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Abstract

Unlike streamflow, which can be sampled in aggregate at the catchment outlet, evapotranspiration (ET) is spatially dispersed,

challenging large-scale age estimation. Here, we introduce an approach for constraining the age of ET via mass balance and

present the minimum flux-weighted age of ET across the continental US using distributed, publicly available water flux datasets.

The lower-bound constraint on ET age can be calculated by assuming that ET is preferentially sourced from the most recent

precipitation through a last-in, first-out algorithm. From 2012-2017, ET was at least several months old across large areas of

the western continental US, including in Mediterranean and (semi-)arid climate zones and shrub and evergreen needleleaf plant

communities. The primary limitation of this approach is that it provides only a minimum flux-weighted average age to satisfy

mass balance of outgoing fluxes; true ET fluxes are composed of distributions of ages and may be composed of much older

water. The primary advantage of the approach is that flux timeseries of precipitation and ET are sufficient to constrain ET

age, and model parameterization is unnecessary. ET ages can be used to validate tracer-aided and modeling approaches and

inform studies of biogeochemistry, water-rock interactions, and plant water sourcing under drought.
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Key Points:7

• A last-in, first-out (LIFO) selection of stored water for evapotranspiration yields8

the minimum flux-weighted age9

• A LIFO-based continental-scale evapotranspiration minimum age map was cre-10

ated via cloud computation with distributed water flux timeseries11

• The minimum flux-weighted evapotranspiration age is greatest in the Western US12

in seasonally dry and (semi-)arid biomes13
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Abstract14

Unlike streamflow, which can be sampled in aggregate at the catchment outlet, evapo-15

transpiration (ET) is spatially dispersed, challenging large-scale age estimation. Here,16

we introduce an approach for constraining the age of ET via mass balance and present17

the minimum flux-weighted age of ET across the continental US using distributed, pub-18

licly available water flux datasets. The lower-bound constraint on ET age can be cal-19

culated by assuming that ET is preferentially sourced from the most recent precipita-20

tion through a last-in, first-out algorithm. From 2012-2017, ET was at least several months21

old across large areas of the western continental US, including in Mediterranean and (semi-22

)arid climate zones and shrub and evergreen needleleaf plant communities. The primary23

limitation of this approach is that it provides only a minimum flux-weighted average age24

to satisfy mass balance of outgoing fluxes; true ET fluxes are composed of distributions25

of ages and may be composed of much older water. The primary advantage of the ap-26

proach is that flux timeseries of precipitation and ET are sufficient to constrain ET age,27

and model parameterization is unnecessary. ET ages can be used to validate tracer-aided28

and modeling approaches and inform studies of biogeochemistry, water-rock interactions,29

and plant water sourcing under drought.30

Plain Language Summary31

What is the age of water returned to the atmosphere from the terrestrial land sur-32

face? Here, we explore the results of a simple mass-balance approach that yields the min-33

imum age of evapotranspired water by assuming that evapotranspiration sources water34

from the most recently arrived precipitation available. Newly arriving precipitation is35

added to an age ranked storage reservoir, and the youngest water in the storage reser-36

voir is withdrawn for evapotranspiration. We demonstrate that this last-in, first-out se-37

lection of water from storage for evapotranspiration results in a lower bound average age38

over a time period of record, even without knowledge of other outgoing fluxes like stream39

discharge. Cloud computation enables the creation of a minimum flux-weighted ET age40

map across the continental US from distributed, publicly available precipitation and evap-41

otranspiration datasets. The results of this study constrain an otherwise challenging prop-42

erty of the hydrologic cycle to monitor, as the lack of tracer data (e.g. water isotope con-43

centrations) in evapotranspiration at the continental scale makes quantifying age with44

traditional transit time approaches infeasible without significant model parameter as-45

sumptions.46

1 Introduction47

The age of evapotranspired water can be defined as the elapsed time between when48

precipitation falls and when that water returns to the atmosphere as vapor via transpi-49

ration or abiotic evaporation (Botter et al., 2011). Thus, the age of ET describes the tran-50

sit time distribution of water molecules through terrestrial storage (including above-ground51

such as snow or lakes, subsurface, and intra-plant storage) before being incorporated into52

the primary outflow of the terrestrial hydrologic cycle (Schlesinger & Jasechko, 2014).53

The age of ET can provide information about the origins of plant water sources (Miguez-54

Macho & Fan, 2021), the sensitivity of those sources to drought (Rempe et al., pre-print),55

and nutrient supply, which depends on water residence time in reactive belowground en-56

vironments (Li et al., 2017). For example, fluid residence time in belowground environ-57

ments is a primary determinant of chemical weathering rates (Maher, 2010) and there-58

fore the dissolution of rock-derived plant-essential elements like phosphorous and potas-59

sium. The age of water used by plants may therefore constrain the uptake of those nu-60

trients.61

Although major advances have been achieved in quantifying the time-varying tran-62

sit times of stream discharge (the other dominant outgoing flux in the land-component63
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of the hydrologic cycle; Rinaldo et al., 2015; McGuire & McDonnell, 2006), our under-64

standing of the age of ET is comparatively limited (Soulsby et al., 2016; Sprenger et al.,65

2019). This is due in large part to challenges in measuring tracers in ET: unlike stream-66

flow, which is an aggregated flux that can be readily sampled to parameterize age mod-67

els (e.g. Lapides et al., 2022), ET is a dispersed flux, making sampling logistically chal-68

lenging at large spatiotemporal scales (e.g. Allen et al., 2019). Furthermore, tracer-aided69

ecohydrologic model-based approaches to constraining ET ages (Maxwell et al., 2019;70

Wilusz et al., 2020; Miguez-Macho & Fan, 2021; Kuppel et al., 2020; Smith et al., 2021)71

are potentially limited by inaccurate parameterizations of subsurface water storage reser-72

voirs and persistent challenges in uniquely identifying plant water uptake patterns through73

time. For example, plant water use from bedrock is routine and widespread (McCormick74

et al., 2021), but this phenomenon is poorly incorporated into most land surface mod-75

els. Few field-based isotope studies to date have routinely sampled unsaturated bedrock76

below the soil for water isotopes (e.g. Hahm et al., 2020).77

Constraints on reservoir storage properties (including the size of the reservoir and78

the age of water in storage) may also be obtained from timeseries of fluxes into and out79

of the reservoir. Such mass balance approaches bypass the need for extensive isotopic80

sampling campaigns and avoid errors potentially introduced by inaccurate model param-81

eterization, but they generally provide only an upper or lower bound on a reservoir prop-82

erty of interest rather than an exact value. For example, mass balance approaches have83

been used to infer a minimum subsurface water storage capacity (Wang-Erlandsson et84

al., 2016; Dralle et al., 2021). These approaches use fluxes of ET and precipitation to85

determine how much water must be supplied from storage to explain observed ET in ex-86

cess of precipitation (termed a ‘deficit’) over a certain time period. A minimum bound87

on the storage capacity is achieved by the observation that the reservoir must have a ca-88

pacity that matches or exceeds that largest deficit observed.89

Here, we apply an analogous approach for quantifying a lower bound estimate of90

the age of evapotranspired water. This is achieved by requiring evapotranspiration to91

source water from the most recently arrived precipitation in storage. This approach yields92

ET ages that are in general less than true ET ages, but has the advantage of being parameter-93

free and readily applicable at continental scales using only publicly available distributed94

water flux datasets. Here, we use this approach to ask: what is the spatial pattern of the95

flux-weighted minimum ET age across the continental US, and how does it vary with cli-96

mate and plant community? The result of this exercise provides a new benchmark ET97

age dataset to compare against other approaches.98

2 Methods99

2.1 Estimation procedure100

To determine the minimum flux-weighted age of evapotranspiration, a ‘last-in, first-101

out’ (LIFO) algorithm is implemented at each timestep for each pixel on the landscape:102

1. Newly arriving precipitation (with dimensions of length) is added to an age-ranked103

storage reservoir (as described by Harman, 2015, 2019).104

2. The amount of water needed to supply evapotranspiration at the current timestep105

is then withdrawn from the youngest water available in the storage reservoir. This106

amount of water and its age distribution is recorded.107

3. After the water required to supply ET is removed from the storage reservoir, the108

remaining water in storage ages by the timestep, and the procedure repeats for109

the duration of the timeseries.110

An estimate of the minimum flux-weighted average water age of ET at each pixel111

through time is then determined by weighting the ages at each timestep by the magni-112
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tude of the ET flux. Technically the algorithm allows for a distribution of ages at each113

timestep at a location, but in practice this distribution is usually small (a single age) for114

small timesteps because ET can be sourced from stored precipitation from a single storm115

event. In the terminology of storage selection functions (Rinaldo et al., 2015), this ap-116

proach is equivalent to the ET flux drawing water from storage via a Dirac delta selec-117

tion function located at the youngest edge of the storage distribution. The LIFO algo-118

rithm has been studied in the context of queuing and information theory (where it is some-119

times referred to as ’last-come, first-serve’ or a stack; Kleinrock, 1975; Tripathi et al.,120

2019), but to our knowledge has not been explicitly applied in the context of ET ages.121

No other water flux apart from precipitation is assumed to enter the pixel. Knowledge122

of other outflows is unnecessary for the calculation procedure since the procedure is in-123

tended only to calculate a lower bound: the depletion of stored water via other fluxes124

out of the pixel (e.g., discharge or groundwater flow) can only result in older water (never125

younger water) being available for ET, thus preserving the validity of the lower-bound126

ET age constraint.127

In queuing theory, LIFO has been shown to result in minimum ages in a variety128

of different contexts (Costa et al., 2016; Kaul et al., 2012; Bedewy et al., 2019a, 2019b;129

Xu & Gautam, 2020). However, LIFO only produces a true minimum average ET age130

when considered as a flux-weighted average over a sufficiently long time period; it is po-131

tentially inaccurate on a given timestep. For example, consider a case where instead of132

following LIFO, there is a timestep on which ET does not use the youngest water avail-133

able (ET is older than in LIFO). Then that unused younger water could be used for ET134

on a later day, resulting in younger ET than would have been possible had the LIFO pro-135

cedure been followed. In this case, it is possible to achieve a younger ET age on one day136

but only at the expense of older ET on a different day. This forced trade-off due to mass137

balance means that, ultimately, the mean ET age achieved through any other selection138

function is either identical to or older than that achieved using LIFO (based on an ex-139

tended version of the proof presented by Kingman, 1962). An important distinction be-140

tween many previous applications of LIFO and this study is that not all precipitation141

gets used for ET (not all tasks in the queue get served). However, LIFO still produces142

the youngest mean age in this scenario. For a detailed explanation, see Appendix A. Ad-143

ditional limitations and benefits of this approach are explored in the Discussion.144

2.2 Data sources and implementation145

Only two datasets are required for the ET age estimation procedure: timeseries of146

precipitation and evapotranspiration. We use the ≈ 4.5 km pixel resolution daily PRISM147

precipitation dataset (PRISM Climate Group, 2021; Daly et al., 2008) resampled to 8-148

days, and the ≈ 500 m pixel resolution, 8-day Penman-Monteith-Leuning evapotranspi-149

ration V2 dataset (combined vegetation transpiration, soil evaporation, and interception150

from vegetation canopy bands) (Zhang et al., 2019). A minimum flux-weighted ET age151

constraint is maintained even in the presence of intra-timestep variations in the deliv-152

ery of P and ET due to the order of operations in the algorithm presented above.153

Analysis is performed on the Google Earth Engine (GEE) cloud computing plat-154

form (Gorelick et al., 2017), accessed via the Python application programming interface155

with Google Colab computational notebooks. A repository with the code and resulting156

georeferenced data output rasters are linked below. Proof-of-principle code for imple-157

menting the procedure at a single point is also provided. We filtered the data to five wa-158

ter years (2012-10-01 to 2017-10-01) that coincided with the growth and gradual decline159

of CONUS-scale drought conditions (https://droughtmonitor.unl.edu/DmData/TimeSeries160

.aspx). We masked out pixels with agricultural or urban landcover and locations where161

evapotranspiration exceeded precipitation (due to, e.g., agricultural or groundwater sub-162

sidies or inaccurate flux data). We used default nearest neighbor resampling to export163

the mean age map to ≈ 0.09◦ (10 km at equator) pixel resolution.164
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2.3 Contextual datasets165

To contextualize the inferred ET ages we compiled and computed a number of ad-166

ditional datasets:167

2.3.1 Longest dry period168

We calculated the longest dry period on record across the continental US using an169

existing algorithm (Gorelick, 2021), which determines the longest number of days with-170

out precipitation at each pixel using the same PRISM precipitation dataset described171

above (PRISM Climate Group, 2021).172

2.3.2 Asynchronicity index173

We calculated the information theory-based asynchronicity index between precip-174

itation (P) and potential evapotranspiration (PET) Feng et al. (2019), which captures175

both the temporal misalignment and differences in relative magnitudes between atmo-176

spheric water delivery and demand; a higher value indicates greater mismatch between177

P and PET monthly magnitudes and phase, such as would be found in winter-wet, summer-178

dry Mediterranean climates.179

Since PRISM does not explicitly provide a PET data product, we used ≈ 4 km pixel-180

scale monthly average Terraclimate P and PET data (Abatzoglou et al., 2018) from the181

time period 1958-2020. A negligible quantity (0.001 mm) was added to the monthly av-182

erages to ensure no division by zero occurred during calculation of the index.183

2.3.3 Mean annual precipitation and evapotranspiration184

Mean annual precipitation and evapotranspiration were calculated between 2012-185

10-01 and 2017-10-01 in the Google Earth Engine platform. Precipitation was averaged186

from daily time period PRISM data (PRISM Climate Group, 2021). Evapotranspira-187

tion was averaged from the combined vegetation transpiration, soil evaporation, and in-188

terception from vegetation canopy bands provided in the Penman-Monteith-Leuning Evap-189

otranspiration V2 dataset (Zhang et al., 2019).190

2.3.4 Land cover and climate type191

We accessed the Annual International Geosphere-Biosphere Programme (IGBP)192

land cover type classification from the MODIS MCD12Q1 V6 data product (Friedl & Sulla-193

Menashe, 2015) in GEE, using the most recent year. We excluded mean ages in unsuit-194

able analysis locations, which included permanent wetlands, croplands, urban and built-195

up lands, cropland/natural vegetation mosaics, permanent snow and ice, barren and wa-196

ter bodies. We accessed the Koeppen-Geiger climate type (Peel et al., 2007) from the197

GEE asset created by McCormick et al. (2021). The climate types were grouped by the198

first two letters of the classification scheme. Both of these datasets were resampled (via199

the statistical mode) to match the ET age pixel resolution. To ensure that land area was200

weighted appropriately, the raster datasets were analyzed in the Conus Albers equal-area201

projection.202

3 Results203

3.0.1 Illustrative timeseries at a point204

To illustrate how the LIFO selection function interacts with storage, Figure 1a plots205

timeseries of cumulative precipitation and evapotranspiration (the input data for ET age206

estimation) at a semi-arid Blue oak savanna site in the Northern California Coast Range207
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Figure 1. Illustrative timeseries at a single location of (a) input (precipitation) and output

(evapotranspiration (ET)) fluxes, storage dynamics, and LIFO-inferred ET age, and (b) age-

ranked storage distribution snapshots at four select dates of the water remaining in storage; the

dates of the storage snapshots in (b) are shown as vertical dashed lines in (a). The site is a sea-

sonally dry Blue oak savanna in the Northern California Coast Range. See main text for more

information on the site.
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(‘Rancho Venada’). The site experiences a rain-dominated Mediterranean climate, with208

negligible summer precipitation (additional site details are available in Pedrazas et al.,209

2021; Hahm et al., 2022). A storage deficit (evapotranspiration in excess of precipita-210

tion, Wang-Erlandsson et al., 2016) grows through the first dry season and is only par-211

tially replenished during the following wet season.212

The instantaneous LIFO-inferred average ET age plotted in Figure 1a shows how213

ET age jumps to zero following rain events, and then increases along a 1:1 aging slope214

during dry periods as the last precipitation event in storage is used up. Occasional jumps215

in ET age reflect the complete consumption of the most recent precipitation event, and216

the need for subsequent ET to be supplied from even older water in storage. A partic-217

ularly notable age jump occurs in September 2020, when ET has completely consumed218

the entire precipitation input from that water year, and the next youngest water remain-219

ing in storage to supply ET is from the previous water year (there was negligible ground-220

water recharge and streamflow in the 2021 water year at this site, Hahm et al., 2022).221

Figure 1a also shows the LIFO-inferred flux-weighted ET age over the plotted time pe-222

riod as a horizontal line, which is the minimum average ET age over this time period.223

Figure 1b shows cumulative distributions of age ranked storage at four select times224

in Figure 1a (where the corresponding times are denoted by matching-color vertical dashed225

lines). X-axis intercepts mark the age of the youngest water in storage. The two stor-226

age snapshots in 2019 follow dry periods. The later 2019 storage snapshot has the same227

relative age structure as the earlier 2019 snapshot but is translated in this plotting space228

downward and to the right, due to i) aging of the water in storage (rightward transla-229

tion) and ii) the net consumption (ET in excess of P) of the youngest water in storage230

(downward translation) over the time interval. The January 2020 wet season snapshot231

reveals how during periods with P in excess of ET there is generally ample young wa-232

ter in storage; at this time period the ET age in Figure 1a is close to zero. The final stor-233

age snapshot in Figure 1b from September 2020 reveals why a large jump in ET age oc-234

curs shortly afterward in Figure 1a. Only about 20 mm of water less than 300 days old235

(from the current water year) remains in storage at this point in the dry season. Once236

this water is consumed by ET in the following weeks, the next youngest water available237

remaining in storage is over 500 days old (delivered as precipitation in the previous wa-238

ter year).239

3.0.2 Continental-scale analysis240

Figure 2a shows minimum flux-weighted ET ages across the continental US (i.e.,241

this figure maps the value of the horizontal dashed line in Figure 1a for each pixel). Min-242

imum flux-weighted average ET ages are greater than one month across large areas of243

the western continental US, whereas ET in most of the eastern continental US can be244

sourced from water less than one month old. In large parts of California and other scat-245

tered upland regions, the water supplying ET must be more than three months old on246

average. Minimum flux-weighted ET ages have a U-shaped relationship to both mean247

annual precipitation and evapotranspiration (Figure 3), with higher minimum flux-weighted248

ET ages found at very low and very high P and ET. This pattern varies spatially, how-249

ever. For example, the northern West Coast, the Sierra Nevada, the Cascade Range, and250

the central Gulf Coast all have high precipitation, but ET along the central Gulf Coast251

can be sourced with water younger than one month on average (Figure 2). In general,252

areas with a higher asynchronicity index are areas with older minimum flux-weighted ET253

ages (Figure 3). There is also geographic variability in this relationship, with a notable254

exception in the southeast US, which must have enough summer precipitation to pro-255

vide young water for ET while still having a relatively large asynchronicity between at-256

mospheric water and energy supply (Figure 2). Areas with long consecutive dry peri-257

ods also tend to have relatively old minimum flux-weighted ET ages. It may be coinci-258

dence that an almost 1:1 slope emerges between minimum flux-weighted age ET and longest259
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c)	Asynchronicity	Index

e)	Longest	dry	period	(days)

b)	Mean	annual	precipitation	(mm)

d)	Mean	annual	evapotranspiration	(mm)

a)	Flux-weighted	
minimum	ET	age

Less	than	1	month
(or	masked	pixels)
1	-	2	months

2	-	3	months

>	3	months

Figure 2. Map of (a) flux-weighted, last-in first-out inferred ET age indicates that ET must

be relatively old across much of the western continental US. Maps in (b-e) provide contextual

climate metrics for the same area.
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Figure 3. Median values (points) and surrounding one standard deviation ranges (vertical er-

ror bars) for lower bound ET ages over the period of record, plotted versus evenly spaced binned

values of the contextual dataset maps shown in Figure 2.

dry period (Figure 3), because long dry periods are relatively easy to interrupt (just one260

day of precipitation restarts the count), whereas replenishing storage with new precip-261

itation to sustain ET is a much longer process.262

The boxplots in Figure 4a indicate that relatively old ET comes from desert and263

arid, Mediterranean, humid continental and subarctic (dry summer), and semi arid cli-264

mate regions, with more than half of these areas having minimum flux-weighted ET ages265

greater than two months. In contrast, ET from most non-dry summer humid climate re-266

gions may be less than one month old. In terms of plant community type (panel b), shrub-267

lands and evergreen needleleaf forests (one of the most productive and highest biomass268

plant communities in the continental US; Kellndorfer et al., 2013) must have relatively269

old ET. In contrast, ET from deciduous broadleaf forests (which tend to be concentrated270

in the eastern continental US) can be sourced from young water (less than one month271

old).272

4 Discussion273

4.1 The LIFO ET selection function274

The LIFO ET selection function results in a minimum flux-weighted estimation of275

ET age over a time period of record. Other selection functions that sample the entire276

distribution of stored water may result in artefactually increasing mean age estimates277

over time when streamflow out of a pixel is not constrained. This is because in any lo-278

cation where in the long-term P exceeds ET (which is generally the case, in the absence279

of inter-pixel fluxes), storage grows as time progresses in the absence of streamflow so280

that the maximum (and likely mean) age of water in storage is positively correlated with281

the period of record.282

Under what conditions is the LIFO-inferred minimum ET age most likely to be sim-283

ilar to the true ET age? One notable case is the scenario in which interception and soil284

evaporation occur nearly contemporaneously with precipitation, and effectively capture285

and return incident precipitation to the atmosphere (e.g. Hrachowitz et al., 2013; Crock-286

ford & Richardson, 2000). However, the LIFO approach is an obvious underestimation287

of true age in other scenarios. For example, no distinction is made between rain or snow,288

and snow must melt before becoming plant available. This may not cause a large diver-289

gence between minimum and true ET ages if ET is minimal when snow is present, but290

some forests transpire through the winter under persistent snowcover (e.g. Kelly & Goulden,291
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Figure 4. Boxes and whiskers show the quartiles and data bounded within 1.5 times the

inter-quartile range beyond the box edges, respectively, of flux-weighted minimum ET age pixels

(from Figure 2a) grouped by the most common (by area) Koeppen-Geiger climate types (left)

and natural plant communities (right) in the continental US.

2016). LIFO will also underestimate true ET age when stream discharge depletes young292

water from storage. This can occur, for example, under the following conditions: i) when293

precipitation falls directly on the channel, ii) when the catchment has wet antecedent294

conditions (e.g. Harman, 2015), or iii) in catchments that experience infiltration-excess295

(Hortonian) overland flow. Even if water uptake by plants followed the LIFO selection296

function, true ET ages will still generally be older than the LIFO inferred age since wa-297

ter must transit plants before transpiring. Intra-plant transit times are likely to be non-298

negligible particularly for large woody species (e.g. Meinzer et al., 2006; Seeger & Weiler,299

2021), with tracer transit times from bole to crown documented on the order of 2.5 to300

20 days. Sprenger et al. (2019) estimated a global average mean intra-plant water res-301

idence time of 6 days based on storage volumes and fluxes, using data from Oki and Kanae302

(2006).303

4.2 Comparison to other estimations of ET age304

Tree-scale studies that have sampled transpiration in experimental laboratory con-305

ditions have found contrasting behaviors, with Evaristo et al. (2019) observing relatively306

older water in the transpiration compared to drainage fluxes (at Biosphere 2), and with307

Benettin et al. (2021) showing that willow trees took up new tracer water faster than308

it could drain to the bottom of a lysimeter.309

Hillslope- to catchment-scale studies employing a variety of tracers have found that310

evapotranspiration preferentially selects younger water in storage relative to streamflow311

(e.g. Soulsby et al., 2016; Visser et al., 2019; Kuppel et al., 2020). Kirchner and Allen312

(2020) found that most evapotranspiration is sourced from intra-seasonal precipitation313

at the Hubbard Brook experimental forest in New Hampshire. These findings lend sup-314
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port to the ages inferred by the LIFO selection function. The usual sampling strategy315

in these studies nevertheless tends to focus on streamwater rather than transpiration,316

however, and abiotic evaporative fluxes are rarely sampled.317

Our simple mass balance approach is broadly consistent with more complicated large-318

scale models. Using a Lagrangian particle tracking model, Asenjan and Danesh-Yazdi319

(2020) recently found that plants have a strong preference for the youngest water in stor-320

age, and similar to our observations found that the oldest ET ages occurred in locations321

with pronounced seasonal offsets between P and ET (that is, in locations likely to ex-322

hibit a relatively high asynchronicity index). Maxwell et al. (2019) also employed La-323

grangian particle tracking within a hydrologic model and found that ET tends to take324

up younger water in storage.325

Miguez-Macho and Fan (2021) recently described a comprehensive, large-scale ef-326

fort to model the age of water taken up by ET. They concluded that globally more than327

70% of plant transpiration is sourced from water less than one month old. This strong328

preference for young water indicates that the LIFO assumption may be fairly accurate.329

Miguez-Macho and Fan (2021)’s Figure S8 shows the relative fraction of transpiration330

from recent rain across the continental US. Although their map is not directly compa-331

rable to our minimum ET age map in Figure 2, the qualitative similarities are striking:332

the smallest fraction of recent rain occurs in western states, particularly in upland re-333

gions, in a very similar pattern to where we calculated the oldest minimum ET ages. The334

Miguez-Macho and Fan (2021) approach relies on a state-of-the art hydrological model335

informed by a large literature compilation of stable isotope studies; the fact that our sim-336

ple mass balance approach yields similar results is encouraging.337

4.3 Uncertainty338

Our estimates of flux-weighted ET ages should provide an accurate lower-bound339

on true ages subject to the accuracy of the precipitation and evapotranspiration flux datasets340

and to the extent that there are no unaccounted for input fluxes that make younger wa-341

ter available to ET. One such flux, occult precipitation (fog, dew or mist), can consti-342

tute a significant plant water source in some ecosystems during dry periods (Limm et343

al., 2009) and is not typically incorporated into distributed precipitation flux datasets.344

Our analysis also does not account for lateral influx of saturated zone or surface water345

(e.g., as groundwater or streamflow originating outside of the pixel) that subsequently346

becomes evapotranspired. This unaccounted-for input flux is less likely to result in in-347

accurate lower-bound age estimations, due to the fact that these water fluxes would typ-348

ically consist of relatively old water, and due to the fact that our pixels are much larger349

than typical ridge-valley hillslope scales where lateral transport may be most significant.350

Irrigation, if considered to be ‘new’ water, would also likely result in incorrect lower bound351

ET age inferences; we deliberately excluded agricultural and urban areas from our anal-352

ysis for this reason. Spatial intra-pixel flux heterogeneities could also bias the ET age353

estimation procedure, and for this reason the evaluation spatial scale should be kept as354

small as is reasonably possible.355

5 Conclusions356

Storage selection functions provide a coherent approach for modeling water ages357

(Rinaldo et al., 2015). However, they have traditionally been parameterized with the aid358

of tracer data, and little such data exists for ET fluxes at large scales. Here we show how359

the assumption of a last-in, first-out storage selection function for ET can constrain ET360

ages from distributed water fluxes alone without the need for tracer data or model pa-361

rameters. We demonstrated how this storage selection function yields a lower-bound on362

true ET ages over a time period of record, and applied the simple approach to the con-363

tinental US. The oldest flux-weighted minimum water ages reach several months and are364
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found in western states, typically in upland areas that experience relatively high asyn-365

chronicity between precipitation and energy supply. The resulting dataset can be used366

as a benchmark to compare against other more complicated age estimation procedures.367

Appendix A Demonstration of minimum age368

The ‘last-in, first-out’ (LIFO) algorithm provides a lower bound on the flux-weighted369

age of ET over some time period of interest. To demonstrate this, we refer to results from370

an analogous problem in queuing theory. In this problem, customers (precipitation) ar-371

rive to a shop (subsurface storage) and must all be served (used for ET). This problem372

makes a direct analogy if we consider P and ET to consist of infinitesimal, discrete wa-373

ter parcels.374

Kingman (1962) demonstrated that any procedure followed for serving the customers375

will result in the same average wait time (ET age). This means that if there is a set of376

precipitation that must be used for ET, then the mean age of ET will be the same re-377

gardless of how that precipitation is allocated to ET. However, in the case of precipita-378

tion and ET, there is generally more precipitation than ET over long timescales, mean-379

ing that some precipitation is never used for ET. Thus, in order to minimize the mean380

ET age a set of precipitation to use for ET must be selected from all available precip-381

itation inputs. The only way to achieve different mean ages is by selecting different sets382

of precipitation to use.383

The LIFO algorithm provides one method for selecting a set of precipitation inputs384

and assigning them to ET. Any algorithm that selects the same set of precipitation (re-385

gardless of how that precipitation is assigned to ET) will result in the same mean ET386

age. We can test whether LIFO is the algorithm which produces the minimum estimate387

of flux-weighted ET age by comparing LIFO to another hypothetical algorithm, where388

we assume that the selected precipitation input set is different from that selected by LIFO.389

We can call this set A. In order for the hypothetical algorithm to achieve a younger age390

than LIFO, then there must be a set of P parcels that are different between A and the391

set chosen by LIFO. However, LIFO by design selects all of the youngest precipitation392

available, so the set A must have older precipitation if it is different from LIFO.393

To see this, assume that there are n parcels different between the set chosen by LIFO394

and A. We can line up the n parcels from LIFO in chronological order and do the same395

for the n parcels in A that replace them. Beginning from the youngest end of the set,396

the parcel chosen by LIFO was the youngest water available in storage given all previ-397

ous choices. The youngest parcel that could replace it is the youngest parcel in the set398

of n from A. Any more recently fallen precipitation must (a) already be in the set of P399

chosen by LIFO, which cannot be the case since this is the set of parcels different be-400

tween LIFO and A, or (b) is not included in LIFO because it falls too late in the time-401

series, meaning that it would not be possible to assign that precipitation to ET since all402

of the ET following that precipitation already has precipitation parcels to account for403

it, and this P must be used before it fell, which is also impossible. This means that the404

parcel from LIFO must be replaced by an older parcel in A. This ordering by chronol-405

ogy can be thought of as a swap, and the preceding argument holds for each swap.406

Appendix B Open Research407

Complete code for querying the input datasets and reproducing the analysis, and408

the resulting output georeferenced datasets (provided as a multiband GeoTIFF file) is409

hosted at the following repository on Hydroshare: http://www.hydroshare.org/resource/410

9740fd0142144c8e8bf43876eedec308411
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