernicus DEM, with both DEMs reprojected to a common 680 size and projection. Aspect angles represent south as 0°, eastward positive, westward negative, and 681 therefore consistent with a right-hand coordinate system. Regression lines in the figure and 682 statistics in Table 2 are based on the whole topographic grid, but just 100,000 points are randomly 683 selected for the illustrative scatter plots. 684 



manuscript submitted to JGR Biogeosciences 

19  

Figure	6. Detailed illustration supporting the Wrangell Mountains group in Table 3 for the 685 Copernicus DEM. All axes show values of 𝜇ௌ, the cosine of local illumination, varying with the dates 686 that Figure 2 shows. Points along either the x- or y-axis identify locations that are shadowed in one 687 DEM and illuminated in the other. Regression lines in the figure and statistics in Table 3 are based 688 on all pixels in the data, but just 100,000 points are randomly selected for the illustrative scatter 689 density plots. Note that the yellow (bright) values in the scatter density plots migrate to higher 690 values of 𝜇ௌ as the solar declination moves northward. 691 
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Table 1

Elevation Spatial
Dataset Region Horizontal Vertical Data Source Projection  resolution

Fine resolution

ASO DEM California, Sierra 
Nevada

WGS84 WGS84 airborne lidar UTM Zone 11N 3 m

Alaska IFSAR 
DEM

Alaska, Wrangell 
Mountains

NAD83 NAVD88 interferometric 
SAR

Alaska Albers* 5 m

Hign Mountain 
Asia DEM

Himachal Pradesh, 
Himalaya

WGS84 WGS84 structure-from-
motion

HMA Albers* 8 m

Coarse resolution

Copernicus DEM available globally WGS84 EGM2008 TanDEM-X geographic 1 arcsec
NASADEM available globally WGS84 EGM96 SRTM + ASTER geographic 1 arcsec
*Albers equaconic projection.

Datum

High Mountain Asia origin 36°N, 85°E, standard parallels 25°N and 47°N
Alaska origin 50°N, 154°W, standard parallels 55°N and 65°N



Table 2

RMS Error elevation (m) neighbor diff (m) slope (°) aspect (°) view factor
Copernicus DEM, Carson River 4.87 1.86 4.73 36.3 0.0270
NASADEM, Carson River 6.51 2.77 6.24 45.7 0.0339
Copernicus DEM, Himachal Pradesh 15.66 5.72 6.42 26.3 0.0391
NASADEM, Himachal Pradesh 12.06 6.21 6.60 26.7 0.0404
Copernicus DEM, Wrangell Mountains 9.11 3.17 4.15 24.5 0.0248

Bias (%), based on regression slope
Copernicus DEM, Carson River 0% -10% -11% -2% -22%
NASADEM, Carson River 0% -14% -15% -3% -28%
Copernicus DEM, Himachal Pradesh 0% -5% -4% -1% -5%
NASADEM, Himachal Pradesh 0% -6% -6% -1% -7%
Copernicus DEM, Wrangell Mountains 0% -9% -6% -1% -11%

R , from regression
Copernicus DEM, Carson River 1.000 0.832 0.831 0.877 0.782
NASADEM, Carson River 1.000 0.622 0.687 0.798 0.632
Copernicus DEM, Himachal Pradesh 0.999 0.707 0.772 0.933 0.729
NASADEM, Himachal Pradesh 1.000 0.692 0.775 0.931 0.737
Copernicus DEM, Wrangell Mountains 1.000 0.821 0.907 0.954 0.890



Table 3

date
(10:45 am) µ0 local DEM Copernicus NASADEM Copernicus NASADEM Copernicus NASADEM

21-Dec 0.431 9.8% 7.1% 6.6% 0.084 0.105 -2.5% -3.7%
5-Feb 0.525 4.1% 2.5% 2.5% 0.081 0.101 -1.5% -2.2%

28-Feb 0.633 1.06% 0.43% 0.54% 0.076 0.094 -0.6% -0.9%
20-Mar 0.731 0.285% 0.054% 0.099% 0.069 0.085 0.0% -0.1%
9-Apr 0.815 0.087% 0.004% 0.024% 0.062 0.076 0.4% 0.4%
2-May 0.883 0.023% 0.000% 0.006% 0.054 0.067 0.6% 0.8%
21-Jun 0.925 0.0060% 0.0000% 0.0014% 0.048 0.060 0.8% 1.0%

21-Dec 0.495 24% 23% 23% 0.117 0.121 -1.8% -2.1%
6-Feb 0.575 16% 15% 15% 0.111 0.114 -1.3% -1.5%

28-Feb 0.668 8.8% 8.2% 8.3% 0.105 0.106 -0.9% -0.8%
20-Mar 0.757 3.9% 3.4% 3.7% 0.097 0.098 -0.6% -0.3%
10-Apr 0.835 1.2% 0.9% 1.2% 0.089 0.090 -0.3% 0.1%
3-May 0.891 0.27% 0.18% 0.29% 0.082 0.082 -0.1% 0.4%
21-Jun 0.918 0.083% 0.042% 0.089% 0.078 0.078 0.0% 0.5%

21-Dec 0.028 95% 95% 0.116 -8.2%
5-Feb 0.143 58% 57% 0.072 -4.3%

28-Feb 0.277 30% 29% 0.070 -2.7%
20-Mar 0.406 16% 16% 0.070 -1.7%
9-Apr 0.527 8.5% 8.0% 0.069 -1.0%
2-May 0.637 3.8% 3.5% 0.066 -0.6%
21-Jun 0.729 1.8% 1.4% 0.063 -0.3%

NASA- 
DEM 

extends 
only to 
60°N

NASA- 
DEM 

extends 
only to 
60°N

NASA- 
DEM

extends
only to
60°N

shadowed fraction µS RMS error µS bias, regression based

ASO DEM, Carson River Watershed

HMA DEM, Himachal Pradesh, India

Alaska IFSAR DEM, Wrangell Mountains
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