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Abstract

High rate Global Navigation Satellite System (GNSS) deformation time series capture a broad spectrum of earthquake strong

motion signals for rapid contributions to hazard warnings and assessment, but experience regular sporadic noise that can be

difficult to distinguish from true seismic signals. Previous studies developed methods for automatically detecting these signals

but most rely on various external inputs to differentiate true signal from noise. In this study we generated a dataset of high

rate GNSS time differenced carrier phase (TDCP) velocity time series concurrent in space and time with expected seismic

surface waves from known seismic events. TDCP velocity processing has increased sensitivity relative to traditional geodetic

displacement processing without requiring sophisticated corrections. We trained, validated and tested a random forest machine

learning classifier. We find our supervised random forest classifier outperforms the existing detection methods in stand-alone

mode by combining frequency and time domain features into decision criteria. We optimized the classifier on a balance of

sensitivity and false alerting. Within a 100km epicentral radius, the classifier automatically detects 86% of events greater

than MW5.0 and 98% of events greater than MW6.0. The classifier model has typical detection latencies seconds behind

S-wave arrivals when run in real-time mode on “unseen” events. We conclude the performance of this model provides sufficient

confidence to enable these valuable ground motion measurements to run in stand-alone mode for development of edge processing,

geodetic infrastructure monitoring and inclusion in operational ground motion observations and models.
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Key Points:6

• We assembled a labeled dataset of 5Hz GNSS velocity time series from 77 earth-7

quakes over nearly 20 years.8

• We trained a supervised random forest classifier for detecting seismic motion that9

outperforms existing detection methods.10

• Improved detection enables lightweight, high rate GNSS velocity processing to be11

included in operational ground motion observations.12
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Abstract13

High rate Global Navigation Satellite System (GNSS) deformation time series cap-14

ture a broad spectrum of earthquake strong motion signals for rapid contributions to haz-15

ard warnings and assessment, but experience regular sporadic noise that can be difficult16

to distinguish from true seismic signals. Previous studies developed methods for auto-17

matically detecting these signals but most rely on various external inputs to differenti-18

ate true signal from noise. In this study we generated a dataset of high rate GNSS time19

differenced carrier phase (TDCP) velocity time series concurrent in space and time with20

expected seismic surface waves from known seismic events. TDCP velocity processing21

has increased sensitivity relative to traditional geodetic displacement processing with-22

out requiring sophisticated corrections. We trained, validated and tested a random for-23

est machine learning classifier.24

We find our supervised random forest classifier outperforms the existing detection25

methods in stand-alone mode by combining frequency and time domain features into de-26

cision criteria. We optimized the classifier on a balance of sensitivity and false alerting.27

Within a 100km epicentral radius, the classifier automatically detects 86% of events greater28

than MW 5.0 and 98% of events greater than MW 6.0. The classifier model has typical29

detection latencies seconds behind S-wave arrivals when run in real-time mode on “un-30

seen” events. We conclude the performance of this model provides sufficient confidence31

to enable these valuable ground motion measurements to run in stand-alone mode for32

development of edge processing, geodetic infrastructure monitoring and inclusion in op-33

erational ground motion observations and models.34

Plain Language Summary35

Continuously operating, high sample rate Global Navigation Satellite System (GNSS)36

sensors that experience ground shaking from an earthquake can provide valuable data37

regarding the nature of the ground motion. If this data is streamed in real-time, these38

observations can complement existing traditional seismic infrastructure measurements39

that are used for earthquake early warning or rapid ground motion assessments. How-40

ever, the data from these sensors can be noisy and have non-earthquake artifacts that41

are difficult to tell apart from true seismic signals. In this work we used a nearly 20 year42

archive of high sample rate GNSS velocities occurring during known seismic events to43

train, validate and test a machine learning model for earthquake detection. This machine44

learning approach is taken from existing algorithms used for a wide variety of challeng-45

ing classification problems where a label can be applied to a sample. We demonstrate46

that this data-driven method, without any external information, is more likely to detect47

these signals with less false alarms when compared to existing methods. The added con-48

fidence this algorithm provides will allow these valuable measurements to be included49

in operational seismic assessment and warning decision criteria.50

1 Introduction51

Real-time measurements of medium to great earthquake ground motions are vital52

to rapid hazard assessment and earthquake early warning (EEW) systems. Higher rate53

(≥ 1Hz) continuous GNSS measurements capture dynamic motions and permanent dis-54

placements of propagating strong-motion waveforms from such events (Nikolaidis et al.,55

2001; Larson et al., 2003). These geodetic strong motion measurements (Larson, 2009)56

will rarely clip nor require double integration that leads to magnitude saturation in the57

near-field of larger, destructive earthquakes common to inertial velocity sensors (Bock58

et al., 2004; B. W. Crowell et al., 2013; Colombelli et al., 2013). Furthermore, additional59

material low-latency observations densify existing ground motion measurements. These60
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observations are particularly valuable when damaging seismic events occur in sparsely61

instrumented regions (Grapenthin et al., 2017) or when networks or infrastructure fails.62

However, geodetic deformation timeseries are noisier than traditional inertial sen-63

sors (Melgar et al., 2020). This makes separating signal from noise challenging: signal64

amplitudes from the largest, most costly events can be difficult to distinguish from non65

geophysical events, such as filter reconvergence or signal loss of lock. Medium magnitude66

events, often difficult to detect above the geodetic noise floor, can be destructive or tsunami-67

genic. The ability to make accurate, low-latency distinction between true signals and noise68

in stand-alone mode, without external sensors or information, minimizes points of fail-69

ure and decision latency and maximizes integral network decision inputs and potential70

edge processing capabilities.71

Current approaches to detect motion use variations of time domain thresholds to72

flatten the decision to a function of signal amplitude. Several existing approaches make73

use of low-pass filters similar to traditional STA/LTA seismological phase picking (Allen74

& Ziv, 2011; Ohta et al., 2012; Minson et al., 2014; Kawamoto et al., 2016; Goldberg &75

Bock, 2017) that extract static offsets for finite fault inversion but filter valuable dynam-76

ics information. Recent interest in peak dynamic signals (Melgar et al., 2015; Ruhl et77

al., 2019; Fang et al., 2020; B. W. Crowell, 2021) prompted use of unfiltered timeseries78

to capture peak signals for magnitude scaling laws and ground motion intensity measure-79

ments. These epoch-wise threshold detection methods (B. W. Crowell et al., 2009; Psi-80

moulis et al., 2018; Hohensinn & Geiger, 2018; Hodgkinson et al., 2020; Dittmann et al.,81

2022) use instantaneous measurements to estimate motion onset, but have limited “real-82

world” testing and mitigate high false alert rates by spatially correlating detections with83

nearby stations or windowing in time from seismic triggers. These processes reduce the84

utility of these measurements for rapid decision criteria.85

In this work, we evaluate whether existing GNSS hardware can: more reliably de-86

tect motion signals that are 1) constellating near the ambient temporal noise floor 2) with87

minimal false alerting 3) in a stand-alone mode and 4) with no specific fault or network88

geometry. We trained a machine learning classifier on a supervised dataset of GNSS ve-89

locity time series concurrent in space and time with known seismic source signals. We90

assembled, processed and labeled a dataset of 1701 earthquake-station high rate (5Hz)91

time series pairs. We optimized the classifier on this dataset with applied domain knowl-92

edge to feature selection and feature engineering. We present the superior performance93

of this classifier relative to existing methods within this motivational context. We offer94

advantages and implications of deploying this processing and trained model at scale for95

network wide monitoring, with particular emphasis on the improved sensitivity and in-96

tegrity of stand-alone GNSS event detection without external inputs.97

2 Methods98

2.1 Signals of Interest99

We define our detection domain as a binary motion or no motion state classifica-100

tion. A critical component of developing a robust classification model is a substantial101

dataset from which to train, validate and test the model. For optimal results, this dataset102

requires broad spectrum noise and signal samples such that the model can “learn” and103

generalize our classification and distinguish signal from noise. We assembled a catalog104

of 1701 station-event pairs from 77 events by cross referencing available 5Hz GNSS ob-105

servational data in the UNAVCO geodetic archive with Advanced National Seismic Sys-106

tem Comprehensive Earthquake Catalog (ComCat) of earthquakes greater than MW 4.5.107

While 1Hz data is more readily available, this sample rate is insufficient for capturing108

certain event spectra (Joyner, August 1984; Smalley, 2009), such as ∼ MW 6.0 events in109

the nearfield. For larger magnitude events it’s likely that sampling closer to 10 Hz is nec-110
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Figure 1. Catalog of events and radii used for this work. The number of stations used in each

event is a function of the radii depicted here and the ground station network density.

essary to avoid aliasing (Shu et al., 2018), but we balance this design parameter with the111

need for sufficiently large available datasets for training. We assigned a conservative ra-112

dius of detection for each event using ambient noise estimation from Dittmann et al. (2022).113

For each station-event pair within this spatial footprint, a time series window began 2114

minutes prior to earthquake origin time (OT), and extends out in time as a function of115

radius (Figure 1). We conservatively buffered the radius and time window to ensure the116

existing model does not limit this result.117

Current use of GNSS-derived seismic ground motion for operational EEW (Murray118

et al., 2018) use precise point positioning (PPP) derived topocentric coordinates to cap-119

ture dynamic waveforms or static offsets relative to a stations a priori position. Instead,120

we align synchronous carrier phase epoch-wise changes, predicted satellite orbital veloc-121

ity and line-of-sight geometry to accumulate coherent energy with respect to the shared122

receiver clock drift rate and directional velocities in a local reference frame. Variations123

of this geodetic processing method, known as time differenced carrier phase (TDCP) (van124

Graas & Soloviev, 2004) or variometric velocities, can record co-seismic velocity wave-125

forms (Grapenthin et al., 2018; Hohensinn & Geiger, 2018; B. W. Crowell, 2021) as well126

as integrated over time into seismic displacement waveforms (Colosimo et al., 2011; Bran-127

zanti et al., 2013; Fratarcangeli et al., 2018). We processed these 5hz measurements with128

the open-source SNIVEL package (B. W. Crowell, 2021) using broadcast ephemeris and129

narrow lane phase combinations. We chose TDCP over PPP because it is more sensi-130

tive to motion (Fang et al., 2020; Dittmann et al., 2022), and it is “lightweight” in that131

it does not require sophisticated corrections and is computationally inexpensive. From132

a machine learning perspective, this could be considered a first step in our feature en-133
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Figure 2. Schematic of our classification workflow: Inputs were 5Hz GPS phase measurements

and broadcast ephemeris, which are processed using narrow lane combinations using SNIVEL.

Target labeling combined with Feature extraction were used for training a supervised random

forest classification model to predict motion classification on testing subsets.

gineering, or applying domain knowledge to extracting features that are correlated with134

motion in observed carrier phase measurements.135

2.2 Feature Engineering Pipeline136

Data-driven supervised machine learning models are widely used in computer vi-137

sion and natural language processing due to their superior accuracy for challenging clas-138

sification, regression and clustering problems. Earth scientists have adopted many of these139

models for geoscience research (Kong et al., 2019). Recent catalogs of historic seismic140

data training sets (eg. Stanford Earthquake Data Set (Mousavi et al., 2019), INSTANCE141

(Michelini et al., 2021)) have contributed to benchmarking improvements of earthquake142

detection, phase picking, localization, and magnitude estimation (eg. Meier et al. (2019);143

Mousavi et al. (2020); Kong et al. (2019). These extensive labeled data sets enable so-144

phisticated data-driven classifiers and deep learning models using inertial seismic data.145

Several geodetic applications of machine learning algorithms have demonstrated promis-146

ing results with respect to seismic processes. Crocetti et al. (2021) used a random for-147

est classifier for antenna offset detection, including due to earthquake offsets, from low-148

rate, 24-hour position solutions. Habboub et al. (2020) applied a neural network to co-149

ordinate time series anomaly detection applicable to specific regional datasets well above150

the noise floor. Dybing et al. (2021) used neural networks for earthquake detection and151

Lin et al. (2021) employed deep learning used for rapid event magnitude estimation; both152

of these studies used extensive synthetic displacement waveforms derived from real-world153

fault geometries and real-world PPP noise models.154

In our study, we used a random forest algorithm for our classifier (Breiman, 2001)155

of GNSS velocities. Random forest is an ensemble of decision trees; a single decision tree156

is a classifier where input features are split along thresholds to separate source, or root,157

data from end node classifications, or leaves. An ensemble or forest of trees each vote158

on the feature decision criteria to select the optimal decisions towards minimizing cor-159

related noise. Due to the infrequent nature of larger magnitude earthquakes, the event160

classes are naturally imbalanced but by pre-selecting specific time series of events, we161

have reduced this imbalance for training (Table 1) and testing. Random forest hyper-162

parameters were selected using a grid search over the number of decision trees used, the163

maximum decision splits within a tree, and imbalance classification weighting strategies.164

SNIVEL TDCP processing generates 5 Hz time series of the three topocentric ve-165

locity components and the clock drift rates. From these event-station pair time series166

of velocities, we generated feature sets to label for our supervised classification (Figure167
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Table 1. Distribution of classification sample labels used in training/testing datasets by com-

ponent and label.

East (n=46,778) North (n=46,778) Up (n=46,778)

No 84% 85% 97%
Yes 14% 13% 2%
(Maybe*) 2% 2% <1%

*Maybe’s excluded from training/testing

2). Our feature samples consisted of three directional components of 30 second windows168

overlapping every 10 seconds; within these windows we included the four maximum com-169

ponent norm window values, window median, window median absolute deviation and win-170

dow lower frequency power spectra as features. These features and windowing allowed171

our model to incorporate signal and noise amplitude in the time domain, akin to the tra-172

ditional threshold approach, as well as power spectra in the frequency domain. Labels173

were assigned through visual inspection as no or 0 for no motion, yes or 1 for motion,174

and maybe for windows that we are not able to distinguish between yes or no and ex-175

cluded from testing and training. Each directional component was labeled independently.176

This resulted in 140,334 labels for the approximately 30 time samples for 1701 station177

event pairs of three component velocity time series. We evaluated two feature extrac-178

tion models. Feature set #1 was a combined array of all 3 directional components with179

a single label at each window. The horizontally concatenated components resulted in 3×180

m features and n samples, where m is the number of features per component (m = 36181

in our pipeline) and n is the number of window samples. If any component was labeled182

“1” for motion, the feature set #1 sample label was “1” for motion. If a maybe label was183

present without yes motions on the other concurrent components, the window was ex-184

cluded from training/testing. Feature set 2 included a target vector for each component185

but excluded the noisier vertical signals. These vertically concatenated components re-186

sulted in m features and 2×n samples. In this extraction case any maybe labels were187

excluded from training and testing.188

We employed a nested cross validation approach for unbiased testing of our dataset.189

We initialized 10 different folds of randomly splitting the 77 events into 90% training and190

10% testing. By splitting on events we avoided “leakage” of information from our train-191

ing into our testing, including correlation of seismic waveforms from any given event ob-192

served across a network. By cross validating over 10 folds we minimized biasing our re-193

sult by the relatively small testing subsets of events, and can quantify the ability of our194

classification model to generalize for future events. Each event was observed by a dif-195

ferent number of stations depending on network density and sensing radius, and each196

station-event pair had differing number of time samples; consequently the feature vec-197

tors of training and testing were not precisely 90/10 split in samples. In each fold, we198

held the test set aside as “unseen”, and tuned our model using K-fold cross validation199

(Bishop & Nasrabadi, 2007) on the remaining training set (Figure 3). We implemented200

5 inner folds in our K-fold cross validation to find the best hyperparameters. This cross201

validation approach allowed us to minimize overfitting the training dataset and evalu-202

ate the performance of our model on unseen data as though it were running such a clas-203

sifier on yet-to-occur events.204

The traditional “accuracy” metric, or the ratio of the correctly classified labels rel-205

ative to the total number of labels, of our classification will be less sensitive regardless206

of optimization choices due to the infrequent events of our imbalanced classification. In-207

stead, we optimized on metrics that reflect accurately classifying the infrequent events.208

Precision, or positive predictive value, is equal to the number of true positives (TP) over209
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Figure 3. Schematic of a single fold random forest pipeline. For evaluation, we ran 10 folds of

train/test splits of the 77 seismic events and report the mean and standard deviation of the test

metrics to evaluate how well our features and models generalize across different testing sets.
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Table 2. 10 fold nested cross validation results comparing Feature Set 1 is where all 3 compo-

nents are combined for each window, and Feature Set 2 is where each horizontal component is

tested independently.

Feature Set #1 Feature Set #2

Precision mean 0.79 0.73
stdev 0.21 0.21

Recall mean 0.71 0.67
stdev 0.10 0.13

F1 mean 0.73 0.68
stdev 0.14 0.14

the sum of TP and false negatives (FN).210

Precision =
TP

TP + FP
(1)

Recall, or sensitivity, is the number of TP over the sum of TP and false positives (FP).211

Recall =
TP

TP + FN
(2)

F1 is the harmonic mean of precision and recall:212

F1 = 2× precision × recall

precision + recall
(3)

Here, positive denotes motion and vice versa.213

Precision and recall are approximately inversely related and each is a function of214

our random forest decision threshold. Quantifying missed detections and false alert rates215

is imperative for the effectiveness of any EEW system (Minson et al., 2019). We opti-216

mized hyperparameters on F1 scores, a balance of precision and recall, but this param-217

eter is a knob available to tune depending on societal missed detection of false alerting218

tolerances of a future operational system.219

3 Results and Discussion220

We evaluate the two optimal feature selection strategies and a range of random for-221

est hyperparameters via a grid search. Given the F1 scores of our 10 fold nested cross222

validation approach (Table 2), our optimal model used feature set #1, with all available223

spatial components with a single target label to accumulate as much signal as possible224

towards our binary classification. Each train/test fold selected different optimal hyper-225

parameter combinations for testing via cross validation, but the majority used 500 or226

1000 decision trees, 100 decision splits and no class weighting. We used a decision thresh-227

old of 0.5 for this feature engineering approach (Figure 4) to optimize F1, a balance of228

precision and recall. Our mean and one standard deviation nested cross validation F1229

score of 0.73±0.14 indicates our ability to successfully train a model using random for-230

est. The variance in our results as a justifies our nested cross validation approach to quan-231

tify the variability in results as a function of the testing set; presumably some variabil-232

ity will resolve with expanded target catalogs.233

3.1 Feature Importance234

A benefit of random forest is that individual feature importance is readily extracted235

from the trained model. When evaluating feature set 1, we find several aspects of the236
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Figure 4. Mean precision, recall and F1 as a function of decision thresholds for the 10 fold

nested cross validation evaluation. The shaded regions are the standard deviations across the 10

folds as a function of threshold. The dashed vertical lines are the maximum F1 decision thresh-

old, with the dashed horizontal lines being the corresponding maximum F1 score.

feature importances that align with our domain knowledge and therefore contribute to237

the explainability of our trained model. The horizontal velocity components dominate238

the contribution to the model (Figure 5a). GNSS ambient noise on the vertical compo-239

nent is much higher than that of the horizontal components and vertical seismic signal240

amplitudes are diminished relative to horizontal motion along horizontal strike-slip fault241

mechanics that are common in the spatial region of this study. These less frequent sig-242

nals amidst a higher relative noise floor were harder to detect and thus contributed less243

to the empirical classification model. Within a horizontal component, the lower frequency244

spectral features had the most influence (Figure 5b). The most important frequency bins245

were between 15-6 second periods, aligned with the prevalent frequencies of seismic sur-246

face waves. Our 5Hz sampling, as compared to lower rates, boosted the detectability around247

the noise floor, and avoided corner frequency aliasing of certain magnitudes. The time248

domain features contributed to the model, albeit much less than the lower frequency spec-249

tral content. After initial evaluation, we removed higher frequency power spectra from250

our features; these are logically “noise” in our system and were not contributing to clas-251

sification. Altogether, these feature importances illustrate a key attribute of such a ma-252

chine learning approach: combining features in an explainable way into an effective de-253

cision process.254

3.2 Comparison with Existing Methods255

A critical performance indicator is evaluating how our classification model performs256

over a range of test events relative to existing threshold approaches. Logic was applied257

to map existing continuous epoch-wise time domain threshold detection to our 30 sec-258

ond overlapping window target labels. For a threshold method comparison similar to the259

approach of Hodgkinson et al. (2020) and Dittmann et al. (2022), we estimated the noise260

threshold in the 2 minute window prior to seismic origin time. Hodgkinson et al. (2020)261

characterized the stand-alone sensitivity of detection using ambient noise antecedent to262

an event as a Gaussian heuristic threshold. Dittmann et al. (2022) approximated the 2263

minute window of ground velocities as a non central chi-squared (NCX2) distribution264
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Figure 5. Feature importances from feature set #1 testing. 5a is the distribution of the im-

portances across the horizontally concatenated, three spatial components. 5b is a close up of the

east component, with the features labeled across the x axis. From the left, the first 6 of each

component are time domain features (max, min, mad) within the 30 second windows; the next

15 are the power spectra from a periodogram of the 30 second 5Hz data, increasing in frequency

from left to right. For reference, the periods are indicated.

with 3 degrees of freedom, and then set the 0.995 confidence level value of this distri-265

bution as a noise floor approximation. Any three dimensional GV magnitude above this266

noise threshold after this window is considered an event, and evaluated on whether it267

falls within a window labeled motion or not. RT-Shake (Psimoulis et al., 2018) evolved268

the previous geodetic STA/LTA algorithms (Allen & Ziv, 2011; Ohta et al., 2012) by dif-269

ferencing instantaneous measurements from 80 epoch moving averages and then related270

these values to a moving window noise threshold estimate set to three times the stan-271

dard error of the previous 80 epochs. This method was run on each component indepen-272

dently, with a single boolean for the presence of motion on any component, and each sam-273

ple window assigned a boolean based on the presence of any motion. The Dittmann et274

al. (2022) implementation of the threshold window in time was based upon S-Wave speeds275

(B. W. Crowell et al., 2013), and Psimoulis et al. (2018) modified STA/LTA correlated276

with surrounding stations to minimize false alerts; we did not add this logic so that we277

could simulate running as a stand-alone instrument.278

The mean precision, F1 and accuracy from our 10 fold test of our random forest279

classifier outperforms the existing threshold approaches (Figure 6). In the threshold ap-280

proach, recall is higher than the random forest classifier; given the large number of false281

positives that this method triggers, we believe this value is boosted by chance noise trig-282

gers occurring in windows of true motion triggering the motion boolean. This further283

demonstrates the value of optimizing on F1 as a balance of precision and recall to re-284

duce biasing one decision criteria. Precision is low for both the threshold method and285

the STA/LTA, but for different reasons; while the precision values (Equation 1) are nearly286

identical, the threshold method suffers from a relatively high amount of false positives,287

whereas the STA/LTA method low score is due to a lower amount of true positives. This288
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Figure 6. Performance metrics for 3 methods in stand-alone mode without external triggers

or correlation. Threshold is the NCX2-995 approach used by Dittmann et al. (2022) that thresh-

olds the noise based upon the 0.995 significance of a non-central chi-squared distribution of the

ambient noise. STA/LTA is based on Psimoulis et al. (2018) GNSS motion detection modified

STA/LTA algorithm. RF-ML is the method presented in the work here. Optimizing on F1 in

this study allows us to balance missed detections (recall) with false alerts (precision); given the

amount of false alerts of the Threshold and STA/LTA, the higher recall score could be a result of

regular noise triggering events.

discrepancy is evident in the accuracy scores, where the STA/LTA outperforms the thresh-289

old approach. False positives would be decreased if using additional external informa-290

tion as their authors’ suggest, such as stricter time window approaches and correlating291

in space within networks. Such an approach would also likely improve the random for-292

est classifiers performance but limit the utility of a stand-alone detection node. Spatio-293

temporal information could be incorporated into future network decision criteria.294

3.3 Edge Sensitivity Detection295

Detecting the largest amplitude velocity waveforms relative to ambient noise does296

not present a significant challenge outside of mitigating false alerting from sporadic out-297

liers (Figure 7), with a 98% true positive rate of events greater than MW 6.0 and less than298

100km radius. The random forest classifier’s balance of improved false alerting relative299

to thresholds and improved sensitivity relative to the STA/LTA is evident for these high-300

est seismic risks. To further investigate the random forest model performance we eval-301

uate detecting signals closer to the noise floor. For simplicity, we bin seismic motion edge302

case detection into two distinct classes in what is a continuous distribution: large mag-303

nitude event seismic motion detection in the far field, and smaller magnitude events de-304

tected in the nearfield.305

In the relative nearfield, much of the seismic energy passes through a station in shorter306

duration, varied frequency signals. Earthquake focal depth and fault slip distribution in307

time and space can significantly vary these waveforms as observed. Critically, the wave-308

form signatures can appear similar to those of non geophysical processing outliers which309

we wish to ignore for this classification. Most existing STA/LTA methods filter these noise310

signals but also these valuable higher frequency dynamics. In the previous threshold meth-311
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Figure 7. Performance of Random forest model developed in the work here across the entire

event catalog. We reduce detection of events to a single binary for the figure. In this, each event

is evaluated in a “test” split during the nested validation pipeline. This approach ensures each

result depicted was evaluated as “unseen” relative to the best fit model from the training subset,

and therefore representative of our model’s future performance.
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ods, detection of these edge cases was a function of the ambient noise level, with low pre-312

cision resulting (Figure 6) as a result of a high false positive rate. Our classifier has far313

less false alerts than the threshold approach in these signals, but nevertheless still presents314

the hardest detection domain for our classifier, evident in the missed detections of Fig-315

ure 7 of events less than MW 6.0. Figure 8 is an example of a smaller magnitude event316

(MW 5.4) in the relative nearfield (21km). In the top 4 panels it is evident that accurately317

detecting such an event using the threshold or modified STA/LTA approach is difficult;318

not only does the true signal barely exceed the noise floor, but there are numerous false319

alerts using both methods. The random forest classifier captures each labeled motion320

window in addition to “ignoring” the spurious signal around 100s OT that triggers all321

of the other methods evaluated.322

The sensitivity of GNSS to long period surface waves are apparent at relatively great323

radii in the 5 hz TDCP velocity time series (Figure 7). The model detects teleseismic324

surface waves in unfiltered GNSS velocities at 1780km epicentral radius in real-time with325

no external corrections; Figure 9 provides an example of this detection. In Figure 9, the326

amplitude of the ground velocity magnitude of these long period signals is insufficient327

to cross the traditional noise threshold, and for that same noise threshold there are many328

false alerts. The modified STA/LTA RT-Shake approach does not identify the major-329

ity of the long period waves either, while the random forest classifier in the bottom panel330

only misses the first window.331

3.4 Decision Latency332

Delay in alerting is critical to EEW. While our model is trained, tested, and val-333

idated on overlapping windows every 10 seconds, we evaluate running the model at once334

per second, the current US EEW (ShakeAlert (Murray et al., 2018)) geodetic input rate335

(Figure 10). On testing data not used in model training, we find a delay relative to the336

P-wave (∼3 seconds average at 10km) exists in the current approach. GNSS velocities337

using this current approach cannot reliably be used for initial phase (P-wave) picking,338

but can rapidly contribute to ground motion models or peak motion scaling laws (Fang339

et al., 2020). Given the feature importances of the classifier (Fig 5), delays are a result340

of coseismic energy organizing into surface waves which are confidently detected by the341

model. These are the signals we were visibly able to distinguish in labeling. Variance in342

delays in the near field are likely due to inherent limitations of modeling rupture as a343

point source at proximal locations (Goldberg et al., 2021). It is worth repeating that this344

assessment uses no external input or seismic triggering.345

3.5 Ambient Noise Dataset346

In addition to evaluating the performance within the bespoke event data sets, we347

also evaluate the performance of the method during a period of quiescence. We randomly348

selected 30 spatially distributed stations that supported 5 Hz downloads one hour in ad-349

vance of the 2019 MW 6.4 Ridgecrest Earthquake. We processed a 60 minute window to350

be representative of ambient noise: there were no events >M4.0 in the USGS comcat cat-351

alog, space weather indices were calm (Ap 4 nT) and all other sources of noise (signal352

multipath, oscillators, etc) were included. We assigned labels of no motion to all target353

vectors associated with feature extraction, and thus can evaluate ambient noise perfor-354

mance, or false alarm rate (Figure 11). We applied the previously trained classifier model355

once per second, to simulate running such a model in real-time mode.356

Overall, the random forest classifier is less susceptible to spurious signals or out-357

liers over the window tested than the threshold and STA/LTA approaches. As expected,358

the two threshold models are the most susceptible to false alerting; evident from the pre-359

cision metric reported in Figure 6. The variations present in the random forest approach360

suggest that the current model has some station/time dependence not aligned with the361
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Figure 8. Velocity and detection time series from P507 observing a M5.41 at 21km epicentral

radius. In the top 3 panels, we include a downsampled running mean so that the reader may

readily visualize the lower frequency surface waves passing through. The teal vertical lines are

alerts from the STA/LTA classifier (Psimoulis et al., 2018) on each component. The fourth panel

green timeseries is the 3 component GV; the red horizontal line is the sensitivity threshold of a

0.995 non central chi squared (ncx2) noise model (Dittmann et al., 2022)), with orange vertical

lines indicating a potential alert where GV greater than the threshold. The fifth panel is a com-

parison of the labeled feature set 1 for this event-station pair in purple, and the results of the

model prediction in red. Shading is used to distinguish overlaps. This event-station pair predic-

tion is extracted from the test or unseen event collection.
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Figure 9. Velocity and detection time series from Station AB18 observing a MW 7.9 from

∼1400km epicentral radius. In the top 3 panels, we include a downsampled running mean so that

the reader may readily visualize the lower frequency surface waves passing through, but these are

not used in the models. The teal vertical lines are alerts from the STA/LTA classifier (Psimoulis

et al., 2018) on each component. The fourth panel green timeseries is the 3 component GV; the

red horizontal line is the sensitivity threshold of a 0.995 non central chi squared (ncx2) noise

model (Dittmann et al., 2022), with orange vertical lines indicating a potential alert where GV

greater than the threshold. The fifth panel is a comparison of the labeled feature set 1 for this

event-station pair in purple, and the results of the model prediction in red. Shading is used to

distinguish overlaps. This event-station pair prediction is extracted from the test or unseen event

collection.
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Figure 10. Time of first detection of all individual event-station pairs within 80km epicentral

radius relative to earthquake origin time (OT) as a function of radius. Green dots are the esti-

mated P- and S-wave arrivals at the event-station pairs used in this study shown for reference.

Purple circles are centered on the time of first detection after the OT, where the diameter is

scaled to the event magnitude. These results are from the classifier run at 1Hz on unseen testing

sets to simulate a real-time operational mode.

variations of other methods. Inclusion of larger noise training datasets into our detec-362

tion classifier and possibly data augmentation techniques would likely be beneficial to-363

wards training on the widest variety of noise scenarios.364

4 Conclusion365

We applied an existing machine learning algorithm and sample splitting pipeline366

techniques to training, validating and testing a seismic motion detection classifier from367

5Hz TDCP GNSS velocities. We leveraged nearly 20 years of 5Hz GNSS data archives368

for training a classification model that outperforms existing threshold approaches for de-369

tecting motion in stand-alone mode. The classifier combines time domain and frequency370

domain features to match the sensitivity of the threshold method without the false alerts,371

and matches the minimal false alerting of the STA/LTA with improved sensitivity. Given372

the agreement that GNSS velocities have with existing ground motion models (B. Crow-373

ell et al., 2022) and the increased confidence in separating signal from noise demonstrated374

here, these GNSS velocities can operationally contribute to ground motion measurements.375

The alert latency of this current model does not match the sensitivity of existing iner-376

tial infrastructure. A complementary approach using the information available at the377

time, including lowest latency p-wave characterization from inertial sensors and unsat-378

urated velocity estimation from GNSS provides an optimal solution for existing dense379

multi-sensor networks. For less dense networks of either sensor type, it is more critical380

to establish a decision criteria for balancing timing, noise and accuracy of these indepen-381

dent observation systems. Further investigation of integrating the processing and clas-382

sifying approach of this manuscript with the sensitivity of co-located MEMS sensors (Goldberg383

& Bock, 2017) would advantageously overlap seismic and geodetic traditional boundaries.384
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Figure 11. Panel (a) is mean false positive rates (FPR) from 30 randomly selected, spa-

tially distributed, TDCP 5Hz velocities during the same 60 minute time window (1600-1700 4

July 2019). Methods include: median plus 3 times the median absolute deviation threshold of

Hodgkinson et al. (2020), non-central chi square of Dittmann et al. (2022) NCX2 using alpha

value of 0.995, the modified STA/LTA implemented by Psimoulis et al. (2018) and the random

forest machine learning classifier developed in this work (RF-ML). Panel (b) is the distribution

by station of each method.
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Current 5 Hz GNSS observation data streams are too verbose for many bandwidth385

limited remote hardware; this presents an exciting opportunity for edge processing at386

potentially much higher rates (Shu et al., 2018), or experimental lean 5 Hz carrier phase387

data streams. Our method presented here does not use a sophisticated machine learn-388

ing model, yet has improved detection relative to existing approaches; much improve-389

ment remains, especially with expanded datasets across global networks and/or synthet-390

ics or data augmentation for training, validation and testing of neural networks and deep391

learning models.392

With an expanding availability and access to real-time GNSS streaming networks,393

the seismological community stands to benefit from this signal of opportunity for rapid394

ground motion detection for earthquake and tsunami source characterization. Further-395

more, the vast industry of GNSS position, navigation and timing users catalyzing the396

expansion of these GNSS real-time networks will benefit from improved automated alert-397

ing of reference station motion onset. Future work will include integrating this classi-398

fier amongst existing and future automated GNSS carrier phase disturbance character-399

ization methods, including space weather disturbances (Jiao et al., 2017), oscillator anoma-400

lies (Liu & Morton, 2022), radio frequency interference and signal multipath.401

5 Open Research402

The 5Hz GNSS data used for TDCP processing in the study are available from the403

Geodetic Facility for the Advancement of Geoscience (GAGE) Global Navigation Satel-404

lite Systems (GNSS) archives as maintained by UNAVCO, Inc. The data are available405

in RINEX (v.2.11) format at https://data.unavco.org/archive/gnss/highrate/5406

-Hz/rinex/. Earthquake depths, locations, and magnitudes came from the Advanced407

National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Prod-408

ucts (https://earthquake.usgs.gov/data/comcat/). Arrival times are calculated us-409

ing the iasp91 velocity model as implemented by Incorporated Research Institutions for410

Seismology (IRIS) Web Services (http://service.iris.edu/irisws/traveltime/).411

SNIVEL code used for TDCP velocity processing is developed openly at https://github412

.com/crowellbw/SNIVEL (Accessed December 2021)(B. W. Crowell, 2021). SNIVEL 5Hz413

velocity timeseries used in this study are preserved at https://doi.org/10.5281/zenodo414

.6588601. Version 1.0.1 of the scikit-learn software used for random forest classification415

is preserved at https://doi.org/10.5281/zenodo.5596244 and developed openly at416

https://github.com/scikit-learn/scikit-learn. (Pedregosa et al., 2011) Version417

v0.5.0 of PyGMT used for generating the map is preserved at https://doi.org/10.5281/418

zenodo.5607255 and developed openly at https://github.com/GenericMappingTools/419

pygmt(Wessel et al., 2019)420
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