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Abstract

A volcanic eruption is usually preceded by seismic precursors, but their interpretation and use for forecasting the eruption

onset time remain a challenge. Eruption processes in geysers are similar to volcanoes, but occur more frequently. Therefore,

geysers are useful sites for testing new forecasting methods. We tested the application of Permutation Entropy (PE) as a robust

method to assess the complexity in seismic recordings of the Strokkur geyser, Iceland. Strokkur features several minute-long

eruptive cycles, enabling us to verify in 63 recorded cycles whether PE behaves consistently from one eruption to the next one.

We performed synthetic tests to understand the effect of different parameter settings in the PE calculation. Our application

to Strokkur shows a distinct, repeating PE pattern consistent with previously identified phases in the eruptive cycle. We find

a systematic increase in PE within the last 15s before the eruption, indicating that an eruption will occur. We quantified the

predictive power of PE, showing that PE performs better than seismic signal strength or quiescence when it comes to forecasting

eruptions.
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Key Points:8

• Permutation Entropy (PE) is a simple tool to assess the complexity of a time se-9

ries.10

• We analyzed the PE evolution for 63 eruptive cycles of Strokkur geyser and found11

characteristic changes in PE during recharge.12

• PE is found to be an useful statistical predictor of the eruption times and high-13

lights the precursor 15 s before eruptions.14
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Abstract15

A volcanic eruption is usually preceded by seismic precursors, but their interpretation16

and use for forecasting the eruption onset time remain a challenge. A part of the erup-17

tive processes in open conduits of volcanoes may be similar to those encountered in gey-18

sers. Since geysers erupt more often, they are useful sites for testing new forecasting meth-19

ods. We tested the application of Permutation Entropy (PE) as a robust method to as-20

sess the complexity in seismic recordings of the Strokkur geyser, Iceland. Strokkur fea-21

tures several minute-long eruptive cycles, enabling us to verify in 63 recorded cycles whether22

PE behaves consistently from one eruption to the next one. We performed synthetic tests23

to understand the effect of different parameter settings in the PE calculation. Our ap-24

plication to Strokkur shows a distinct, repeating PE pattern consistent with previously25

identified phases in the eruptive cycle. We find a systematic increase in PE within the26

last 15 s before the eruption, indicating that an eruption will occur. We quantified the27

predictive power of PE, showing that PE performs better than seismic signal strength28

or quiescence when it comes to forecasting eruptions.29

Plain Language Summary30

When a volcano shows the first sign of activity, it is challenging to determine whether31

and when the actual eruption will occur. Usually, researchers create earthquake lists and32

locate these events to assess this. However, an alternative and simpler method can be33

directly applied to continuous seismic data. We tested a method that assesses the com-34

plexity of signals. We first created synthetic data to find reasonable parameter settings35

for this method. While volcanoes do not erupt very often, frequent eruptions at geysers36

allow us to systematically study and compare several eruptions. We analyzed the con-37

tinuous record of 63 eruptions of the Strokkur geyser, Iceland. Our results show a dis-38

tinct pattern that repeats from one eruption to the next one. We also find a clear pat-39

tern that indicates about 15 s before the next eruption that an eruption will occur. We40

show that this method performs better in eruption forecasting than assessing the seis-41

mic noise or silence caused by the geyser.42

1 Introduction43

When a volcano becomes restless, it is challenging to assess whether it will lead to44

an actual eruption and determine the timing of the eruption onset. A magmatic intru-45

sion starting at depth can (i) remain at depth, (ii) stall just before reaching the surface,46

(iii) erupt in sluggish and viscous extrusion, or (iv) erupt rapidly or explosively (Moran47

et al., 2011). The process of magma migration involves interactions with the surround-48

ing country rock, cooling magma bodies from previous eruptions, and (or) hydrother-49

mal system (Moran et al., 2008). These interactions generate natural phenomena such50

as earthquakes, deformation, temperature changes, and gas emissions. These phenom-51

ena can be observed by geophysical and geochemical measurements (Moran et al., 2008)52

and integrated with the history of past eruptions in a framework of eruption forecast-53

ing (Whitehead & Bebbington, 2021).54

From a seismic point of view, eruptions can show precursors such as accelerating55

or decelerating earthquake rates. To assess this, monitoring institutes conventionally use56

methods to tabulate daily event counts (McNutt, 1996) and calculate the average am-57

plitude for a certain window length (Endo & Murray, 1991). The Failure Forecast Method58

estimates the onset time of eruption by using the rate and the acceleration of seismic pre-59

cursors associated with the rock failure caused by magma propagation (Boué et al., 2015).60

However, this method cannot deal with complex precursory signals, e.g., that exhibits61

fluctuations or deceleration (Boué et al., 2015). Furthermore, due to the uncertainty of62

the eruption forecast and numerous false alarms (Bell et al., 2013), this method is not63

recommended to be stand-alone (Whitehead & Bebbington, 2021). Dempsey et al. (2020)64
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tested a real-time Machine Learning framework to detect eruption precursors of five ma-65

jor eruptions at Whakaari volcano, New Zealand, from 2011 to 2020. This framework66

derives the information from the seismic amplitude between different frequency bands67

to assess whether an eruption will occur. A challenge lies in the threshold determina-68

tion: while increasing the threshold will eliminate false predictions, it leads to missing69

eruptions and vice versa.70

Permutation Entropy, referred to as PE, quantifies the complexity of time series71

in a simple way, allowing us to characterize the evolution of a dynamic system (Bandt72

& Pompe, 2002). The calculation of PE relies on the number of permutations appear-73

ing in a data series, also known as ordinal pattern, which has been proved to be sensi-74

tive in detecting dynamical changes (Cánovas et al., 2011; Cao et al., 2004). PE is widely75

applied in biomedical science, such as epilepsy detection and prediction, discriminating76

depth level of anesthesia, and distinguishing heart rate to assess the possibility of heart77

failure, as has been summarized by Zanin et al. (2012). Although the original algorithm78

of PE is robust, efforts in PE modification have been made to improve its capability in79

handling structural changes in different data types. Examples are Tsallis Permutation80

Entropy to improve the characterization of different stochastic processes (Zunino et al.,81

2008) and Rényi Permutation Entropy, which uses Rényi Entropy (Rényi, 1960) in the82

calculation of PE, in order to distinguish rare from frequent events (Zhao et al., 2013).83

The PE modifications are not only limited to the amplitude information but also con-84

cern the signal’s phase information, as recently proposed by Kang et al. (2021) as Phase85

Permutation Entropy.86

A robust forecasting framework requires incorporating different forecasting attributes87

from multiple methods. Testing the application of new methods is important to improve88

the reliability of the forecasting framework. Glynn and Konstantinou (2016) successfully89

used the original PE algorithm to detect precursors prior to the 1996 Gjálp eruption. This90

motivates us to further assess PE’s capability and limitation in detecting dynamical changes91

prior to eruptions.92

Geysers are hot springs characterized by intermittent discharge of water that erupts93

turbulently and is accompanied by a vapor phase (White, 1967). The eruption process94

of geysers requires magmatism as a heat source, abundant water recharge, and a plumb-95

ing system (Hurwitz & Manga, 2017). While the type of liquid and gas phase in geysers96

differs from the liquid, gas, and solid phase in magma, the fluid is driven to eruption by97

the gases in both cases. Therefore, the knowledge gained from understanding geyser erup-98

tions might provide useful insights for monitoring volcanic eruptions.99

Here, we tested the application of PE for forecasting eruptions at Strokkur geyser,100

Iceland (Fig. 1a and b). The Strokkur geyser is an ideal site for three reasons: (1) Strokkur101

features a several-minute long eruptive cycle (Eibl et al., 2021) which allows us to check102

if PE behaves consistently from one cycle to the next one, (2) the features of the erup-103

tive cycle were already described and interpreted multidisciplinaryly (Eibl et al., 2021)104

and provide a benchmark for our study, (3) the available instrument network (Fig. 1b)105

consists of seismometers located at a few meter distance from the geyser’s conduit, pro-106

viding signals with a high signal-to-noise ratio, and seismometers installed at 38.3 to 47.3m107

distance, providing a good configuration to test the sensitivity of PE towards station dis-108

tance.109

In this publication, we first introduce the PE method (section 2.1) and perform sev-110

eral synthetic tests to choose the optimum parameters for PE calculations (section 2.2).111

We also introduce the Receiver Operating Characteristic (ROC) analysis (section 2.3)112

to assess the predictive power of PE. Then, the methods are applied to eruptions of the113

Strokkur geyser (section 3 and 4). We compare PE with seismic root-mean-square val-114

ues (RMS) for one eruptive cycle (section 5.1) and stacked for all available single erup-115

tive cycles (section 5.2). We assess PE for other eruption types (section 5.3) and the change116
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of PE with distance (section 5.4). We discuss how PE relates to the seismic sources mi-117

gration (section 6.1), the influence of source strength and path effects toward PE(section118

6.2) and its predictive power for eruptions at the Strokkur geyser (section 6.3). We con-119

clude that PE detects a clear precursory signal at stations at a few meter distance, mak-120

ing it a promising tool in eruption forecasting.

Figure 1. Overview of seismic network near Strokkur geyser, Iceland and the calculation of
PE. (a) Location of the Strokkur geyser in Iceland (blue triangle) and (b) aerial map where white
triangles indicate the location of the seismometers (7L network). (c) 10 s seismogram recorded by
the vertical component of station S1. The seismogram is divided into 10 bins of 1 s. The shaded
part is related to one of those bins. (d) A closer view of 0.12 s seismic data taken from the shaded
window in subfigure (c). The blue and red dot-connecting-lines visualize two consecutive ordinal
patterns, {3, 1, 0, 2, 4} and {2, 1, 0, 3, 4} respectively. Each pattern is constructed from five
consecutive values selected using m = 5 and τ = 0.0015 s. The length of τ is visualized as a black
horizontal scalebar. (e) The 10 PE values calculated for the consecutive 1 s time window in sub-
figure (c), where the red dot refers to the PE calculated for the shaded time window in subfigure
(c).

121

2 Methods and Synthetic Test122

2.1 Calculation of Permutation Entropy (PE)123

Permutation Entropy is a robust way to quantify the complexity of a time series124

(Bandt & Pompe, 2002; Zanin et al., 2012; Riedl et al., 2013). This PE method analyzes125

the probability distribution of ordinal patterns observed in the data (Bandt & Pompe,126

2002). An ordinal pattern is a vector representing the relative order of amplitude of the127

successive samples in a sequence of time series (Bandt & Pompe, 2002; Zanin et al., 2012;128

Riedl et al., 2013). For example, a sequence of {0.5, 1.0, 3.5, 4.0, 5.7}, based on their am-129
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plitude order, is represented as an ordinal pattern of {0, 1, 2, 3, 4} and a sequence of {1.1,130

0.8, 0.7, 1.3, 1.0} is represented as an ordinal pattern of {3, 1, 0, 4, 2}.131

To construct an ordinal pattern, we basically downsample the time series using an132

embedding dimension and a delay time. The embedding dimension is the number of sam-133

ples used to construct an ordinal pattern, i.e., the length of the ordinal pattern, while134

the delay time is the time gap between the successive samples constructing the ordinal135

pattern. The ordinal pattern is then defined by a vector of xs, xs+τ , ..., xs+(m−1)τ , where136

xs is the first sample in the sequence, m is the embedding dimension and τ is the de-137

lay time (Zanin et al., 2012; Riedl et al., 2013). If equal values of amplitude are selected,138

these values are ranked based on their temporal order (Zunino et al., 2017). To extract139

all ordinal patterns in a short time window, we continuously shift xs one sample forward140

until the last ordinal pattern reaches the end of the window. The PE for the time bin141

is then calculated as follows:142

PE =
−1

logm!

m!∑
k=1

pk log pk (1)143

where pk is the probability of the ordinal pattern k, and m is the value of the embed-144

ding dimension. pk is estimated by the relative frequency Nk/N , where Nk represents145

the number of recurrences of pattern k and N is the total number of ordinal patterns146

observed in the time window. The maximum number of different ordinal patterns in a147

time series signal is m!. Equation (1) is normalized with log(m!) to limit the value of PE148

to the range of 0 to 1. We then repeat the PE calculation for the next time bin that does149

not overlap with the previous one until the whole time period of interest is processed,150

and we can study the PE changes in time.151

An example of PE calculated for seismic data of station S1 at Strokkur (see Fig. 1b)152

is illustrated in Fig. 1c-e. Here, we first divided the seismic time series into 1 s-windows153

(Fig. 1c), in which the ordinal patterns were extracted using m = 5 and τ = 0.015 s154

(Fig. 1d). We define the delay time as the time gap in seconds as we deal with seismic155

time series that were recorded with different sampling rates. In each 1 s-window, we then156

estimated the probability distribution of the ordinal patterns and calculated the respec-157

tive PE value (Fig. 1e).158

2.2 Synthetic Test of Permutation Entropy159

The calculation of PE requires the choice of the delay time, embedding dimension,160

and the length of time bins (e.g., the shaded window in Fig. 1c). We created several syn-161

thetic signals with and without noise to explore the role of these parameters and to de-162

fine reasonable settings for the PE calculation. The synthetic signals were generated us-163

ing the basic formula x(t) = sin(2πft) and a sampling rate of 100 Hz. We set the length164

of the signals to 20000 s. For all tests, we used delay times τ ranging from 0.01T0 to T0165

with a step size of 0.01T0, where T0 = 1/f is the fundamental period of the signal, and166

embedding dimensions m range from 3 to 9. Since one point cannot create any vectors,167

and two points can only construct a vector with two possible directions, up and down,168

m = 3 becomes the smallest embedding dimension to assemble ordinal patterns (Zanin169

et al., 2012). In this test, m = 9 was chosen as the upper limit due to the high com-170

putational cost. To find out whether the wavelength of the targeted signal should be con-171

sidered when choosing the window length, we tested 8 different monochromatic signals172

with different wavelengths. All synthetic tests were performed using Python (Van Rossum173

& Drake, 2009).174

We first tested a pure monochromatic signal with f = 1 Hz (Fig. 2a) to evalu-175

ate the effect of different delay times and embedding dimensions. We observed that the176

minimum PE is obtained when the shortest delay time, i.e. τ =0.01 s, and a delay time177

τ close to T0 was used (Fig. 2c). We expected that the minimum PE is obtained when178
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Figure 2. Synthetic test for PE calculation. 10 s zoom of the 2000 s synthetic signal with a
frequency of f=1Hz (a) without noise, (b) with SNR=5, (c) PE calculated from the signal in
subfigure (a) using embedding dimensions m from 3 to 9 and delay times τ from 0.01T0 to T0

with step size 0.01T0. T0=1/f is the period of the signal. (d) Same as subfigure (c) for the signal
in subfigure (b), (e) Minimum PE values for 5 synthetic signals, with different complexity and
SNR=5, calculated using the same embedding dimensions and delay times as in subfigure (c),
(f) PE calculated for 8 different monochromatic signals with frequencies f between 0.005 and
10 Hz using m=7 and τ=0.2/f . The synthetic signals used for subfigures (e) and (f) are shown in
Fig. S1.

using τ = T0, since the delay time will select equal values of amplitude and construct179

a repeated ordinal pattern through the window. However, we obtained a very high PE,180

close to 1 (Fig. 2c) for τ = T0. After checking the synthetic sine wave constructed us-181

ing the numpy library (Harris et al., 2020), we found that there are small differences in182

the order of 10(−16) between the amplitudes of the same wave phase, due to the floating-183
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point error. While the relative differences between values are negligible, the tiny differ-184

ences disturb the ranking and create random ordinal patterns, resulting in PE close to185

1.186

To make the time series more complex, in the next step, we (i) added noise to the187

signal and (ii) added different frequencies to create different signal types. We quantified188

the noise level by the signal-to-noise ratio (SNR), defined as the ratio between the vari-189

ance of signal and noise. The SNR hence can be calculated according to190

SNR =
σ2
S

σ2
N

(2)191

where σS is the standard deviation of the signal and σS is the standard deviation of the192

noise. We used SNR=5 to create noise and added it to the monochromatic signal (Fig. 2b).193

The analysis of the synthetic signal shows that PE is equal to 1 when calculated using194

the shortest delay time and delay time equal to T0 (Fig. 2d). We infer that the delay time195

should not be short nor equal to the fundamental period.196

In the next step, we generated four different signals containing two, three, four, and197

eight frequencies, with and without noise (see Fig. S1 for the detailed information on the198

frequency content). The PE was calculated using the same delay time and embedding199

dimension as for the monochromatic signal. The result shows higher PE obtained for the200

signal containing more frequencies (Fig. 2e and Fig. S1). Similar to the monochromatic201

signal without noise, the minimum PE is obtained using τ = 0.001 s and τ close to T0,202

while the signals with noise reach PE close to 1 when using τ = 0.001 s and τ close to203

T0.204

According to the PE result in Fig. 2c and d, and Fig. S1, using a higher embed-205

ding dimension will result in a lower PE. To see how the PE changes, we plotted the min-206

imum PE for the monochromatic signal (Fig. 2b) and four different signals in Fig. S1 with207

SNR=5 in Fig. 2e. The minimum PE is obtained for each embedding dimension, calcu-208

lated from different delay times ranging from 0.01T0 to T0. PE generally converges for209

each signal, meaning that PE decreases less when using higher embedding dimensions.210

Another requirement for PE calculation is that the window length has to accom-211

modate the maximum number of possible ordinal patterns. Additionally, we need to con-212

sider the dominant period of the targeted signal. We tested eight different monochro-213

matic signals, with the frequencies f ranging from 0.005 Hz to 10Hz (see Fig. 2d for the214

detailed list of frequencies) with SNR=5 and a sampling frequency of 100 Hz. PE was215

calculated using m = 7 and τ = 0.2T0 (see Fig. 2d). The delay time τ = 0.2T0 was216

chosen based on the result in Fig. 2f, where PE is minimum using τ = 0.2T0. The max-217

imum possible number of different ordinal patterns related to the embedding dimension218

of 7 is 7! or 5040 ordinal patterns. The PE calculated for the signals with low frequen-219

cies, e.g. 0.005Hz and 0.01 Hz, are stable when the window length is 3 T0. In this case,220

the signal is much longer than required by m = 7. However, the number of points within221

3 T0 reduces with increasing signal frequencies given the fixed sampling frequency. There-222

fore, the signals with frequencies higher than 1 Hz require more than 3 T0 to contain enough223

samples required by the embedding dimension. In conclusion, the window length should224

provide enough points for the embedding dimension and be longer than the targeted sig-225

nal period.226

2.3 Receiver Operating Characteristic (ROC) Analysis227

A well-known method to analyze the ability to predict an event, such as earthquakes228

or volcanic eruptions (DeVries et al., 2018; Spampinato et al., 2019), is the receiver op-229

erating characteristic (ROC) analysis (Fawcett, 2006). ROC analyzes the value of the230

predictor variable relative to a threshold. Four possible outcomes are possible: If the vari-231

able exceeds the threshold and an event (i.e., eruption in our case) follows within the alarm232
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period (the subsequent NT time steps), it is a hit (true positive, TP); otherwise, it is a233

false alarm (false positive, FP). If no alarm is raised because the variable is below the234

threshold, either no event might occur (true negative, TN), or an event occurs (false neg-235

ative, FN) within the next NT time steps. In this way, each value of the time series is236

associated with one of the values TP, FP, TN, or FN, and their counts are calculated237

for the whole time series. Based on these counts, the true positive rate TPR = TP / (TP238

+ FN) and the false positive rate FPR = FP / (TN + FP) are determined. The ROC239

curve is finally created by plotting TPR against FPR for threshold values ranging from240

the minimum to the maximum value of the assessed variable (here, RMS or PE). Both241

TPR and FPR range between 0 and 1. For quantification, the area under the TPR curve242

(AUC) is calculated for FPR ranging from 0 to 1. An optimal predictor variable has AUC=1,243

while the ROC curve of a random variable scatters around the diagonal with AUC≈0.5.244

We applied this method to our PE and RMS time series, using a time window of 1 s to245

predict an eruption in the following 1 s window.246

3 Overview of Instrument Network near Strokkur and Eruption Be-247

haviour of Strokkur248

Strokkur geyser is a part of the Geysir geothermal area in the Haukadalur valley249

in southwest Iceland (Fig. 1). On the surface, Strokkur hosts a water-filled pool of 12 m250

in diameter (Rinehart, 1986). In the middle of the pool, the uppermost part of the sin-251

ter conduit walls extends to the surface (Eibl et al., 2021). This conduit is 2.2m wide252

and changes shape and width with depth (Walter et al., 2020). Strokkur features sin-253

gle to sextuple eruptions with one to six water fountains jetting into the air with an av-254

erage interval of 16.1 s between fountains (Eibl, Hainzl, et al., 2020). Within this manuscript,255

we only assessed single to quadruple eruptions for which the waiting time after eruptions256

increases linearly from 3.7 ± 0.9 minutes to 11.3 ± 2.9 minutes (Eibl, Hainzl, et al., 2020).257

We used seismic data recorded at 5 to 14 m distance south and east of the pool of258

Strokkur geyser, Iceland (Eibl, Walter, et al., 2020). The sensors are Nanometrics Tril-259

lium Compact Posthole 20 s seismometers at locations S2, S3, S5 and Nanometrics Tril-260

lium Compact 120 s at locations S1, S4 (see Fig. 1b) in the 7L seismic network (Eibl,261

Walter, et al., 2020). The seismometers were installed on 10 June 2018 for 4.5 to 5.25262

hours and recorded at a sampling rate of 400 Hz. To assess the sensitivity of PE with263

respect to station distance from the source, we utilized the seismic data recorded at sta-264

tions G2, G3, and G4 at a distance of 42.5 m, 47.3 m, and 38.3m. For the latter stations,265

no data is available from 10 June, which does not hinder a comparison since the erup-266

tive pattern does not change with time (Eibl, Müller, et al., 2020). The data used are267

recorded on 3 June 2018 using a sampling rate of 200Hz.268

Based on the same seismic dataset, Eibl et al. (2021) suggested that the conduit269

is linked to a horizontal crack and a bubble reservoir at 23.7 ±4.4 m depth, where the270

bubble reservoir extends from about 13 to 23 m west of the conduit and feeds eruptions271

of Strokkur. Strokkur passes through 4 phases during an eruptive cycle as laid out by272

Eibl et al. (2021) based on a multidisciplinary experiment (Eibl, Müller, et al., 2020).273

The illustration of the phases is shown in Fig. 3a).274

The cycle starts with Phase 1 (P1), when an eruption is confirmed visually: a ris-275

ing bubble slug reaches the surface, bursts, and pushes the water and steam upwards into276

a jetting water fountain. P1 ends when the eruption stops. Due to the water loss in the277

conduit, the water from the pool and water from a shallow aquifer flow back to refill the278

conduit. This process is identified as Phase 2 (P2). At the beginning of Phase 3 (P3),279

the water temperature in the bubble reservoir is low due to the heat loss during the erup-280

tion. Seismically, this phase features an eruption coda interpreted as steam entering the281

reservoir, which partly collapses (Eibl et al., 2021). The collapses release heat and there-282

fore increase the temperature of the water in the bubble reservoir, eventually support-283

ing the gas accumulation toward the end of P3. In Phase 4 (P4), bubbles regularly leave284
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the bubble reservoir, migrate through the horizontal crack, and collapse at a temporal285

spacing of 21 to 26 s when reaching the water in the conduit that is not hot enough to286

preserve the steam bubble. With the water in the conduit heating up, the system even-287

tually reaches conditions where steam bubbles burst on the surface, and the next erup-288

tion starts (P1).289

4 Seismic Preprocessing and PE Setting at Strokkur290

Previous volcano-seismic studies (Glynn & Konstantinou, 2016; Melchor et al., 2020)291

used only the vertical component of seismic data to calculate PE. We compared PE us-292

ing the vertical and both horizontal components (Fig. S2) of the stations S1, S2, S3, S4,293

and S5. While the PE trends of the three components are generally the same, the ver-294

tical component exhibits larger variations in PE. We also checked and compared the seis-295

mogram and the spectrogram of the three components. The vertical components of these296

5 stations display the largest amplitude. Therefore, we used the vertical components for297

the following analysis. Station G3 and G4 recorded larger amplitudes on the horizon-298

tal components while G2 on the vertical component. The seismic data were detrended,299

tapered, and instrument corrected to velocity. Afterward, a high pass Butterworth fil-300

ter of order 4 with a corner frequency of 1 Hz was applied to remove the oceanic micro-301

seism.302

Based on the eruption catalog compiled by Eibl et al. (2019), there were 63 erup-303

tions recorded on 10 June 2018 from midnight to 04:17 in the morning. These eruptions304

consisted of 53 single eruptions, 8 double eruptions, one triple eruption, and one quadru-305

ple eruption. As the waiting times after eruptions are in the order of minutes, and changes306

within the cycle occur within less than a second (Eibl et al., 2021), we aim for PE with307

high temporal resolution. In that case, we need to find the shortest window length pos-308

sible to calculate PE. We chose a window length of 1 s as it provides a good temporal309

resolution. The window length needs to contain more samples than the maximum pos-310

sible m! ordinal patterns constructed from the embedding dimension m. In this case, the311

highest embedding dimension that can be applied for a 1 s window length with a sam-312

pling frequency of 400Hz is 5.313

Since the stations are a few meters from the place where the bubbles burst (Fig. 1),314

the signal-to-noise ratio is high. According to our synthetic test of signals without noise315

in Fig. 2a, the minimum PE is obtained using the shortest delay time. To confirm this316

in the real seismic data, we compare five different estimations using small delay times,317

ranging from 0.0025 s to 0.0125 s (Fig. S3). The PE variations related to these five dif-318

ferent delay times exhibit consistent patterns, with a difference in the absolute values.319

As we are only interested in relative PE changes during the eruptive cycle and not in its320

absolute values, it is safe to use one of them. In this paper, we present the result of PE321

using a delay time of 0.005 s.322

In addition to PE, we calculated the Root-Mean-Square (RMS) of the ground mo-323

tion in velocity using the same 1 s long time window. Both quantities will be further eval-324

uated for their performance in eruption forecasting.325

5 Results326

5.1 PE and RMS Variation during an Eruptive Cycle327

Repetitive patterns of the eruptive cycle for 63 eruptions recorded on 10 June 2018328

are visible in seismogram, spectrogram, RMS, and PE. An exemplary single eruption start-329

ing at 00:24:39 recorded at station S1 is shown in Fig. 3b-e.330

The RMS rises at the beginning of P1 and drops at the end of P1 (Fig. 3d). It stays331

low during P2 but increases again when P3 starts. In P3, RMS shows a so-called erup-332
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tion coda composed of seismic peaks at a temporal spacing of 1.5 to 1.7 s featuring a fast333

increase and a slow decrease in amplitude. The RMS features regular peaks during P4334

at an average temporal spacing of 22 to 27 s. Each of these peaks is followed by a weak335

eruption coda, while the seismic amplitude of the peaks tends to decrease towards the336

end of P4 (Eibl et al., 2021). The last peak is not followed by an eruption coda.337

Fig. 3e exhibits a high PE of 0.89 at the beginning of P1, then increases to the max-338

imum value of 0.94. PE slightly decreases at the start of P2 and suddenly drops towards339

P3. In P3, PE reaches a minimum value of 0.57, followed by a gradual increase towards340

P4. At the start of P4, PE reaches a value of 0.81 and sharply drops to 0.60. The fol-341

lowing trend then repeats several times: The PE gradually increases to about 0.83 and342

sharply decreases to about 0.61. In the last 12 s of P4, PE reaches a value of 0.80 and343

remains high before it increases further and the next eruption (P1) starts. The double,344

triple, and quadruple eruptions also show similar patterns.345

5.2 Stacked PE, RMS, and Hypocentral Distances of 53 Single Erup-346

tions347

To assess the repetitive pattern of PE and RMS, we stacked the PE and RMS of348

the 53 cycles, started with a single eruption, according to the start time of each phase.349

For better visualization, we calculated the mean and the 68% confidence interval (writ-350

ten as mean [lower bound, upper bound]) using a 1 s window. The 68% confidence in-351

terval is equivalent to plus/minus one standard deviation for a Gaussian distribution.352

If the pattern of PE and RMS in each phase is similar from one eruption to another erup-353

tion, stacking them will reduce the noise and enhance the pattern.354

We aligned the RMS from 55 s before to 50 s after the onset of each phase (Fig. 4a-355

d). The stacked RMS on each phase shows a clear pattern. At 35 s and 15 s before the356

onset of P1, two seismic peaks reach the mean RMS of 8.2 · 10−7 m/s and 9.4 · 10−7
357

m/s, respectively. While both peaks are followed by a decrease in seismic amplitude, the358

second last peak is also followed by a weak eruption coda (Fig. 4a). At the onset of P1,359

the seismic amplitude increases toward the peak at the mean velocity of 7.9 [3.4, 11]·10−6m/s360

(Fig. 4a). It drops rapidly to the onset of P2 (Fig. 4b). At the onset of P3, the seismic361

amplitude increases fast to the mean velocity of 1.2 [0.5, 1.9] ·10−6 m/s and slowly de-362

creases towards the end of the phase (Fig. 4c). P4 starts with a sudden peak of mean363

velocity with a value of 6.7 [3.8, 9.9]·10−6 m/s followed by a weak eruption coda (Fig. 4d).364

The stacked PE shows a stable pattern during the different eruptive cycles with365

different behavior than RMS. Around 35 s before the eruption, we see the last peak reach-366

ing a value of 0.78 [0.72, 0.83] in P4. Then the PE value drops to 0.68 [0.59, 0.76] about367

27 s before the eruption. Around 15 s before the eruption, the mean of PE reaches a sim-368

ilar value as the last peak of P4. However, instead of decreasing like after the previous369

peaks, PE remains high for about 6 s and then increases for 8 s to 0.90 [0.88, 0.93] at the370

start of P1 (Fig. 4e). The PE decreases slightly to P2 and drops to 0.70 [0.61, 0.78] at371

the beginning of P3 (Fig. 4f-g). PE continues declining for around 3 s to the minimum372

PE of 0.63 [0.57, 0.68]. After reaching the minimum, PE increases gradually for about373

31 s to 0.80 [0.77, 0.82] at the onset of P4 (Fig. 4h). PE then rapidly decreases to 0.63374

[0.59, 0.80] for about 8 s after the peak. This pattern repeats several times in P4 before375

the pattern changes about 14 s before P1.376

To investigate the relation between PE and the distance to the source, we calcu-377

lated the distances from the estimated median source locations (Eibl et al., 2021) to the378

station S1. S1 is located about 10 m to the south of the conduit on the surface. Eibl et379

al. (2021) estimated the source location by using the particle motion of the recorded seis-380

mic waves. The epicenters of the sources were estimated from the intersection of the az-381

imuth angles derived from all 5 stations. Eibl et al. (2021) project the epicenter loca-382

tion vertically down and extract the source depth from the intersection point with the383
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Figure 3. A typical eruptive cycle of a single eruption recorded on 10 June 2018. (a) Il-
lustration of the phases of the eruptive cycle at Strokkur modified from Eibl et al. (2021), (b)
Seismogram of the vertical component after high pass filtering with a corner frequency of 1 Hz.
The two vertical red lines refer to the start of P1, while the blue lines refer to the start of P2,
P3, and P4 as illustrated in subfigure (a), (c) Amplitude Spectrogram of subfigure (b) using a
time window of 256 samples and overlap of 50 samples, (d) RMS and (e) PE calculated in non-
overlapping 1 s long time windows for the seismic data shown in subfigure (b).

derived incidence angles for all stations. Note that the shallow source depths during P1384

and peaks in P4 are poorly constrained since the particle motion shows an elliptical par-385

ticle motion characteristic for Rayleigh waves when the seismic sources reach or approach386

the surface. We stacked the hypocentral distances from the sources to S1 and calculated387

their mean and the confidence interval (Fig. 4i-l).388

We notice that from 15 s before the eruption, the seismic sources remain at about389

10 m depth from the surface or about 20 m away from S1 until the eruption occurs (Fig. 4i).390
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The source gradually deepens in P2 and reaches a distance of 34 m from S1 (Fig. 4j-k).391

The sources in P3 are mostly located 13 to 23 m west of the conduit (Eibl et al., 2021),392

then hypocentral distances decrease toward P4. We checked the source depth and ob-393

served that the seismic sources migrate upwards towards the start of P4. P4 starts with394

seismic sources at a depth of about 10 m with a distance of 21 m to S1. It is likely that395

the seismic source reached less than 10 m depths during the peaks in P4 (Fig. 4l) and396

even more during P1, when the eruption occurs on the surface (Fig. 4i).397

Figure 4. Stacked RMS, PE, and hypocentral distance values for the 53 cycles of single erup-
tions recorded at station S1. Grey lines mark the RMS values for each eruption aligned at (a) the
start of the eruption (P1), (b) the end of the eruption (start of P2), (c) the start of the eruption
coda (P3), and (d) the start of P4 with regular bubble collapses in the conduit at depth. The
time is measured relative to the alignment time (i.e., the start of the red or blue area highlighting
the mean duration of the phase). The black lines define the mean values in a 1 s window, while
the dashed lines represent the 68% confidence interval. The black arrows point to the seismic
eruption coda visible in P3 and P4. (e-l) Same as subfigures (a-d) for (e-h) PE and (i-l) the dis-
tance between the seismic source location and station S1 (Eibl et al., 2021).

5.3 PE Pattern with Respect to Double to Quadruple Eruptions398

We also assessed the PE pattern of 8 double eruptions recorded on 10 June 2018.399

These eruptions consist of two water fountains at an average temporal spacing of 15.6 s,400

and the duration of phases P3 and P4 increase linearly with respect to single eruptions401

(Eibl et al., 2021). The PE pattern of double eruptions throughout the cycle is similar402
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to single eruptions. Its variation is not systematically higher or lower than for single erup-403

tions. While in single eruptions, the PE drastically drops, on average, after 8 s from the404

beginning of the eruptions, the PE of double eruptions remains high until the second wa-405

ter fountain. PE only drops when entering P3 on average 28 s after the beginning of the406

first water fountain (Fig. S4).407

There was only one triple and one quadruple eruption during the whole recording408

period. In general, the PE patterns for both triple and quadruple are similar to the sin-409

gle and double eruptions, with PE remaining high in P1 until the last water fountain oc-410

curred.411

5.4 Reliability of PE Results with Respect to Distance from the Source412

To evaluate the performance of PE with respect to the station location, we com-413

pared the stacked PE variations obtained for the records at stations S1, S2, S3, S4, and414

S5. We also calculated the variations of the stacked source-station distance for the same415

stations in the same way. Supplementary Fig. S5 shows that PE is sensitive with respect416

to the stations’ locations. The differences in source distance to each station are small,417

but the absolute values of PE for different stations are quite distinct. S1, which is lo-418

cated closest to the seismic sources, exhibits the lowest absolute values of PE compared419

to the other stations. S2, S3, and S4 display a similar temporal variation as S1 but with420

higher absolute values throughout the cycles. An exception is station S5. While the dis-421

tance from S5 to the seismic sources is similar to the other stations, the temporal vari-422

ation of PE does not reflect clearly the changing phases in the eruptive cycle. Overall,423

the PE at station S5 is dominated by high values except for the first half of P3. The PE424

in P4 is as high as in P1, making it difficult to see the transition to the eruption in the425

PE value.426

To investigate further the performance of PE at stations with a larger distance, we427

calculated PE of seismic data recorded at stations G2, G3, and G4 (Fig. 1b) on 3 June428

2018. These three stations are located at 42.5 m, 47.3m, and 38.3 m north-west, west,429

and south-east of the conduit, respectively. PE values at G2 and G4 are mostly confined430

between 0.8 and 0.9 and exhibit more random patterns which do not correlate with the431

eruption phase (see Fig. S6.a and c). However at G3, PE behaves similarly to PE at S1432

to S5, even though it is in a lower range and there is no clear transition toward erup-433

tions (see Fig. S6.b).434

6 Interpretation and Discussion435

6.1 PE extracting the dynamical information from seismic wave436

PE does not depend on the absolute amplitudes, and multiplying a signal by a fac-437

tor leads to the same PE value. In contrast, PE depends on the frequency bandwidth438

of the signal. Our synthetic test shows that a synthetic signal containing more frequen-439

cies, i.e., by superposing more harmonic signals, produces a higher PE than a signal con-440

taining fewer frequencies. We suggest that a signal with a broader frequency content has441

a higher PE compared to a signal with a narrower frequency band. Dávalos et al. (2021)442

investigated the effect of bandpass filters such as Butterworth and Chebyshev applied443

before the PE calculation and observed that lower PE corresponded to narrower band-444

widths while higher PE corresponded to broader bandwidths. Our synthetic tests con-445

firm their result.446

Our observation at Strokkur shows that PE reaches the highest value during the447

eruption phase (P1) when the water jets into the air. In this phase, the amplitude peaks448

and the frequency content is broad. Once the last fountain stops (P2), the amplitude quickly449

drops and declines to narrower bandwidth. PE is still high at the end of the last foun-450
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tain but then quickly drops to the next phase (P3). During P3, the eruption coda is com-451

posed of seismic peaks at a temporal spacing of 1.5 to 1.7 s. Whilst their frequency con-452

tent is broad, it is not as broad as during seismic peaks in P1 and P4. Between these453

peaks in P3, the frequency content of the seismic signal is narrow banded, and the PE454

fluctuates and reaches minimum values. In P4, during the regular peaks and broad spec-455

trum of the energy produced by the bubble collapses at depth, PE reaches the local max-456

imum. Conversely, PE is smallest directly after the peaks in P4 despite a starting erup-457

tion coda that increases in amplitude and widens in frequency content. Shortly before458

the next peak in P4, it seems seismically quiet and with a narrow-banded frequency con-459

tent, while the PE value keeps increasing. The PE hence does not solely depend on the460

broadness of the frequency spectrum.461

During P4, the two last bubble collapses at depth in the conduit happen about 35462

and 15 s before the start of the next eruption, respectively. Both collapses are recorded463

as a peak in seismic amplitude and are followed by a drop in seismic amplitude, as seen464

in the stacked RMS. During these collapses, the PE values reach a local maximum. Fol-465

lowing the second last collapse, the PE value drops, while it remains high after the last466

bubble collapse. We further investigated the waveforms and spectrograms in the last 50 s467

before the eruption. The second last collapse is followed by a weak eruption coda. This468

coda is similar to the eruption coda in P3 in terms of the peaks’ temporal spacing and469

frequency content. However, it is smaller in amplitude, and the duration is shorter than470

in P3. In contrast, the last collapse before the eruption is not followed by an eruption471

coda. Hence, the RMS value drops to a lower amplitude while the PE value remains high.472

With respect to the state of the geyser, this implies that the second last bubble collapse473

triggers recharge in the reservoir, while after the last bubble collapse at depth, the sys-474

tem has reached a state that is ready for eruption. At that stage, the water in the reser-475

voir and conduit is most likely heated sufficiently - without further need to recharge -476

and contains small bubbles in the whole pipe system. The next large bubble that rises477

in the conduit can then reach the surface and burst into a jetting water fountain.478

Eibl et al. (2021) observed a decrease in seismic peak amplitude during collapses479

in the conduit with time. They speculate that this is due to damping when more bub-480

bles accumulate in the conduit and decouple the noise from the bubbles and the conduit481

walls. Here, an increasing amount of bubbles might then suggest that the PE values through-482

out P4 should increase. While in some eruptions, such a linear increase trend can be ob-483

served throughout P4, it is not always the case.484

Glynn and Konstantinou (2016) observed an increase of PE for two days between485

a 5.6 Mw earthquake in Bárðarbunga on 29 September 1996 and the onset of a subglacial486

eruption in Gjálp on 1 October 1996. This PE increase was preceded by 8 days of PE487

decrease, which they associated with the lack of frequencies higher than 1Hz. After the488

5.6 Mw earthquake, earthquake swarms migrated to the Gjálp fissures featuring broader489

frequencies in the range of 0.1 to 9 Hz at station HOT23, located at 8 km distance (Konstantinou490

et al., 2020). Glynn and Konstantinou (2016) suggested that these higher frequencies in-491

crease the complexity, hence causing the PE to increase.492

We tested the performance of PE using acceleration derived from the ground ve-493

locity and also find an increase in PE. Differentiating velocity into acceleration enhances494

the energy at higher frequencies. However, we found that the PE values obtained from495

acceleration are not only larger than PE obtained from velocity but also more confined496

to a narrower range featuring less variation throughout the eruptive cycle. An example497

is given in Fig. S7 for PE calculated using m = 5 and τ = 0.005 s at station S1.498

There are two possible reasons why PE obtained from acceleration is less sensitive499

toward the process inside the geyser than from velocity. First, acceleration enhances the500

part of the high-frequency signal which is susceptible to the scattering effect from the501

lateral heterogeneity of the upper crust. This path effect could blur the information of502
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the source mechanism carried by the signal. Second, resolving the complexity of broader503

spectra requires a higher embedding dimension. In the case of Strokkur, as we aim for504

1 s resolution and given the sampling frequency of 400 Hz, the highest embedding di-505

mension (m) which we can use is 5.506

6.2 The influence of source strength and path effects toward the PE per-507

formance508

We observed that the PE at stations S1, S2, S3, and S4 correlates strongly with509

the distance between seismic sources and the station. As the seismic sources migrate to510

the surface and the source-station distance decreases PE increases. First, it should be511

considered that each phase in the eruptive cycle, which occurs at different depth inter-512

vals, is associated with different physical processes (see 3a). Those physical processes might513

be associated with different PE values. Second, high frequencies are attenuated with dis-514

tance. If the attenuation eliminates energy and causes the frequency band to become nar-515

rower, PE will decrease. However, PE at station S5 exhibits high PE values and less change516

throughout all phases. Possible reasons are discussed in the following.517

The seismic sources, mostly located at average depths of 23.7± 4.4m and 9.9±518

4.1m (Eibl et al., 2021), are subject to the strong attenuation due to the lateral and ver-519

tical heterogeneity in Iceland’s upper crust (Foulger et al., 2003; Menke et al., 1995). Sato520

and Fehler (1998) suggested that the particle motion of the P-wave should be linearly521

polarized if it travels through a path with no or small scattering. When P-wave parti-522

cle motion is elliptical or even spherical, it indicates strong scattering. Eibl et al. (2021)523

observed linear particle motions at stations S1 to S4, while station S5 exhibits low lin-524

earity. This could suggest that the seismic waves arriving at S5 are much more scattered525

compared to the other four stations. Scattering attenuation could increase the complex-526

ity of the seismic waves due to the superposition between waves in a heterogeneous medium527

and lead to a more uniform frequency distribution, hence increasing PE.528

At larger distances of 38.3 to 47.3m, the PE performance deteriorates. When the529

seismic source only releases a small amount of energy, and the distance of the source to530

the station is large, PE seems to reflect more the filtering of the seismic wave during its531

propagation to the station. This is also supported by the findings of Eibl et al. (2021),532

who could not use these stations for the seismic source location due to low-quality par-533

ticle motions. By contrast, the drop of PE prior to the 5.6 Mw earthquake at Bárðar-534

bunga two days before the 1996 Gjálp eruption, could be detected by stations at a 100535

km distance (Glynn & Konstantinou, 2016). This drop is thought to be caused by in-536

trinsic attenuation when hot magma ascended to the upper crust. If the depth of the magma537

chamber feeding the eruption is estimated to be between 8 and 12 km (Konstantinou et538

al., 2020), then the seismic sources are located at depths between mid to upper crust.539

The attenuation at this depth is much lower compared to the uppermost 4 km of crust540

(Menke et al., 1995). Moreover, the pressurization of magma triggered the 5.6 Mw earth-541

quake. The differences in the source strength and the path effect could explain the per-542

formance differences between PE at Strokkur and Bárðarbunga.543

6.3 Predictive power of PE in comparison to RMS544

We used the ROC analysis to quantify the predictive power of PE in comparison545

to RMS. The resulting curves are shown in Fig. 5 for alarms raised for the next time step546

when the variables exceed a certain threshold. PE demonstrates good predictive skills547

with AUC=0.846, while RMS is even worse than random with AUC=0.433. The latter548

is not surprising, having in mind that RMS tends to decrease prior to eruptions (see Fig. 4a).549

Thus, we also calculated the inverse of RMS as a measure of quiescence. However, 1/RMS550

yields AUC=0.567 which is only slightly better than a random forecast.551
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To rank the predictive power of the PE using only 1 s bin information, we also ap-552

plied the statistical recurrence model of Eibl, Hainzl, et al. (2020) which was inferred from553

20390 waiting times after eruptions of Strokkur geyser in December 2017 and January554

2018. The analysis of this long sequence revealed log-normal recurrences with mean and555

standard deviations dependent on the eruption type of the last event. In particular, we556

determined the probability pT of the next event within the alarm time, knowing the time557

to the last eruption and its eruption style. A detailed description of the calculation of558

these probabilities is provided in the Appendix. This probability value is found to out-559

perform PE with AUC=0.971. Of course, the comparison is unfair because pT is based560

on combined information over a very long time. However, PE can even improve the pT -561

result if the product of both variables is considered. This result can be understood by562

considering that pT is monotonously increasing with increasing time to the last eruption.563

At the same time, PE is similarly high at intermediate bubble collapses at depth as be-564

fore the eruptions (see Fig. 3e). The multiplication (shown in the black dashed and con-565

tinuous lines in Fig. 5) suppresses the high values related to bubble collapses, leading566

to an enhanced forecast power. This effect is amplified, if the mean (⟨PE⟩) value is re-567

moved from the PE signal, PEn = (PE - ⟨PE⟩) H(PE - ⟨PE⟩), with H the Heaviside func-568

tion (H(x)=1 if x>0 and zero else). In this case, the AUC is 0.99, very close to the op-569

timal value of 1.0.570

Note that to test the predictive power of PE and RMS, we have only used so far571

the information in separate 1 s bins of the seismogram. We ignored the information en-572

coded in the time evolution of these parameters. Analyzing the possible improvements573

using the full PE and RMS patterns requires machine learning techniques and is left for574

future studies.

Figure 5. Assessing the predictive power of PE using ROC. ROC curves for PE and PEn

(dashed green, note that the PE and PEn curves are identical), RMS (light blue), the inverse of
RMS (blue), and the probability pT calculated for the recurrence model of Eibl, Hainzl, et al.
(2020) (grey), as well as combinations of the latter with PE (solid black and dashed black). Here,
PEn refers to the rescaled PE value, PEn = (PE - ⟨PE⟩) H(PE - ⟨PE⟩), with ⟨PE⟩ being the
mean value of PE and H the Heaviside function. The alarm period is the next time step (NT=1)
with the corresponding AUC values given in the legend. The result of a random variable is indi-
cated by the dashed diagonal with AUC=0.5, while the result of an optimal predictor is marked
in the upper left corner.

575
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7 Conclusions576

In this research, we show a good capability of PE in characterizing different phases577

in the eruptive cycle of the Strokkur geyser. PE also performs better in predicting an578

eruption than RMS of the ground velocity. About 15 s before the eruption, PE indicates579

that the system is prone to erupt after the last collapse by increasing values. At the same580

time, the RMS indicates quiescence, and the seismic sources remain at a shallow depth.581

The PE reflects the seismic changes linked to a state with superheated water in the pipe582

system and small bubbles drifting in it. Hence, the PE might be indirectly sensitive to583

the number of small bubbles present in the water.584

PE can characterize the different phases of the geyser’s eruptive cycle for the near-585

field stations, but it seems that PE cannot resolve the dynamics for signals at larger dis-586

tances. Depending on the signal strength at the source and the signal-to-noise ratio, our587

results indicate that this method requires seismic data recorded as close to the source588

as possible, in the case of Strokkur within 15 m. Defining suitable preprocessing steps589

for PE application on a volcano requires further research. While in a geyser, the inter-590

action between the water and gas with the surrounding rock mostly generates tremors,591

the interaction between magma and the surrounding rock in a volcano generates more592

types of volcano-seismic signals with different complexities. For monitoring a volcano,593

the seismic stations are usually installed at larger distances, which will decrease the sig-594

nal strength. These factors need to be taken into account. Nonetheless, PE has a strong595

potential to contribute to the framework of eruption forecasting. For this purpose, our596

study might help to define distinct precursory features in the temporal variation of PE597

prior to eruptions that are useful for eruption forecasting.598

Appendix A Eruption probabilities based on the recurrence model of599

Eibl, Hainzl, et al. (2020)600

We calculated the eruption probability for 1 s alarm times using the statistical model601

of Eibl, Hainzl, et al. (2020). The analysis of 20390 eruptions between December 2017602

and January 2018 revealed a log-normal distribution fx(t) as the probability density func-603

tion of the inter-eruption times t at Strokkur, where the parameters depend on the type604

x (single, double, triple, quadruple) of the last eruption. In particular, the mean (⟨t⟩)605

and standard deviation (σt) of the inter-eruption times are ⟨t⟩=3.8, σt=0.8 (x=1), ⟨t⟩=6.6,606

σt=1.7 (x=2), ⟨t⟩=9.5, σt=2.5 (x=3), ⟨t⟩=12.4, σt=3.4 (x=4), ⟨t⟩=15.2, σt=4.1 (x=5),607

and ⟨t⟩=17.7, σt=4.5 (x=6).608

Based on those log-normal distributions and knowing the actual waiting time (tw)609

since the last eruption and its style (x), the probability (p) for an eruption in the period610

[t1, t1 + T ] (with t1 ≥ tw) is calculated according to611

px([t1, t1 + T ]|tw) =

t1+T∫
t1

fx(t)dt

∞∫
tw

fx(t)dt

(A1)612

Note that the denominator is the survival function of fx(t) for given tw, which is nec-613

essary to normalize the distribution for [tw,∞].614

Open Research615

The seismic data used in this paper are available through GEOFON (Eibl, Wal-616

ter, et al., 2020) via https://geofon.gfz-potsdam.de/doi/network/7L/2017. The scripts617

to calculate PE are available at https://gitup.uni-potsdam.de/pujiastutisudibyo/permutationentropy.618
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Figure S1. Synthetic test for the dependence of PE on the delay time using five different

types of signals, with and without noise, and an embedding dimension ranging from 3 to 9. The

frequencies used to create the signals are listed in the figure, the delay time ranges from 1/T0 to

T0, where T0 is the fundamental period of the signal.
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Figure S2. PE calculated for the horizontal and the vertical components at station S1, using

embedding dimension 5 and a delay time of 0.005 s.
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Figure S3. PE calculated for seismogram recorded at station S1 for the vertical component

using an embedding dimension of 5 and delay times between 0.0025 s to 0.0125 s.
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Figure S4. Mean of stacked PE aligned at the start of the eruption (red vertical line) related

to the 53 single eruptions (blue) and 8 double eruptions (green).
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Figure S5. The mean of stacked PE (left) and source-station distance (right) aligned at the

start of the 53 single eruptions calculated for five different stations: S1 (dark blue), S2 (green),

S3 (light green), S4 (light blue), and S5 (yellow).
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Figure S6. 20 minutes PE variation of station (a) G2, (b) G3, and (c) G4. The vertical lines

represent the times of eruptions.
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Figure S7. Comparison between PE estimated from seismic velocity (black line) and seismic

acceleration (dashed blue) at S1. The vertical red lines represent the onset of eruptions (P1),

blue lines represent the end of eruption (P2), steam entering the bubble trap (P3), and bubble

collapses at depth (P4).
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