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Abstract

The Soil and Water Assessment Tool (SWAT) model has been widely applied for simulating the water cycle and quantifying the

influence of climate change and anthropogenic activities on hydrological processes. A major uncertainty of SWAT stems from

poor representation of vegetation dynamics due to the use of a simplistic vegetation growth and development module. Using

long-term remote sensing-based phenological data, we improved the SWAT model’s vegetation module by adding a dynamic

growth start date and the dynamic heat requirement for vegetation growth rather than using constant values. We verified the

new SWAT model in the Han River basin, China, and found its performance was much improved in comparison with that

of the original SWAT model. Specifically, the accuracy of the leaf area index (LAI) simulation improved notably (coefficient

of determination (R2) increased by 0.193, Nash–Sutcliffe Efficiency (NSE) increased by 0.846, and percent bias decreased by

42.18%), and that of runoff simulation improved modestly (R2 increased by 0.05 and NSE was similar). Additionally, we found

that the original SWAT model substantially underestimated evapotranspiration (Penman–Monteith method) in comparison

with the new SWAT model (65.09 mm (or 22.17%) for forests, 92.27 mm (or 32%) for orchards, and 96.16 mm (or 36.4 %) for

farmland), primarily due to the inaccurate representation of LAI dynamics. Our results suggest that accurate representation

of phenological dates in the vegetation growth module is important for improving the SWAT model performance in terms of

estimating terrestrial water and energy balance.
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Key Points:

• We improved the SWAT model with remote sensing-detected phenology
and the improved model better simulated LAI.

• The original SWAT model significantly underestimated evapotranspiration
compared with modified SWAT model.

• Growing season extended one day will induce evapotranspiration increase
11.1 mm across forests.

Abstract

The Soil and Water Assessment Tool (SWAT) model has been widely applied
for simulating the water cycle and quantifying the influence of climate change
and anthropogenic activities on hydrological processes. A major uncertainty of
SWAT stems from poor representation of vegetation dynamics due to the use of a
simplistic vegetation growth and development module. Using long-term remote
sensing-based phenological data, we improved the SWAT model’s vegetation
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module by adding a dynamic growth start date and the dynamic heat require-
ment for vegetation growth rather than using constant values. We verified the
new SWAT model in the Han River basin, China, and found its performance was
much improved in comparison with that of the original SWAT model. Specif-
ically, the accuracy of the leaf area index (LAI) simulation improved notably
(coefficient of determination (R2) increased by 0.193, Nash–Sutcliffe Efficiency
(NSE) increased by 0.846, and percent bias decreased by 42.18%), and that
of runoff simulation improved modestly (R2 increased by 0.05 and NSE was
similar). Additionally, we found that the original SWAT model substantially
underestimated evapotranspiration (Penman–Monteith method) in comparison
with the new SWAT model (65.09 mm (or 22.17%) for forests, 92.27 mm (or
32%) for orchards, and 96.16 mm (or 36.4 %) for farmland), primarily due to
the inaccurate representation of LAI dynamics. Our results suggest that ac-
curate representation of phenological dates in the vegetation growth module is
important for improving the SWAT model performance in terms of estimating
terrestrial water and energy balance.

Plain Language Summary

Aiming to reduce the uncertainty of SWAT performance, which is derived largely
from poor simulation of vegetation dynamics attributable to the simplified veg-
etation module. We using long-term remote-sensing-based phenological data,
and improved the SWAT vegetation module by adding a dynamic growth start
date and the dynamic heat requirement for vegetation growth rather than using
constant values. We validated the modified SWAT model through application
to the Han River basin (China), and found that its performance was improved
substantially in comparison with that of the original model. Specifically, the
accuracy of the leaf area index (LAI) simulation was improved notably (coeffi-
cient of determination (R2) increased by 0.190, Nash–Sutcliffe Efficiency (NSE)
increased by 0.840, and percent bias decreased by 42.05%), and that of runoff
simulation improved modestly (R2 increased by 0.05 and NSE was similar).
Additionally, we found that the original SWAT model substantially underesti-
mated evapotranspiration (Penman–Monteith method) in comparison with the
new SWAT model, primarily due to the inaccurate representation of LAI dy-
namics. Our results suggest that accurate representation of phenological dates
in the vegetation growth module is important for improving the SWAT model
performance in terms of estimating terrestrial water and energy balance.

1 Introduction

Vegetation, as the key factor connecting the soil and the atmosphere in a terres-
trial ecosystem, plays a crucial role in the hydrological cycle [Rodriguez‐Iturbe,
2000; Sprenger et al., 2016]. Vegetation dynamics have many crucial effects on
the terrestrial water cycle, such as rainfall interception, soil water transport,
evapotranspiration, and soil property change [Kergoat, 1998; Tesemma et al.,
2015; Webb and Kathuria, 2012; Wei and Zhang, 2010; D Zhang et al., 2018].
The Soil and Water Assessment Tool (SWAT) model considers vegetation dy-
namics using a simplified version of the Environmental Policy Impact Climate
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(EPIC) growth module, which simulates the seasonal leaf area index (LAI) by
employing a day length threshold and heat unit theory [Arnold et al., 2012;
Williams et al., 1989]. Although previous studies [Yang and Zhang, 2016; Yang
et al., 2019] improved the SWAT model for simulating biomass accumulation of
forests, it is not applicable to all regions because vegetation dormancy is affected
by other complex environmental factors in addition to day length [Rajib et al.,
2020; Strauch and Volk, 2013; Wagner et al., 2011]. Consequently, large uncer-
tainties exist in the assessment of terrestrial water cycle conducted using such
hydrological models [H Zhang et al., 2020]. Therefore, it is essential to improve
the vegetation simulation module used in hydrological models to improve our
understanding of ecosystem hydrological response to ongoing climate change.

The growth dynamics of terrestrial vegetation are substantially influenced by
ongoing climate change over recent decades [Shukla et al., 2019]. For example,
vegetated regions are exhibiting enhanced greening [Piao et al., 2015; Zhu et
al., 2016], and phenology variation, such as spring advancement and autumn
postponement, is occurring on the global scale [Gill et al., 2015; Jeong et al.,
2011; Piao et al., 2019]. One of the major shortcomings of the SWAT model,
attributable to the use of the simplified EPIC module, is that the spatiotemporal
heterogeneity of vegetation is ignored, which introduces challenges regarding the
simulation of vegetation dynamics. By introducing either the soil moisture index
or precipitation to track vegetation in the new growing season, the performance
of SWAT model in the simulation of vegetation dynamics has been improved to
a certain extent [Strauch and Volk, 2013; Valencia et al., 2021]; however, such
improvement is observed mainly in relation to evergreen forest vegetation in
tropical areas (in SWAT defined as regions within latitudes between 20° S and
20° N), so widespread regional applicability is limited. The improved scheme of
the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI based on
remote sensing observations has wide regional applicability, but it requires high-
quality remote sensing data and increases the structural complexity of SWAT
model simulations [Ma et al., 2019; Rajib et al., 2020]. The approach to defining
vegetation growth dormancy using remote-sensing-based or observed vegetation
phenology strikes a balance between model complexity and performance, making
it a promising candidate to improve the performance of vegetation dynamics and
hydrologic simulation by the SWAT model.

In this study, we use remote sensing-based Global Inventory Modeling and Map-
ping Studies 3rd generation (GIMMS3g) normalized difference vegetation index
(NDVI) data to extract dates of phenological events with five different methods,
including threshold methods (e.g., Gaussian, Spline, and Savitzky–Golay) and
change ratio methods (e.g., HANTS and Polyfit) [Chen et al., 2004; Cong et al.,
2012; Savitzky and Golay, 1964]. We further link the phenological data with hy-
drological response units (HRUs) using area-weighted methods and modified the
dormancy criteria of the vegetation module in the SWAT model. Specifically,
the extracted phenological dates based on satellite data were used as input to
determine vegetation dormancy in the HRUs, instead of simply using latitude
and day length to determine vegetation dormancy. Meanwhile, on the basis
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of remote-sensing-based phenological dates of each HRU, the accumulated heat
unit required for vegetation growth in the current year is calculated, and the
static accumulated heat unit constant in the vegetation database of the original
SWAT model is replaced by the dynamic accumulated heat unit. To verify the
applicability of the modified SWAT model, we tested the model for simulating
LAI and runoff for the Han River basin, China.

This study aims to achieve three specific objectives: 1) obtain dates of vegetation
phenology and its spatiotemporal patterns at the watershed scale, 2) improve the
simulation accuracy and applicability of the SWAT model in terms of vegetation
growth by improving the dormancy module through the addition of the dynamic
accumulated heat unit module, and 3) explore the variation of vegetation-related
hydrological parameters and their rationalities in the changed vegetation growth
module.

2 Materials and methods

2.1 Study area

The Han River basin, China, is striding the boundary between the south of the
temperate zone and the north of the subtropics (Fig. 1). It has a catchment
area of 51,969 km2 with elevation ranging from 266 - 3557 m. The mean annual
temperature is 12.2 ℃, mean annual precipitation is 827.1 mm, and the mean
annual runoff at the Ankang gauging station is 345.57 mm, averaged over the
study period 2001 - 2014. Our study region is located in the upper Han River
and includes a secondary tributary of the Yangtze River. Land use in the
region changed little during 2001–2014, dominated by orchards (ORCD: 37% of
the area), forests (FRST: 36%), and farmland (AGRL: 26%) (Fig. 1c). Since
the 1990s, areas of ORCD and FRST that are distributed evenly throughout all
sub-basins and accounted for >70% of the total area; conversely, AGRL areas
tend to be distributed mainly in several sub-basins in the upstream of the basin.
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Figure 1. (a) Location of the Han River basin, (b) its elevation, (c)
distribution of its land use types, and (d) locations of the meteoro-
logical observation stations (MGSs) and hydrological gauging station
(HGS). Notably, AGRL (farmland), FRST (forests), and ORCD (orchards)
land use types represent the major vegetation types used to mask the Global
Land Surface Satellite leaf area index dataset. BARR - bare land, HAY - hay
land, PAST - pasture, UCOM - commercial land, and UIUD - industrial land.

2.2 Input datasets

2.2.1 Digital elevation model (DEM), land use, and soil data The data
used in this study and their sources are presented in Table 1. In the ArcSWAT
toolbox, a 90-m spatial resolution digital elevation model (DEM) [Jarvis et
al., 2008] was used to delineate the watershed and river network and generate
14 sub-basins (Fig. 1d). SWAT primarily relies upon defined HRUs that are
based on land use maps, soil maps, and slope characteristics. In this study, 384
HRUs were defined using a multiple HRU generation method incorporating land
use, soil, and slope inputs (thresholds of 10%–10%–10%) using the SWAT2012
extension (version 1.9) within ArcGIS 10.2 software (Environmental Systems
Research Institute, Inc).
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The land use data were developed by the Center for Resources and Environmen-
tal Sciences and Data, Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences (https://www.resdc.cn/). Data pro-
duction was based on Landsat TM/ETM remote sensing images of each period
generated through manual visual interpretation. This dataset with 1-km spa-
tial resolution was used and reclassified to match the SWAT land use classes
adopted for HRU delineation in the SWAT model (Fig. 1a). Eight SWAT land
use types were identified in this river basin in 2005 (Fig. 1c): AGRL, FRST,
ORCD, BARR (bare land), HAY (hay land), PAST (pasture), UCOM (commer-
cial land), and UIUD (industrial land).

The Harmonized World Soil Database is a 30-arcsecond raster database with
over 15,000 different soil mapping units that combines existing regional and
national updates of soil information worldwide (SOTER, ESD, Soil Map of
China, WISE) with information contained within the 1:5,000,000 scale FAO-
UNESCO Soil Map of the World (FAO, 1971–1981) [Nachtergaele et al., 2010].
We clipped these datasets for SWAT model generation in the Han River basin
using watershed polygons delineated previously in ArcGIS 10.2.

2.2.2 Observed meteorological, runoff, and leaf area index data It can
be seen from Table 1 that daily in situ measurements of observations (precipi-
tation, maximum and minimum daily temperatures, rainfall, relative humidity,
wind, and solar radiation) were obtained from the National Meteorological In-
formation Center (http://data.cma.cn/). Daily runoff data (2001–2014) from
the Ankang hydrological station, which is located at the catchment outlet, were
obtained from the Hydrological Bureau of the Ministry of Water Resources
of China. The LAI data were taken from the Global Land Surface Satellite
(GLASS) product (spatial resolution: 0.05°, temporal interval: 8 d), produced
using Advanced Very High Resolution Radiometer time series surface reflectance
data acquired during 1981–1999. Since 2000, the GLASS product has been gen-
erated using MODO9A1 surface reflectance data in sinusoidal projection at the
global scale from Advanced Very High Resolution Radiometer and Moderate
Resolution Imaging Spectroradiometer reflectance data using a general regres-
sion neural network [Xiao et al., 2013]. The GLASS LAI product (version
3.0) is freely available for download from http://glass-product.bnu.edu.cn.
The GIMMS3g NDVI dataset, obtained from the Ecological Forecasting Lab
(https://ecocast.arc.nasa.gov/data/pub/gimms/), encompassed the period
from July 1981 to December 2015 (spatial resolution: 1/12°, temporal resolu-
tion: 15 d).

Table 1. Details of the data used in this study.

Data Source Description
DEM CGIAR CSI SRTM Derived DEM

(90 m)
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Data Source Description
Land use/Land cover
map

Resource and
Environment Science
and Data Center

km spatial resolution

Soil map FAO1 Harmonized World Soil
Database v 1.2

Observed
Meteorological data

National Meteorological
Information Center

Maximum and
minimum daily
temperature, rainfall,
relative
humidity, wind, solar
radiation (2001-2014)

Observed runoff the Hydrological
Bureau of the Ministry
of Water Resources of
China (HBMWRC)

Ankang (daily,
2004-2014)

Leaf area index GLASS day / 0.05°×0.05°
Normalized difference
vegetation index

GIMMS3g day / 0.05°×0.05°

1FAO: Food and Agriculture Organization.

2.3 Overview of the SWAT model

The SWAT model, developed by the U.S. Department of Agriculture’s Agri-
cultural Research Service, is a semi-distributed hydrological model based on
physical processes [Arnold et al., 1998; Neitsch et al., 2011]. It can simulate
different fluxes within the hydrological cycle, such as evapotranspiration (ET),
surface runoff, percolation, lateral flow, groundwater flow, transmission, and
ponding over long periods. In the SWAT model, an entire river basin is di-
vided into many HRUs based on slope, soil type, and land use type. The model
simulates the spatial variation of the river basin on the basis of hydrological
dynamics of each HRU, and then performs water routing for the river channel
[Arnold et al., 2012]. Current research on improving the vegetation growth mod-
ule of the SWAT model is mainly based on defining dry and wet seasons through
the soil moisture index or precipitation, thereby tracking the beginning of new
vegetation growing season and better simulating vegetation growth dynamics
[Alemayehu et al., 2017; Ma et al., 2019; Rajib et al., 2020; Strauch and Volk,
2013; Valencia et al., 2021].

Vegetation dynamics play an important part in the hydrological cycle. The
SWAT model simulates annual LAI dynamics of different vegetation types
(warm season annual legumes, cold season annual legumes, perennial legumes,
warm season annuals, cold season annuals, perennials, and trees) in each HRU
to reflect the vegetation dynamics within the river basin to a certain extent.
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The vegetation module of the SWAT model is a simplified version of the EPIC
model, which simulates vegetation growth mainly on the basis of two theories:
heat unit theory and day length threshold theory [Williams et al., 1989].

2.3.1 Plant growth module in SWAT Temperature is one of the most
important of the various factors that control plant growth. Each plant has
a temperature range suitable for growth, i.e., the lowest, most suitable, and
highest temperatures at which plant growth can occur. For each plant, the min-
imum or base temperature must be reached before the plant will begin to grow.
Generally, above the base temperature, the higher the temperature, the faster
the growth rate [Jobling, 1997]. However, once the optimum temperature for
plant growth is exceeded, the rate of growth begins to slow, and when the maxi-
mum temperature is reached, growth stops. The heat unit theory assumes that
the plant growth trajectory (such as plant maturation) is proportional to the
temperature increment. When the average temperature is lower than the base
temperature, the plant will no longer grow, and when the daily average temper-
ature exceeds the base temperature, the plant will grow [Boswell, 1926; Magoon
and Culpepper, 1932]. Heat units in the SWAT model are calculated using a
direct summation index, with one heat unit for each degree Celsius of daily
mean temperature above the base temperature. However, application of the
heat unit theory in the SWAT model does not consider the influence of harmful
high temperatures on plants; instead, it is assumed that all temperatures higher
than the base temperature will accelerate the growth and development of crops.

The heat accumulation unit for a given day is calculated as follows:

, (1)

where is the heat unit accumulated on a given day, is the average daily temper-
ature (℃), and represents the base or minimum temperature required for plant
growth (℃).

The total heat units required for a plant to reach maturity is calculated as
follows:

, (2)

where denotes the total heat units required for a plant to reach maturity, is the
accumulated heat unit on day d, where d = 1 represents the sowing date or the
end date of the dormant period, and m is the number of days needed for the
plant to reach maturity. It should be noted that could also represent potential
heat units.

In the SWAT model, the dormant date is defined by day length threshold theory.
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When the day length reaches the calculated threshold for a given location, plant
dormancy will occur. The day length threshold is calculated as follows:

, (3)

where is the threshold of day length at the beginning of the dormant period (h).
is the shortest day length in a year in the river basin (h), and is the hibernation
threshold (h). In autumn, when day length is shorter, plants in the catchment,
except warm-season annuals, enter a dormant period. The dormant threshold
varies with latitude as follows:

, (4)
, (5)
, (6)

where denotes the dormancy threshold, which is used to reflect the difference
of dormancy time at different latitudes (h), and denotes the latitude in positive
values (°).

There are theoretical uncertainties in the two theories mentioned above when
simulating the growth process of vegetation. First, the dormant period of vegeta-
tion is judged simply on the basis of latitude and photoperiod, whereas complex
interactions between different environmental factors actually determine the dor-
mancy period and the starting conditions [Rohde and Bhalerao, 2007]. The
current approach in SWAT ignores the differences in dormancy period of vege-
tation at different locations at the same latitude. Second, the accumulated heat
unit demand of each plant of a particular land use/land cover (LULC) is given
as a constant value, which is inconsistent with the findings of previous studies
showing that heat requirements change with growing conditions. For instance,
a warmer winter can enhance the accumulated heat unit requirements of plants
by reducing the chilling period of vegetation [Wang et al., 2020; Yu et al., 2010].
The accumulated heat units required by vegetation change annually, and the
use of a fixed accumulated heat unit requirement can lead to large uncertainties
in the length of the simulated growing season.

2.3.2 Development of the growth module in SWAT Recognizing the
aforementioned limitations, vegetation growth cycles should be initiated dy-
namically rather than through management operations (e.g., “plant” and “kill”)
that prescribe the dates or fractions of PHU for each simulation year. Thus, we
modified the vegetation dormancy and accumulated heat unit requirement of
the original SWAT2012 model Version. 681 (https://swat.tamu.edu), so that
no management operation was applied during the set-up of the modified model.
In the following sections, we explain the specific principles and details of model
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improvements (Fig. S1).

2.3.2.1 Phenology extraction The dates of occurrence of phenological
events are critical in the vegetation growing season. In this research, five
different phenological extraction methods (i.e., the HANTS-Maximum method,
Spline-Midpoint method, Gaussian-Midpoint method, Timesat-SG method,
and Polyfit-Maximum method) [Cong et al., 2012; Savitzky and Golay, 1964]
were used to estimate spring (start of growing season; SOS) and autumn (end
of growing season; EOS) phenological events in the Han River basin using the
GIMMS3g NDVI data. Two processes were applied to extract the phenology
data: 1) application of smoothing and interpolation to obtain daily time series
NDVI data, and 2) use of the phenological phase extraction method based
either on the threshold value (here, we used 0.5 and 0.2 as the threshold for
SOS and EOS, respectively) or the maximum rate of change [Piao et al., 2006;
Reed et al., 1994; White et al., 1997; White et al., 2009]. To reduce uncertainties
associated with a single method, the mean value of the extracted phenological
indexes from the five methods was used as the phenology data for the studied
river basin.

2.3.2.2 mapping grid phenology value into HRUs The phenological
events derived from remote sensing NDVI data have a spatial resolution of 0.05°,
whereas the simulation of the hydrological cycle process in the SWAT model is
based on HRUs. Providing annual phenological records to each HRU by linking
the phenological data with each HRU is the premise for further model improve-
ment. We leveraged the technology of the SWAT-Modflow method [Kim et al.,
2008] to build a fishnet in ArcGIS 10.2 software to match the gridded data with
the spatial position of each HRU, and generate statistics for the grid cells by
averaging the gridded values over each HRU (Fig. 2).

The average phenological dates (i.e., SOS and EOS) for the each HRU were
estimated on the basis of weighted coefficients calculated from the area size
of the overlapped region to reconcile the spatial mismatch between the grid
phenology data and the irregular polygons of the HRUs used in the SWAT model
simulation. The area weight of the HRU phenological period was determined as
follows:

, (7)

where stands for the phenology date (i.e., SOS or EOS) of a year for a given HRU,
denotes the total area of a given HRU, represents the phenology data value of
the grid in which the i-th subblock of the HRU is located, represents the area
occupied by the i-th subgrid, and n is the number of overlapping subblocks into
which the HRU is divided.
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Figure 2. Overlapped areas of hydrological response units (HRUs)
and gridded phenology data. Dark gray grid represents the gridded phenol-
ogy data, light gray background represents the SWAT HRUs of the Han River
basin, and selected HRUs #1–3 show different cases of how HRUs intersect with
phenology grid cells.

2.3.2.3 Dormant module modification In this study, we modified the
source code of the plant dormancy module of the SWAT model (dormant.f)
used for determining the dormant status of vegetation. For trees with a veg-
etation type index of 7 (e.g., FRST and ORCD), the day length threshold is
no longer used to determine whether the trees are at the critical point between
the dormancy period and the growing season. Instead, the extracted phenology
data were used to determine the growth state of trees on a simulated day, and
the accuracy of the model simulation was optimized on the basis of the actual
growth state of trees. We also modified the LAI modeling during leaf senescence
for perennials using the approach introduced by Strauch and Volk (2013) (Fig.
3):
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, (8)

, (8)
, (9)

where the term used as the exponent is a function of time () and ranges from 6
to −6; is the leaf area index for a given day that declines at rate r; and are the
maximum and minimum (ALAI_MIN, minimum LAI for the plant during the
dormant period (m2/m2)) LAI values, respectively; and is the fraction of the
growing season () over which senescence becomes the dominant growth process.

Figure 3. Principles of the developed vegetation dormancy module
in the Soil and Water Assessment Tool model. SOS - start of growing
season, EOS - end of growing season, GS_DLT - growing season defined by
day length threshold, GS_RSP - growing season defined by remote sensing
phenology. Orange dots indicate occurrence dates of phenology events, and
black dot indicates DLAI, i.e., the fraction of the total heat units when leaf
area begins to decline. Sigmoid: a logistic decline curve shown in the study by
Strauch and Volk (2013).

2.3.2.4 Dynamic heat unit requirement In the modified SWAT model,
we calculated the accumulated heat unit requirement (i.e., the average daily
temperature above base temperature BASE_T between SOS and EOS) for an-
nual vegetation growth using the remote sensing vegetation phenology. The
calculated value (PHU_PLT) was used to replace the fixed accumulated heat
unit requirement for specific plants in the plant parameters database (plant.dat)
(Fig. 4).
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Figure 4. Dynamic heat unit of vegetation growth module in the Soil
and Water Assessment Tool model. The gray areas represent the accu-
mulated heat unit requirement for plant growth in a given year. SOS - start of
growing season, EOS - end of growing season, BASE_T - minimum temperature
for vegetation growth, PHU_PLT - heat unit requirement of vegetation in the
current year.

2.3.2.5 Model calibration and validation In this study, the stepwise cal-
ibration method was adopted for the modeled LAI and runoff in the modified
model. Calibration of runoff and LAI was conducted for 2004–2010 and valida-
tion was performed for 2011–2014. For the original model we only calibrated
runoff, but the time series used for calibration and validation were the same as
those used for the modified model. To obtain comparable results, and for the
assessment of the effect of inaccurate representation of vegetation dynamics, the
original SWAT model was not calibrated for LAI, which is not an unusual prac-
tice [Alemayehu et al., 2017; Rajib et al., 2020; Valencia et al., 2021; Villamizar
et al., 2019]. Three years were added at the beginning of each simulation as
a spin-up period necessary to approximate initial conditions, especially for soil
moisture.

We used ENVI 5.3 software to clip the GLASS LAI with three main LULC types
(FRST, ORCD, and AGRL) using the HRUs as borders, and all raster data be-
longing to the same LULC type were extracted and their average values taken
as the observed LAI values in the study area. Calibration of LAI through a
combination of manual (trial-and-error process) and automatic (particle swarm
optimization) [Marini and Walczak, 2015] methods was performed to determine
the optimum parameters in the plant database (plant.dat). For the initialization
of parameters, we restricted the parameters to be generated within truly accept-
able intervals (e.g., ALAI_MIN, BALI, DLAI FRGRW1, FRGRW2, LAIMX1,
LAIMX2, and T_BASE). It should be noted that PHU_PLT, the total num-
ber of heat units or growing degree days needed to bring plants to maturity,
does not need to be calibrated because it is a dynamic value determined by the
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accumulated heat unit module. To evaluate the agreement between the simu-
lated and observed LAI values, we used the coefficient of determination (R2),
which describes the proportion of the variance in measured data explained by
the model, percent bias (PBIAS), and Nash–Sutcliffe Efficiency (NSE).

The second step of the stepwise calibration method was runoff calibration. We
calibrated both the modified and the original SWAT model. In SWAT-CUP
2019 (Version 5.2.1) [Abbaspour, 2008; Arnold et al., 2012], we used the Se-
quential Uncertainty Fitting (Sufi-2) algorithm to conduct sensitivity analysis,
uncertainty analysis, and automatic parameter calibration process [Abbaspour
et al., 2004]. For sensitivity analysis, following the literature, we selected 26
parameters that have greatest impact on the hydrological process, and then 12
of the most sensitive parameters were yielded for model calibration. The value
range of each of these parameters was defined within an acceptable true and
reliable range. The Sufi-2 algorithm was used to calibrate model parameters for
daily runoff data. In each iteration we applied 1000 simulations and updated
the parameter ranges with the next iteration selection via Latin hypercube sam-
pling [Stein, 1987]. To compare the differences in runoff simulation performance
between the original SWAT model and the modified SWAT model, we adopted
the performance criteria proposed by Moriasi (2013 )that included NSE, R2, and
PBIAS (bad: <0.5; not good: 0.5~0.65 ; good: 0.65~0.75; very good: >0.75)
[Moriasi et al., 2007].

3 Results

3.1 Phenology in the Han River basin

There is clear spatial heterogeneity in vegetation phenology in the Han River
basin (Fig. 5). For the entire basin, the SOS ranged from day of year (DOY) 81–
118 (average: DOY 104), i.e., a difference of 37 d. The EOS ranged from DOY
280–341 (average: DOY 325), i.e., a difference of 61 d. The spatial distribution
pattern was similar to that of LULC type (Fig. 1c). The SOS was the earliest
for AGRL, followed by FRST and then ORCD. Similarly, the EOS was the
earliest for AGRL, followed by FRST and then ORCD, although there was no
significant difference in EOS between FRST and ORCD. The SOS of the entire
Han River basin had experienced significant advance (−0.52 d/year) during
1982–2015, whereas the EOS had not shown an obvious trend of change (−0.02
d/year). Significant EOS delays were found in small parts of the upper and lower
reaches of the Han River basin, while significant EOS advances were found in
the middle reaches. At the same latitude, there were evident differences in
vegetation phenology, and in the same region (grid), phenology can change
markedly over time. This contrasts the assumptions made in the EPIC model
regarding the dominant role of latitude in plant dormancy [Arnold et al., 2012;
Williams et al., 1989].
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Figure 5. Spatial pattern and change trend of annual dates of occur-
rence of phenology events in the Han River basin during 1982–2015.
SOS - start of growing season, EOS - end of growing season, DOY - day of year.
Solid black line represents river basin boundary, and solid blue line represents
the main river channel. Yellow dots indicate areas of significant change.

3.2 LAI calibration and validation

The optimum calibrated parameters in the SWAT plant database (plant.dat)
are listed in Supplementary Table S1. The performance of the original SWAT
model in simulating LAI was worse than that of the modified SWAT model,
and the original SWAT model failed to represent the observed LAI curve and
extreme values, as evidenced by the high biases and negative or low correlations
(Table 2). Moreover, the original SWAT model could not match the remote
sensing data in terms of either the value or the key time nodes of the LAI
curve of the vegetation growth period. There are two principal shortcomings
in the performance of the original SWAT model (Fig. 6): 1) inaccuracy in the
LAI extreme value simulation, and 2) inaccuracy in the simulation of both the
growing season length and the time nodes of the dormant period. With regard
to the first, the simulated highest and lowest LAI values were different from
the measured LAI determined by remote sensing. The SWAT model assumes
that LAI is zero at the beginning of each simulation year, which is unrealistic
for vegetation dynamics. With regard to the second, the growing season of the
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simulated LAI curve of the original SWAT model did not correspond well to the
growing season of the remote sensing LAI curve, there was mismatch between
the start and end dates of the growing season, and the length of the growing
season was not in accord with the actual situation. In contrast, the simulation
performance of the modified SWAT model in relation to FRST and ORCD was
better than that for AGRL. Overall, the modified SWAT model outperformed
the original SWAT model in reproducing LAI observations and intra-annual LAI
variations, as indicated by the correlation values.

Figure 6. Global and Land Surface Satellite leaf area index (LAI),
and the original and modified Soil and Water Assessment Tool model
simulated hydrological response unit weighted aggregated 8-d LAI
time series (2004–2014). Gray shading indicates the boundaries of the stan-
dard deviation. Dashed lines mark the end of the calibration period and the
beginning of the validation period.

Table 2. Summary of the performance metrics for the original and
modified Soil and Water Assessment Tool model in simulating leaf
area index.
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Performance criteria Original (2004-2010) Modified (2004-2010) Original (2011-2014) Modified (2011-2014)
FRST ORCD AGRL FRST ORCD AGRL FRST ORCD AGRL FRST ORCD AGRL

R2 0.83 0.75 0.49 0.95 0.95 0.74 0.84 0.74 0.50 0.95 0.94 0.78
NSE 0.69 0.12 -0.86 0.95 0.92 0.59 0.67 0.06 -0.79 0.93 0.93 0.65
PBIAS 22.1 57.2 75.94 5.83 -5.20 21.74 25.33 58.46 75.9 8.60 0.94 19.54

R2, coefficient of determination, NSE, Nash–Sutcliffe Efficiency, PBIAS, percent
bias, FRST, forests, ORCD, orchards, AGRL, farmland.

3.3 Runoff calibration and validation

The original and modified SWAT models were both calibrated for runoff by
varying 12 of the most sensitive runoff-related parameters determined by sen-
sitivity analysis (Supplementary Table S2). We found that the sensitivity of
runoff to these parameters changed to differing degrees after the modification
of the SWAT model, which meant that the order of the 12 most sensitive pa-
rameters was not the same for the two models. The best-fit parameters of two
SWAT models and their acceptably ranges (i.e., the ranges of parameter values
in each simulation that were acceptable for reality) after calibration are listed
in Supplementary Table S3. Comparison of daily original SWAT model and
modified SWAT model simulated runoff and multiple criteria evaluation results
with observations for the calibration (2004–2010) and validation (2011–2014)
periods are presented in Fig. 7. Visually, the simulated hydrographs presented
a reasonable reproduction of observations. The R2, NSE, and PBIAS (multiple
criteria) results showed that both the original and the modified SWAT mod-
els could be considered “good” (0.65 NSE 0.75, 0.65 R2 0.75), and the runoff
simulation of both SWAT models showed better performance in the validation
period than in the calibration period. The modified SWAT model was superior
to the original SWAT model in terms of runoff simulation, as evidenced by the
higher R2 and NSE values in the calibration and similar in the validation pe-
riods. Nevertheless, the original SWAT model can show high performance in
reproducing runoff by applying different parameter values with the same effect,
despite having low capability in simulating LAI dynamics (Figs. 6 and 7).
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Figure 7. Calibration (2004–2010) and validation (2011–2014) of the
original and modified Soil and Water Assessment Tool models for
daily runoff. R2 - coefficient of determination, NSE - Nash–Sutcliffe Efficiency.
Dashed line marks the end of the calibration period and the beginning of the
validation period.

3.4 Impact of improved LAI simulation on evapotranspiration

In basin-scale hydrological simulation, vegetation dynamics mainly regulate the
hydrological cycle process by influencing ET. There are three main methods for
SWAT to simulate ET: the Penman–Monteith method [Allen, 1986; Allen et
al., 1989; Monteith, 1965], Priestley–Taylor method [Priestley and TAYLOR,
1972], and Hargreaves method [Hargreaves and Samani, 1985]. The Penman–
Monteith method is a popular method that has been used in many previous
studies [Abiodun et al., 2018; Parajuli et al., 2018]. The Penman–Monteith
method includes the energy required to maintain evaporation, length of path
of water vapor transport, aerodynamic factors, and surface impedance factors.
Primarily, vegetation influences ET by influencing aerodynamic impedance and
vegetation canopy impedance parameters. Theoretically, a more accurate sim-
ulation of vegetation dynamics and a more realistic LAI should bring more
accurate performance in ET simulation. The difference in the ET simulation
results between the modified SWAT model and the original SWAT model is be-
lieved caused by the difference attributable to dynamic simulation of vegetation
growth. We found that the simulated ET value of the modified SWAT model
was higher (65.09 mm (22.17%) for FRST, 92.27 mm (32%) for ORCD, and
96.16 mm (36.4 %) for AGRL) than that of the original SWAT model, and that
this difference occurred mainly in spring and autumn. (Figs. 8 and S2). More-
over, there was significant underestimation of ET in the original SWAT model
simulation compared with the modified SWAT model, especially in spring and
autumn.
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Figure 8. Daily evapotranspiration (ET) simulation during calibration
(2004–2010) and validation (2011–2014) periods of the original and
modified Soil and Water Assessment Tool models and corresponding
annual ET box plots. Black crosses represent outliers.

4 Discussion

4.1 Changes of phenology on the basin scale

In this study, the temporal and spatial distribution characteristics of phenol-
ogy in the Han River basin were extracted (Fig. 5), and the results revealed
that phenology had a multiyear change trend and spatial dissimilation that was
universal in different regions of the Northern Hemisphere [Badeck et al., 2004;
Peñuelas and Filella, 2009; Piao et al., 2019]. Phenology shows different pat-
terns with consistent but differing degrees of trend (i.e., SOS advance and EOS
delay) in different climatic zones, and their responses to climate change were dif-
ferent owing to complex interactions among various environmental factors (e.g.,
temperature, photoperiod, precipitation, and radiation) [Delbart et al., 2008; Y
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H Fu et al., 2015; Andrew D Richardson et al., 2006; Andrew D. Richardson et
al., 2013; Yuan et al., 2020].

The phenological distribution and variation characteristics of vegetation were
closely related to climatic zone and vegetation type. In the simulation of veg-
etation growth dynamics on the basin scale, a single and simple method that
cannot accurately track the spatial and temporal variation of characteristics
of vegetation phenology would increase the simulation error and uncertainty.
Thus, the simulation of the entire hydrological energy cycle could be influenced
by the effect on ET and other processes.

4.2 Advantages of the modified SWAT over the original SWAT model

There are notable differences between the modified and original SWAT mod-
els in terms of their capability in reproducing vegetation dynamics through LAI
(Fig. 6). For example, the simulation performance of the modified SWAT model
for both FRST and ORCD was better than that for AGRL, which was primar-
ily because only the dynamic accumulated heat unit was considered in AGRL
and no management operation was set in this study. In fact, irrigation and
other management operations existed in AGRL. Moreover, the modified SWAT
model also improved the simulation accuracy of runoff to some extent (Fig. 7).
Although the modified and original SWAT models both achieved “good” runoff
simulation performance, two different sets of model parameters were obtained
in the process of runoff calibration. This is because one of the shortcomings of
reverse modeling is that there could be cases where different sets of parameters
in the model produce the same effect [Beven, 2002; Ruddell et al., 2019]. The
relationship between annual ET and growing season length simulated by the
original and modified SWAT models revealed that the original SWAT model
not only had considerable uncertainty in terms of the simulation of growing
season length, but also the relationship between ET and growing season length
in the simulation results was inconsistent with that of previous studies [Geng
et al., 2020], while the modified SWAT model revealed that growing season ex-
tended one day will increase evapotranspiration by 11.1 mm across forests. The
improved model resolved these two problems (Fig. 9) that strongly limit the
capability of hydrological models (i.e., the original SWAT model in the present
case) to produce reliable results that could support informed decision-making
[Kirchner, 2006; Valencia et al., 2021].
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Figure 9. Relationship between the average annual evapotranspira-
tion (ET) simulation performance of the modified and original Soil
and Water Assessment Tool models and growing season length. FRST
- forests, ORCD - orchards, GSL - growing season length. Shaded areas represent
95% confidence intervals.

The dormant period of vegetation was determined using vegetation phenology
extracted from remote sensing rather than by indirectly tracking key nodes
of vegetation growth using environmental factors (e.g., precipitation and soil
moisture index) [Alemayehu et al., 2017; Strauch and Volk, 2013; Valencia et
al., 2021]. It means that there was no need to consider differences in plant
sensitivity to environmental factors in different regions, which can lead to more
accurate simulation of vegetation growth dynamics in a wider region.

Although coupling the remote sensing-based phenology datasets substantially
improved the SWAT performance, two limitations of the present study need
to be pointed out. First, the simplified EPIC model based on accumulated
heat unit was still used in this study to simulate vegetation growth dynamics,
whereas more complete vegetation growth model should be used in subsequent
studies. Second, in this research, the SWAT model was modified by integrating
observed phenology data, but we could not predict the hydrological processes
under future climate change. Here we explored the importance of phenology
for hydrology process based models, and note that the next step is to further
improve the model prediction of phenological events under future climate change
conditions. The hydrological processes can be investigated by combining the
phenology data which was simulated by phenological model under future climate
change context. However, the accuracy of the current phenological model still
needs to be improved [Y Fu et al., 2020; Liu et al., 2016; Andrew D Richardson
et al., 2012], therefore we caution that in the subsequent studies, we need to
improve the accuracy of phenological model and couple it with hydrological
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models to ensure an accurate simulation of ecohydrology process under future
climate change conditions [Chuine and Régnière, 2017; Fan et al., 2020; Hufkens
et al., 2018].

5 Conclusions

In this study, the vegetation growth module of the SWAT model was improved
using remote sensing-based vegetation phenology by optimizing the determina-
tion plant dormancy and the use of dynamic accumulated heat unit requirement
by plants. We compared the modified SWAT model with the original SWAT
model in the Han River basin. The results show that the modified model greatly
improved the simulation of vegetation growth dynamics, and slightly improved
runoff simulation. We also found that the original SWAT model significantly
underestimated ET in different LULC types as compared with the modified
SWAT model. Analysis of the relationship between annual ET and growing sea-
son length simulated by the original and modified SWAT models revealed that
the original SWAT model was unable to accurately describe the intermediate
process variables of the hydrological cycle. Process-based hydrological models
should be configured to consider the accuracy of plant growth dynamics simu-
lation, which could reduce the number of calibration parameter and help avoid
overparameterization for runoff simulation at the cost of other hydrological pro-
cesses. The vegetation growth module and algorithms used to combine remote
sensing data with the SWAT model can generalized to other watershed mod-
els and be applied to support water resources planning and management that
require understanding of the coupled ecological and hydrological processes.
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Table S1. Summary of the LAI-related parameters for each land cover type that 

control vegetation growth, and the LAI with initial and calibrated values. 

Parameter Definition (unit) 

Calibration values (initial values) 

FRST ORCD AGRL 

ALAI_MIN Minimum leaf area index (m2/m2) 0.643 (0.750) 0.861(0.750) 0.895(0.000) 

BLAI Maximum potential leaf area index (m2/m2) 6.3(5.00) 4.49(4.00) 7.27(3.00) 

DLAI Fraction of PHU when LAI beings to decline 0.818(0.99) 0.77(0.99) 0.937(0.64) 

FRGRW1 
Fraction of PHU corresponding to the 1st 

point on the leaf area development curve 
0.021(0.05) 0.012(0.10) 0.282(0.150) 

FRGRW2 
Fraction of PHU corresponding to the 2nd 

point on the leaf area development curve 
0.727(0.40) 0.091(0.50) 0.479(0.50) 

LAIMX1 

Fraction of BLAI corresponding to the 1st 

point on the optimal leaf area development 

curve 

0.279(0.05) 0.017(0.15) 0.278(0.05) 

LAIMX2 

Fraction of BLAI corresponding to the 2nd 

point on the optimal leaf area development 

curve 

0.708(0.95) 0.923(0.75) 0.895(0.95) 

T_BASE Minimum temperature for plant growth (℃) 2.41(10.00) 0.77(7.00) 2.62(11.00) 

PHU_PLT1 
Total number of heat units or growing degree 

days needed to bring plant to maturity 
dynamic dynamic dynamic 

FRST: forests, ORCD: orchards, AGRL, farmland. 1PHU_PLT: obtained by the dynamic 

accumulated heat unit module calculation. 
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Table S2. Global sensitivity analysis of the default and modified SWAT models. 

Sensitivity is indicated by a high t-statistic value (in absolute terms) and a low p-value. 

Parameters are listed from high to low sensitivity in relation to the modified SWAT 

model. 

Parameter Definition (unit) 

Scali
ng 

type1 

Default SWAT model Modified SWAT model 

t-statistic p-value t-statistic p-value 

ALPHA_BF Baseflow alpha factor (days) v 27.70 0.00 33.78 0.00 

CN2 
Initial SCS runoff curve number for moisture 

condition Ⅱ 
R 3.04 0.00 25.18 0.00 

GW_DELAY Groundwater delay time (days) v 5.36 0.00 5.92 0.00 

CH_K2 
Effective hydraulic conductivity in main 

channel alluvium (mm/hr) 
v -5.98 0.00 -6.22 0.00 

SLSUBBSN Average slope length (m) R 1.79 0.07 2.12 0.03 

CH_N2 Manning's "n" value for the main channel v -5.51 0.00 -3.80 0.00 

CANMX Maximum canopy storage v -3.20 0.00 -2.47 0.01 

REVAPMN 
Threshold depth of water in the shallow 

aquifer for "revap" to occur (mm) 
V 2.73 0.00 2.43 0.02 

SOL_AWC () 
Available water capacity of the soil layer 

(mm H2O/mm soil) 
R -1.36 0.17 1.33 0.18 

TLAPS Temperature lapse rate (℃/km) V 0.37 0.71 1.50 0.13 

SMFMN 
Melt factor for snow on December 21 (mm 

H2O/℃-day) 
V 3.52 0.00 1.76 0.08 

SOL_Z () 
Depth from soil surface to bottom of layer 

(mm) 
R 1.36 0.17 2.23 0.03 

SMTMP Snow melt base temperature (℃) V -0.88 0.38 -1.52 0.13 

SURLAG Surface runoff lag coefficient V 0.39 0.70 1.04 0.30 

BIOMIX Biological mixing efficie R 0.41 0.68 0.75 0.45 

SOL_K () Saturated hydraulic conductivity (mm/hr) R -0.39 0.70 0.10 0.92 

ESCO Soil evaporation compensation factor V 0.72 0.47 1.25 0.21 

GWQMN 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 
(mmm H20) 

V 8.02 0.000 -2.97 0.00 

SFTMP Snowfall temperature (℃) V -0.37 0.71 -0.13 0.90 

TIMP Snow pack temperature lag factor (℃) V -0.70 0.49 -0.68 0.50 

EPCO Plant uptake compensation factor V -0.94 0.35 -0.59 0.55 

SMFMX 
Melt factor for snow on June 21 (mm 

H2O/℃-day) 
V 0.47 0.64 0.52 0.60 

SOL_ALB () Moist soil albedo R 0.45 0.65 0.59 0.56 

GW_REVAP Groundwater "revap" coefficient V 1.65 0.10 -0.56 0.57 

 1Scaling type: v (absolute) indicates that the parameter is replaced by the given value, 

R(relative) indicates that the parameter is multiplied by [1 + (given value)]. 
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Table S3. Summary of the SWAT parameters that control vegetation growth and 

LAI with default and calibrated values. 

1Scaling type: v (absolute) indicates that the parameter is replaced by the given value, r 

(relative) indicates that the parameter is multiplied by [1 + (given value)].  

Parameter Definition (unit) 
Scaling 

type1 
Range Default model Modified model 

ALPHA_BF 
Baseflow recession constant 

(day) 
replace 0 - 1 0.38 0.35 

CANMX Maximum canopy storage replace 0 - 100 18.34 23.42 

CH_K2 
Effective hydraulic conductivity 

in main channel alluvium 

(mm/hr) 

replace -0.01 - 500 68.54 52.73 

CN2 
Initial SCS runoff curve number 

for moisture condition Ⅱ 
relative -0.3 – 0.3 -0.002 0.21 

GW_DELAY Groundwater delay time (days) replace 0 - 500 331.01 327.48 

GW_REVAP Groundwater "revap" coefficient replace 0.02 - 0.2 0.12 0.17 

GWQMN 
Threshold depth of water in the 

shallow aquifer required for 

return flow to occur (mmm H20) 

replace 0 - 5000 3296.93 4551.50 

SLSUBBSN Average slope length (m) relative -1 - 1 -0.92 -0.46 

SMFMN 
Melt factor for snow on 

December 21 (mm H2O/℃-day) 
replace 0 - 20 14.45 16.01 

CH_N2 
Manning's "n" value for the main 

channel 
replace -0.01 - 0.3 0.02 0.04 

REVAPMN 
Threshold depth of water in the 
shallow aquifer for "revap" to 

occur (mm) 

replace 0 - 500 28.38 315.27 

TLAPS Temperature lapse rate (℃/km) replace -10 - 10 6.72 4.46 
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