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Abstract

Chemical and biological composition of surface materials and physical structure and arrangement of those materials determine

the intrinsic spectral reflectance of Earth’s land surface at the plot scale. As measured by a spaceborne or airborne sensor, the ap-

parent reflectance depends on the intrinsic reflectance, the surface texture, the contribution and attenuation by the atmosphere,

and the topography. Compensation or correction for the topographic effect requires information in digital elevation models

(DEMs). Available DEMs with global coverage at ˜30 m spatial resolution are derived from interferometric radar and stereo-

photogrammetry. Locally or regionally, airborne lidar altimetry, airborne interferometric radar, or stereo-photogrammetry from

airborne or fine-resolution satellite imagery produces DEMs with finer spatial resolutions. Characterization of the quality of

DEMs typically expresses the root-mean-square (RMS) error of the elevation, but the accuracy of remote sensing retrievals is

acutely sensitive to uncertainties in the topographic properties that affect the illumination geometry. The essential variables

are the cosine of the local illumination angle and the shadows cast by neighboring terrain. We show that calculations with

globally available DEMs underrepresent shadows and consistently underestimate the values of the cosine of illumination angle;

the RMS error increases with solar zenith angle and in more rugged terrain. Analyzing imagery of Earth’s mountains from

current and future missions requires addressing the uncertainty introduced by errors in DEMs on algorithms that estimate

surface properties from retrievals of the apparent spectral reflectance. Intriguing potential improvements lie in novel methods

to gain information about topography from the imagery itself.
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Abstract 19 

Chemical and biological composition of surface materials and physical structure and 20 
arrangement of those materials determine the intrinsic spectral reflectance of Earth’s land 21 
surface at the plot scale. As measured by a spaceborne or airborne sensor, the apparent 22 
reflectance depends on the intrinsic reflectance, the surface texture, the contribution and 23 
attenuation by the atmosphere, and the topography. Compensation or correction for the 24 
topographic effect requires information in digital elevation models (DEMs). Available DEMs 25 
with global coverage at ~30 m spatial resolution are derived from interferometric radar 26 
and stereo-photogrammetry. Locally or regionally, airborne lidar altimetry, airborne 27 
interferometric radar, or stereo-photogrammetry from airborne or fine-resolution satellite 28 
imagery produces DEMs with finer spatial resolutions. Characterization of the quality of 29 
DEMs typically expresses the root-mean-square (RMS) error of the elevation, but the 30 
accuracy of remote sensing retrievals is acutely sensitive to uncertainties in the 31 
topographic properties that affect the illumination geometry. The essential variables are 32 
the cosine of the local illumination angle and the shadows cast by neighboring terrain. We 33 
show that calculations with globally available DEMs underrepresent shadows and 34 
consistently underestimate the values of the cosine of illumination angle; the RMS error 35 
increases with solar zenith angle and in more rugged terrain. Analyzing imagery of Earth’s 36 
mountains from current and future missions requires addressing the uncertainty 37 
introduced by errors in DEMs on algorithms that estimate surface properties from 38 
retrievals of the apparent spectral reflectance. Intriguing potential improvements lie in 39 
novel methods to gain information about topography from the imagery itself. 40 

Plain Language Summary 41 

Digital Elevation Models (DEMs) are used across scientific disciplines to understand the 42 
topography of Earth’s surface. Small errors in the estimates of elevation lead to larger 43 
errors in calculations of the solar illumination on the terrain and portions that are in 44 
shadow, thereby leading to misinterpretation of remotely sensed imagery from airplanes 45 
and satellites. Here, we present estimates of the errors and uncertainty in DEM retrievals, 46 
and we identify some outright mistakes. Compensating for uncertainty will help upcoming 47 
satellite missions to develop algorithms that consider the effect of Earth’s topography, 48 
improving the characterization of remotely sensed attributes of the planet’s surface. 49 

1 Introduction 50 

We use remotely sensed data to derive geophysical and biological properties of 51 
importance to the study of Earth and other planets. On Earth these analyses must include 52 
mountains, which play a key role in the planet’s climate, hydrology, ecology, and geology. 53 
For example, mountains drive orographic enhancement of precipitation and lead to their 54 
function as the world’s water towers, resources at risk in a warming climate (Immerzeel et 55 
al., 2020; Viviroli et al., 2007). About a quarter of Earth’s land surface is mountainous, but 56 
mountain snowmelt supplies water resources for more than one billion people (Mankin et 57 
al., 2015), serving an important water storage role as climate warming transitions some 58 
snow to rain (Barros, 2013).  59 



manuscript submitted to JGR Biogeosciences 

3 
 

Further, vegetation changes in high mountains indicate carbon-dioxide fertilization 60 
in areas where the partial pressure of all gases is lower (Shugart et al., 2001). Combinations 61 
of drought and fire affect mountain forests and sources of water (Moody & Martin, 2001). 62 
The critical role that mountains serve as water towers and vegetation hotspots may change 63 
under climate change, contributing to hazards to people living in or relying on mountain 64 
resources (Kirschbaum et al., 2020). The recent National Academies’ Decadal Survey for 65 
Earth science and applications, Thriving on our Changing Planet, reflects these multiple 66 
concerns, with some recommendations calling for observations “at topographic scale” to 67 
reflect the diversity of hydrologic and vegetation dynamics across elevations (National 68 
Academies of Sciences, Engineering, & Medicine, 2018). 69 

Analysis of the topographic effect requires information in digital elevation models of 70 
the bare surface, usually but not universally meaning DEMs, as distinct from digital surface 71 
models (DSMs) that include vegetation, buildings, or other features. We consider two 72 
globally available DEM datasets: the NASADEM (Buckley, 2020) and the Copernicus DEM 73 
(European Space Agency, 2021), both distributed at a resolution of 1 arcsec (~30 m at the 74 
Equator). Locally or regionally, finer-resolution DEMs are available, so we consider three of 75 
those, which were derived by lidar, interferometric synthetic aperture radar, and structure-76 
from-motion stereo photogrammetry from images from commercial satellites. Our analysis 77 
considers the fine-resolution DEMs, in three different terrains, to provide the best 78 
assessment of the topographic effects on illumination geometry, and we compare those 79 
assessments to those derived from the two globally available datasets. 80 

Characterization of the quality of DEMs typically assesses the vertical accuracy of 81 
the elevation. Uuemaa et al. (2020) compared globally available products with fine-82 
resolution lidar elevations; they estimated root-mean-square (RMS) errors at 8-10 m for 83 
the NASADEM and TanDEM-X, the primary source of data for the Copernicus DEM. Guth 84 
and Geoffroy (2021) compared several datasets with airborne lidar and ICESat-2 data and 85 
preferred the Copernicus DEM based on its ability to penetrate vegetation canopies and 86 
retrieve bare-Earth elevations. 87 

However, the focus on elevation errors misses the effect of the topography on 88 
remotely sensed information, which lies with the illumination geometry. The cosine of the 89 
local illumination angle and the shadows cast by neighboring terrain are the most 90 
important variables. We therefore assess the DEMs based on their ability to provide insight 91 
into the relationship between intrinsic and apparent spectral reflectance and thereby 92 
enable retrieval of properties of the surface important to the study of Earth science, such as 93 
snow albedo (Bair et al., 2021; Painter et al., 2013) and ecosystem composition (Bogan et 94 
al., 2019). 95 
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2 An Illustration of the Problem 96 

 97 
Figure 1. Upper left image (a) shows a portion of a Landsat 8 OLI image in the Indian Himalaya 98 
from 22 February 2016 at UTC 05:24. Upper right image (b) shows the illumination at the same 99 
time over a NASADEM matching the Landsat image. Lower left scatter density diagram (c) shows 100 
the Landsat band 5 top-of-atmosphere reflectance (𝜋𝜋 × radiance/irradiance) on the vertical axis 101 
and the cosine of illumination on the horizontal axis. The colors show density of points, with red 102 
and yellow indicating high concentrations values. The blank area eliminates the values within 1 103 
RMSE of the linear regression f(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏. Clearly problematic are the values in the upper left 104 
corner, showing high reflectance values in terrain that the DEM shows to be shaded or obliquely 105 
illuminated. The lower right graph (d) shows probability density functions of the reflectance values 106 
in two illumination categories, 𝜇𝜇𝑆𝑆 < 0.2 and 𝜇𝜇𝑆𝑆 > 0.87, covering the same fractions of the image’s 107 
values. Each pdf has a long tail. Those in the tail of the low illumination category indicate that the 108 
illumination cosine is not correctly estimated and is too small. With a correct DEM, we would not 109 
see such high reflectance values at low illumination angles. 110 

Figure 1 shows two images and two graphs. The upper row shows a portion of a 111 
Landsat 8 OLI image of the Indian Himalaya, acquired on 22 February 2016 over the 112 
Himachal Pradesh state of India. The other image in the upper row shows a calculation of 113 
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the cosine of the solar illumination angle at the same date and time as the Landsat image, 114 
using elevation data from NASADEM (Buckley, 2020). Superficially, they appear to match, 115 
the bright areas in the Landsat image corresponding to the highly illuminated pixels. 116 
However, the scatter density plot in the lower row, with cosine of illumination on the 117 
horizontal axis and top-of-atmosphere reflectance (𝜋𝜋 × radiance/irradiance) in Landsat 118 
OLI band 5 (851-879 nm) on the vertical axis, indicates some problematic values. We chose 119 
band 5 because of the small fraction of diffuse illumination in the solar spectrum in those 120 
wavelengths. The high reflectance values in the upper left corner of the scatter plot 121 
correspond to pixels either in the shadow or with highly oblique solar illumination angles, 122 
indicating that the illumination geometry calculated from the DEM is wrong. The low 123 
reflectance values in the lower right corner of the scatter plot tell a similar but more 124 
ambiguous story. These dark pixels are well illuminated; they could represent a dark 125 
surface, or they might not truly be well illuminated. 126 

Throughout the image, we may want to retrieve properties of the land surface by 127 
analyzing the reflectance. To do so we would use the topographic information and the 128 
apparent reflectance measured by the satellite sensor to estimate the intrinsic reflectance 129 
that the geophysical and biological properties govern. For some pixels, however, those 130 
retrievals of the surface properties would be wrong. This study characterizes the 131 
illumination errors in the globally available digital elevation models and recommends steps 132 
to mitigate these uncertainties in retrieval of Earth’s properties in mountainous terrain. 133 

3 Data and Methods 134 

3.1 Acronyms 135 

ASO Airborne Snow Observatories. 
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer. 
AVIRIS-NG Airborne Visible and Infrared Imaging Spectrometer – Next Generation. 
CHIME Copernicus Hyperspectral Imaging Mission for the Environment. 
DEM Digital elevation model of the bare Earth surface. 
DSM Digital surface model including vegetation, buildings, etc. 
DTM Same as DEM. 
EROS Earth Resources Observation and Science. 
HMA High Mountain Asia 
IFSAR Interferometric synthetic aperture radar. 
InSAR Same as IFSAR. 
ISRO Indian Space Research Organization. 
NASA National Aeronautics and Space Administration. 
NOAA National Oceanic and Atmospheric Administration. 
OLI Operational Land Imager. 
SBG Surface Biology and Geology mission. 
SRTM Shuttle Radar Topography Mission. 
USGS U.S. Geological Survey. 
UTC Coordinated Universal Time. 
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Ellipsoids and Geoids 
EGM2008 Earth Gravitational Model 2008. 
EGM96 Earth Gravitational Model 1996. 
GRS80 Geodetic Reference System 1980. 
NAD83 North American Datum of 1983. 
NAVD88 North American Vertical Datum of 1988. 
WGS84 World Geodetic System 1984. 

3.2 Elevation data 136 

We consider two resolutions of digital elevation models: fine and coarse. Table 1 137 
summarizes the information sources for three fine-resolution and two global coarse-138 
resolution datasets. For the fine-resolution imagery, our data are derived from three 139 
different methods: lidar altimetry, interferometric synthetic aperture radar, and structure-140 
from-motion using fine-resolution commercial satellite imagery. 141 

1. Airborne Snow Observatories Inc. (Painter et al., 2016) maps snow depth with lidar 142 
altimetry over drainage basins in the Western U.S., Switzerland, and Norway. The 143 
company acquires elevation data during the snow-free summer and then 144 
periodically measures the snow-on elevation during the winter and derives snow 145 
depth by subtraction. The company provided a 3 m DEM of the Carson River 146 
Watershed in the Sierra Nevada of California/Nevada, covering 2052 km2. 147 

2. The U.S. Geological Survey’s Alaska Mapping Initiative acquired airborne InSAR data 148 
over much of Alaska in 2010 and 2012 (USGS EROS Archive, 2018). InSAR 149 
acquisitions can take place even in cloudy weather, and the data from a high latitude 150 
provide a broad range of solar illumination angles during the year. We downloaded 151 
and spliced tiles at 5 m resolution for a 2582 km2 area in the Wrangell Mountains in 152 
Southeast Alaska. 153 

3. Shean et al. (2016) employ structure-from-motion to measure elevation using 154 
commercial fine-resolution satellite imagery. From the National Snow and Ice Data 155 
Center, we downloaded part of the High Mountain Asia 8 m DEM for a 3514 km2 156 
area in the Himachal Pradesh state in the Indian Himalaya that covers 16 flight lines 157 
of the 2016 NASA-ISRO AVIRIS-NG campaign (Space Applications Centre, 2017). 158 

Table 1. Information sources for digital elevation models used in the analysis. 159 

Elevation Spatial
Dataset Horizontal Vertical Source Projection  resolution

Fine resolution
ASO DEM WGS84 WGS84 airborne lidar UTM Zone 11N 3 m
Alaska IFSAR DEM NAD83 NAVD88 interferometric SAR Alaska Albers* 5 m
HMA DEM WGS84 WGS84 structure-from-motion HMA Albers* 8 m
Coarse resolution
Copernicus DEM WGS84 EGM2008 TanDEM-X geographic 1 arcsec
NASADEM WGS84 EGM96 SRTM + ASTER geographic 1 arcsec

Datum

*Albers equaconic projection.
Alaska origin 50°N, 154°W, standard parallels 55°N, 65°N.
HMA origin 36°N, 85°E, standard parallels 25°N, 47°N.  160 
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For the coarse resolution imagery, we used two global data sources at one 161 
arcsecond resolution distributed in geographic (latitude-longitude) format. In cropping to 162 
the boundaries of each fine-resolution area, we added 5 km to each edge to minimize edge 163 
effects in calculating topographic parameters. 164 

1. We spliced 1° × 1° tiles from the NASADEM (Buckley, 2020) together because both 165 
areas of interest crossed latitude or longitude tile boundaries. The NASADEM 166 
combines information from the Shuttle Radar Topography Mission (Farr et al., 167 
2007) and stereo-photogrammetry from ASTER imagery (NASA & METI, 2019). 168 

2. We downloaded Copernicus DEMs (European Space Agency, 2021) that were 169 
spliced and distributed by Open Topography. The Copernicus DEM is derived from 170 
TanDEM-X imagery. 171 

Figure 2 shows the Copernicus DEM and the ASO DEM for the Carson River 172 
Watershed. The small portion of the ASO DEM shown illustrates the detail of the 173 
topographic data at 3 m spatial resolution. 174 
 

 175 
Figure 2. Example of the elevation sources for the Carson River Watershed. The left image shows 176 
the Copernicus DEM, whose spatial resolution is 1 arcsecond; the right image shows a segment of 177 
the ASO 3m DEM, showing detail. Both images are in a UTM projection, Zone 11N. 178 

3.3 Notation 179 

We selected or calculated the following variables for each grid point in each 180 
elevation dataset. 𝜃𝜃0,𝜙𝜙0, and 𝜇𝜇𝑆𝑆 vary with date; the other variables are independent of date 181 
and thus the solar illumination. Deep snow can smooth the topography, but our 182 
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comparisons of snow-off with snow-on elevations find only a few grid cells with 183 
significantly different slope and azimuth. 184 

𝜃𝜃0,𝜙𝜙0 Solar zenith and azimuth angles, 𝜇𝜇0 = cos𝜃𝜃0. 
𝜇𝜇𝑆𝑆 Cosine of illumination angle on a slope. 
𝜌𝜌 Spectral directional-hemispherical or bihemispherical reflectance, depending on 

subscripts (Schaepman-Strub et al., 2006). 
𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑 Fraction of incoming spectral irradiance that is diffuse. 
𝐻𝐻(𝜙𝜙) Horizon angle, upward from horizontal, in azimuth 𝜙𝜙. 
𝐼𝐼 Spectral irradiance, incoming or reflected depending on subscript. 

RMS Root-mean-square value 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = �1
𝑁𝑁
∑ |𝑥𝑥𝑛𝑛|2𝑁𝑁
𝑛𝑛=1 . 

𝑆𝑆,𝐴𝐴 Slope angle, upward from horizontal, and slope azimuth, south at 0°, eastward 
positive and westward negative, consistent with a right-hand coordinate system. 

𝑉𝑉Ω Sky view factor, the fraction of the upward hemisphere open to sky. 
Z Elevation of the surface. 

3.4 Methods 185 

We compared the variables by reprojecting both fine- and coarse-resolution data to 186 
an intermediate resolution approximating the geometric mean of the two resolutions, 187 
thereby to include the range and distribution of topographic values in the landscape. The 188 
one-arcsecond resolution of the NASADEM and Copernicus DEM translate to about 30 m. 189 
For the Carson River Watershed, the intermediate resolution between the 3 m ASO lidar 190 
and the globally available data is 10 m. For the InSAR data at 5 m over the Wrangell 191 
Mountains in Alaska, the intermediate resolution is 12 m. For the 8 m data in the HMA 192 
DEM, the intermediate resolution is 15 m. We assume the fine DEM is more accurate, 193 
particularly when variables derived over multiple points are compared to those derived 194 
from the coarse DEM; therefore, the RMS of the difference between the coarse and fine 195 
estimates of a variable is considered the RMS error. 196 

We calculated 𝜇𝜇𝑆𝑆 for seven dates between the winter and summer solstices, spaced 197 
so that the intervals between the solar declinations were equal (Figure 3). For every date, 198 
we chose 10:45 in the local time zone, Pacific Standard (UTC–8:00) for the Carson River, 199 
Alaska Standard (UTC–9:00) for the Wrangell Mountains, and India Standard (UTC+5:30) 200 
for the Himachal Pradesh. Figure 4 shows cosine illumination values for the Himachal 201 
Pradesh on the seven dates in Figure 3. 202 
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 203 
Figure 3. Dates and their solar declinations used in the analysis, spaced in equal latitude intervals 204 
from the winter solstice to the summer solstice (NOAA, n.d., solar calculator). 205 

4 Results 206 

Tables 2 and 3 summarize results for all fine- and coarse-resolution datasets 207 
analyzed. Figures 2 and 4 through 6 illustrate examples of the results, comparing one pair 208 
of variables derived from a fine- and a coarse-resolution image. We include examples from 209 
each of the three study sites: Carson River Watershed, Wrangell Mountains, and Indian 210 
Himalaya. 211 

 212 

Figure 4. Values of 𝜇𝜇𝑆𝑆 (cosine of local illumination angle, including shadowing by horizons) over 213 
the Indian Himalaya at 10:45 am on the dates shown in Figure 3, from the winter to the summer 214 
solstice. The area coincides with 16 flight lines by AVIRIS-NG during the 2016 ISRO-NASA 215 
campaign. The illumination values are calculated from the High Mountain Asia 8 m DEM, which are 216 
in the HMA Albers Projection; parameters are Albers equaconic, origin 36°N 85°E, standard 217 
parallels 25°N and 47°N. 218 
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4.1 Topographic variables independent of solar illumination 219 

Variations in elevation across topography translate to slopes and aspects, which 220 
combine with the solar illumination geometry to create variability in local illumination. The 221 
view factor controls the re-reflection of solar radiation that strikes the surface and the 222 
fraction of the diffuse irradiance and atmospheric thermal infrared irradiance that reaches 223 
the surface. For these reasons, the errors in elevation itself are less important than errors 224 
in the other topographic variables. Based on the differences between the fine-resolution 225 
and coarse-resolution DEMs, Table 2 shows the RMS error for elevation, slope, aspect, and 226 
view factor, along with “southness” and “eastness” variables to combine effects of slope and 227 
aspect. Because the differences between the datum sources (Table 1) for elevation exceed 228 
25 m and because we are mostly interested in the internal differences in an elevation grid, 229 
we subtract the mean elevation of each grid from that grid’s values before calculating  the 230 
RMS errors for elevation.  Errors in elevation are small fractions of the elevation values 231 
themselves, but the errors in slope and aspect indicate significant differences between 232 
elevations of neighboring points. Results for the NASADEM and the Copernicus DEM are 233 
similar, but both show outliers that translate into outliers in calculating illumination angles. 234 

Table 2. Root-mean-square error statistics for topographic variables that are independent of solar 235 
illumination. 236  

Root-mean-square error 

Dataset Elevation 
(m) 

Slope 
(°) 

Azimuth 
(°) 

View 
factor 

South-
ness 

East-
ness 

Copernicus DEM, Carson River 4.87 4.73 72.6 0.027 0.092 0.093 
NASADEM, Carson River 6.51 6.24 75.2 0.034 0.115 0.118 
Copernicus DEM, Wrangell 
Mountains 9.11 4.15 24.5 0.025 0.076 0.079 

Copernicus DEM, Himachal 
Pradesh 15.66 6.42 26.3 0.039 0.123 0.129 

NASADEM, Himachal Pradesh 12.06 6.60 26.7 0.040 0.127 0.132 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = sin 𝑆𝑆 cos𝐴𝐴 .𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  sin 𝑆𝑆 sin𝐴𝐴.  

Aspect values and their RMS errors must be treated with caution, because aspect 237 
has negligible effect on solar radiation when the slope is small but a huge effect when the 238 
slope is steep. To consider the interaction of slope and aspect, we also compute 239 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = sin 𝑆𝑆 cos𝐴𝐴 and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = sin 𝑆𝑆 sin𝐴𝐴. In our formulation, we follow the 240 
right-hand convention that 0° aspect represents south, from which eastward aspects are 241 
positive and westward aspects are negative (Sellers, 1965). Therefore, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1 242 
represents a vertical south-facing slope. 243 

The variability in the data indicate variation within the topographic grid. Figure 5 244 
shows the scatter diagrams for the row in Table 2 that summarizes the statistics for the 245 
Copernicus DEM for the Carson River Watershed in the Sierra Nevada. In the more rugged 246 
terrains in the Wrangell Mountains and Indian Himalaya, the RMS error varies from 5 to 16 247 
m. For elevation, the spread around the regression in Figure 5 is small. For the other 248 
variables, however, the spread is much larger. The prevalence of outliers in the scatter 249 
plots for slope and aspect suggests that outliers would be present in the local illumination 250 
angles. Slopes less than 20° in the ASO 3 m DEM correspond to slopes greater than 40° in 251 
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the Copernicus 1 arcsecond DEM, and conversely slopes greater than 50° in the finer-252 
resolution DEM correspond to slopes less than 20° in the Copernicus DEM. Similar 253 
differences occur in the aspects, view factors, and directional variables. In all cases, except 254 
elevation, the slopes of the regression lines that characterize the relationship between the 255 
coarse- and fine-resolution variables are less than 1.0, indicating generally that the 256 
Copernicus DEM and NASADEM slightly underestimate the magnitudes. 257 

 
Figure 5. Detailed illustration supporting one row in Table 2, for the Copernicus DEM in the Carson 258 
River Watershed in the Sierra Nevada. The x-axes show data for the ASO 3 m DEM; the y-axes show 259 
the same information derived from the Copernicus DEM, with both DEMs reprojected to a common 260 
size and projection. Aspect angles represent south as 0°, eastward positive, westward negative, and 261 
therefore consistent with a right-hand coordinate system. Regression lines in the figure and 262 
statistics in Table 2 are based on the whole topographic grid, but just 100,000 points are randomly 263 
selected for the illustrative scatter plots. Regressions slopes are: elevation 1.00, slope 0.82, aspect 264 
0.92, view factor 0.60, southness 0.83, eastness 0.86. Owing to the size of the dataset, the 265 
uncertainties in the calculated regression slopes are of order 10–4. 266 

4.2 Effect of topography on illumination and reflection 267 

The two crucial topographic variables in order of importance are 𝜇𝜇𝑆𝑆, the cosine of 268 
the local illumination angle measured from normal to the slope, and 𝑉𝑉Ω, the fraction of the 269 
hemisphere over a point that is open to the sky. Over a flat unobstructed surface, 𝑉𝑉Ω = 1. 270 
The local illumination angle is related to the topography and the solar illumination 271 
geometry as:  272 

𝜇𝜇𝑆𝑆 = max[0, 𝜇𝜇0 cos 𝑆𝑆 + sin𝜃𝜃0 sin 𝑆𝑆 cos(𝜙𝜙0 − 𝐴𝐴)] (1) 
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The max function accounts for slopes facing away from the sun by setting 𝜇𝜇𝑆𝑆 = 0 in 273 
situations where the equation would yield 𝜇𝜇𝑆𝑆 < 0. To account for points where neighboring 274 
horizons block the Sun, we also set 𝜇𝜇𝑆𝑆 = 0 where sin𝐻𝐻(𝜙𝜙0) ≥ 𝜇𝜇0. Dozier (2022a) presents 275 
the methods for rapid calculation of the horizon angle 𝐻𝐻(𝜙𝜙) for any azimuth 𝜙𝜙 and for 276 
estimating the view factor 𝑉𝑉Ω as an integral of a function of 𝐻𝐻(𝜙𝜙) around the whole circle. 277 

The variables 𝜇𝜇𝑆𝑆 and 𝑉𝑉Ω affect the relationship between the apparent reflectance of 278 
the surface and its intrinsic reflectance that would be measured independent of any 279 
topographic effects (Bair et al., 2022). The apparent reflectance of a topographic surface 280 
involves multiple reflections, especially for bright surfaces such as snow. Let 𝜌𝜌 indicate 281 
spectral reflectance, omitting a wavelength identifier, and 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑 as the fraction of the 282 
spectral irradiance that is diffuse. Set the initial irradiance on a horizontal surface to I. The 283 
spectral radiation that initially escapes into the overlying hemisphere without being re-284 
reflected is: 285 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
(0) = 𝐼𝐼𝐼𝐼Ω �

𝜇𝜇𝑆𝑆
𝜇𝜇0
�1 − 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑�𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + (1 − 𝑉𝑉Ω) �𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)�
2
� (2) 

The superscripts designate the reflectance to direct vs. diffuse irradiance. The right-most 286 
term inside the brackets accounts for reflected radiation within a point’s field-of-view 287 
impinging on the point. The direct and diffuse spectral albedos might differ slightly, for 288 
example for snow. 289 

Not all the initially reflected radiation escapes into the overlying hemisphere. 290 
Instead, some of it re-reflects and eventually escapes or is trapped by the roughness, in 291 
which case it is subject to internal reflection. At the first iteration, its value is: 292 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(0) = 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒

(0) �
1 − 𝑉𝑉Ω
𝑉𝑉Ω

�. (3) 

To account for multiple reflections, at each reflection the value of the incident 293 
radiation is multiplied by the fraction (1 − 𝑉𝑉Ω) that accounts for the reflection remaining 294 
within the topography, the fraction 𝑉𝑉Ω that escapes, and the spectral reflectance. An orders-295 
of-scattering approach to the multiple reflections lets some reflected radiation escape at 296 
each iteration n and some remains available for re-reflection: 297 

escaped 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
(𝑛𝑛) = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛−1) 𝜌𝜌𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑉𝑉Ω 

remaining 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛) = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑛𝑛−1) 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)(1 − 𝑉𝑉Ω) 

(4) 

This series converges in a half dozen iterations because 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑛𝑛)  declines in 298 

proportion to (1 − 𝑉𝑉Ω)𝑛𝑛. The apparent reflectance for the pixel is 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 𝐼𝐼⁄ . 299 

4.3 Errors in estimating 𝜇𝜇𝑆𝑆, the cosine of local illumination 300 

RMS errors and outliers in the topographic variables combine with the solar 301 
illumination geometry to propagate into the calculation of each pixel’s illumination. The 302 
most important variable whose accuracy affects the interpretation of the remotely sensed 303 
signal is the cosine of the location illumination angle. The ratio 𝜇𝜇𝑆𝑆 𝜇𝜇0⁄  appears in Equation 304 
(2), but 𝜇𝜇0 is usually known accurately. The view factor 𝑉𝑉Ω affects the diffuse irradiance 305 
from the sky and the internal reflections within the topography. 306 
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Therefore, the accuracy of the cosine of illumination from the DEM affects our ability 307 
to calculate or correct for the topographic effects. For example, attempting to invert 308 
Equation (2) would use the ratio 𝜇𝜇0 𝜇𝜇𝑆𝑆⁄ ; uncertainty in the denominator of a fraction often 309 
has significant consequences, especially if the denominator is small (Richter & Schläpfer, 310 
2021, chapter 7). Table 3 shows the RMS errors for the cosine of illumination, along with 311 
the fraction of the terrain that is shadowed, for the dates in Figure 3 that extend from the 312 
winter to the summer solstice in equal changes of the solar declination. The RMS error for 313 
𝜇𝜇𝑆𝑆 varies inversely with the value of 𝜇𝜇0; the errors in slope S and aspect A (Table 2) have a 314 
greater effect when 𝜇𝜇0 is smaller. 315 
Table 3. Shadowed fraction and RMS error of 𝜇𝜇𝑆𝑆 (cosine illumination) for each date in each dataset, 316 
varying monotonically with the solar zenith angle 𝜇𝜇0 = cos𝜃𝜃0. In each case the “fine” DEM is that 317 
cited for that region. 318 

The full extent of errors in the results indicates issues with outliers that the RMS 319 
errors do not reveal. Figure 6 shows scatter diagrams of 𝜇𝜇𝑠𝑠 calculated from the Copernicus 320 
DEM vs 𝜇𝜇𝑠𝑠 calculated from the Alaska IFSAR DEM. On all dates but particularly early in the 321 
year, some pixels that are illuminated (𝜇𝜇𝑆𝑆 ≫ 0) in the Copernicus DEM are dark (𝜇𝜇𝑆𝑆 < 0.1) 322 
in the Alaska IFSAR DEM. Similarly, some pixels that the Alaska IFSAR DEM shows to be 323 
illuminated are dark in the Copernicus DEM. A popular text on surveying published six 324 
decades ago (Davis et al., 1966) calls these kinds of mistakes “blunders” rather than errors, 325 
because they cannot be characterized by an error distribution. 326 

5 Discussion 327 

Although errors in the NASADEM and Copernicus DEM are small compared to the 328 
elevation values, their impact on remote sensing can be large. To the extent that errors of 329 
neighboring points are independent, the variances of the differences in elevations are the 330 
sum of the variances in the elevations themselves. Thus, the small dispersion around the 331 
1:1 line in the scatter diagram for elevation in Figure 5 translates to much greater 332 
dispersion in the slope, aspect, and view factor, which in turn translate to large dispersion 333 
in the illumination angles that Figure 6 shows. Therefore, small errors in slope or aspect 334 
can then have a significant impact on estimated reflectance, especially wherever 𝜇𝜇𝑆𝑆 is small. 335 

Algorithms differ in their sensitivities to topographic uncertainty. The effect is 336 
mostly a shift in radiance magnitude, so algorithms that rely on relative spectral shapes 337 
may escape significant harm. These include detection of materials based on diagnostic 338 
spectral absorptions, as in mineral identification (Clark et al., 2003). On the other hand, 339 
studies that rely on absolute radiometry, such as surface energy balance investigations 340 
(Wang et al., 2015), could be more severely affected. Moreover, errors in 𝜇𝜇𝑆𝑆 change the 341 
balance between diffuse and direct illumination onto the surface. Therefore, they can 342 
distort the estimated reflectance spectrum in visible wavelengths, harming snow or 343 
vegetation studies that rely on features in this spectral range.  344 
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Figure 6. Detailed illustration supporting one row in Table 3, for the Copernicus DEM in the 345 
Wrangell Mountains. All axes show values of 𝜇𝜇𝑆𝑆, the cosine of local illumination. The x-axes show 346 
values of calculated from the Alaska IFSAR DEM at 5 m resolution; the y-axes show the same values 347 
computed from the Copernicus DEM at 1 arcsecond, both reprojected to a common size and 348 
projection. Points along either the x- or y-axis identify locations that are shadowed in one DEM and 349 
illuminated in the other. Regression lines in the figure and statistics in Table 3 are based on all 350 
pixels in the data, but just 100,000 points are randomly selected for the illustrative scatter density 351 
plots. Note that the yellow values in the scatter density plots migrate to higher values of 𝜇𝜇𝑆𝑆 as the 352 
solar declination moves northward. 353 

Illumination geometry in mountains affects current satellite imagery from Landsat 354 
8/9 and Sentinel-2a/b, and it will affect future imagery from imaging spectrometers 355 
EnMAP, EMIT, SBG, and CHIME. Locally, fine-resolution DEMs will be available from lidar, 356 
InSAR, or structure-from-motion deployed from drones or aircraft, and slightly coarser 357 
DEMs will be available using structure-from-motion from spaceborne data. However, the 358 
prospect is unlikely for globally available data to accurately estimate the illumination 359 
geometry for these imaging satellites. A chapter in Thriving on our Changing Planet 360 
(National Academies of Science, Engineering, & Medicine, 2018, p. 513) identifies 361 
applications that “would benefit from multibeam, space-based lidar to obtain global 362 
coverage of bare-earth topography and of the biomass/canopy at <<5 m spatial and 0.1 m 363 
vertical resolutions.” However, no such recommendation carried through to that report’s 364 
Executive Summary, and no future NASA mission is in the planning stages. 365 

Therefore, we face a future where the globally available DEMs are what we have 366 
now, at least through the launches and initial few years of the spectrometers SBG and 367 
CHIME and future versions of Landsat and Sentinel. If we could trust the variables 368 
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calculated from DEMs and consider only the RMS errors, we could implement topographic 369 
correction algorithms that estimate 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 from measurements of 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and thereby 370 
recover the geophysical and biological properties of the surface that govern spectral 371 
reflectance, with known uncertainty. However, we face the problem of outliers in the 372 
calculations of 𝜇𝜇𝑆𝑆 and less crucially 𝑉𝑉Ω, so applying any correction algorithm globally on 373 
entire images would produce some incorrect, thus misleading, interpretations. 374 

Strategies to mitigate the impact of topographic errors in processing and 375 
distributing image data and products must be considered. The list is deliberately terse; any 376 
bullet point could be expanded to a whole journal article: 377 

• In the basis documents for algorithms for geophysical and biological products, 378 
assess their sensitivity to uncertainty in illumination geometry and distinguish 379 
between topographic effects that change the spectral shape of the signal vs. those 380 
that change the magnitude only (Lamare et al., 2020).  381 

• Gain a better understanding of the use of shade endmembers (Adams et al., 1986) in 382 
spectral mixture analysis, which implicitly acknowledge the limitations of available 383 
DEMs. 384 

• Understand the relative magnitudes of topographic effects on angular properties of 385 
the reflectance vs. the effects of illumination and viewing geometry on the intrinsic 386 
reflectance (Roupioz et al., 2014; Schaepman-Strub et al., 2006). 387 

• Consider and validate methods to process images that identify pixels where the 388 
illumination geometry calculated from the matching DEM is clearly wrong, for 389 
example detection of shadowed terrain (Hollstein et al., 2016; Shahtahmassebi et al., 390 
2013). 391 

• Avoid exclusively prescribing global topographic correction solutions. Preserve the 392 
flexibility, within the mission science data system, for investigators to apply new 393 
regional DEMs of higher accuracy as these become available, or to ignore 394 
topography. 395 

In the longer term, future research may reduce DEM-induced reflectance errors 396 
through strategies such as the following: 397 

• Implement topographic corrections in superpixels, thereby smoothing out the 398 
errors in individual pixels (Gilmore et al., 2011). 399 

• Continue efforts to improve DEMs globally, especially in mountainous areas (for 400 
example the USGS 3D elevation program in the U.S., Stoker & Miller, 2022). 401 

• Examine and validate novel methods to estimate the illumination geometry directly 402 
from hyperspectral images. 403 

6 Conclusions 404 

Our analyses show that calculations in the globally available DEMs miss shadows 405 
and consistently underestimate the cosines of illumination angles—its RMS error 406 
increasing with solar zenith angle. Analyzing imagery of Earth’s mountains from current 407 
and future missions requires addressing the uncertainty introduced by errors and outliers 408 
in the DEMs on algorithms that retrieve surface properties from measurements of the 409 
apparent spectral reflectance. Intriguing potential improvements lie in assessing the 410 
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uncertainties in retrievals of geophysical and biological properties and in novel methods to 411 
gain information about topography from the imagery itself. 412 
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2022b). Those files include splicing and cropping to match areas of fine and coarse 423 
resolution. 424 

Public sources of the data are: 425 

• NASADEM tiles are available from the U.S. Geological Survey Land Processes DAAC 426 
Data Pool (NASA JPL, 2020). Registration is required but is free. 427 

• Copernicus DEMs customized to specific latitude-longitude quadrilaterals are 428 
available from Open Topography (European Space Agency, 2021). 429 

• Airborne Snow Observatories Inc. provided the snow-off elevation data at 3 m 430 
spatial resolution for the Carson River Watershed. 431 

• The Alaska elevation data, acquired by airborne interferometric synthetic aperture 432 
radar, are available from the U.S. Geological Survey (USGS EROS Archive, 2018). 433 

• Tiles for the High Mountain Asia 8 m DEM are available at the National Snow and Ice 434 
Data Center (Shean, 2017). 435 

• Global grids of the EGM96 and EGM2008 Geoids are available from Agisoft (2008). 436 

Computer codes for calculating solar illumination geometry (Dozier, 2020) and 437 
topographic horizons and other terrain parameters (Dozier, 2022c) are available from the 438 
MATLAB Central file exchange. Code for reprojecting raster data is on GitHub (Dozier, 439 
2021). 440 
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