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Abstract

The ionosphere contains many small-scale electron density variations that are under represented in smooth physics-based or

climatological models. This can negatively impact the results of Observation System Simulation Experiments, which use a truth

model to simulate data. This paper addresses this problem by using ionosonde data to study ionospheric variability and build

a new truth model with empirically-driven variations. The variations are studied for their amplitude, horizontal and vertical

size, and temporal extent. Results are presented for different local times, seasons, and at two different points in the solar cycle.

We find that these departures from a smooth background are often as large as 25\% and are most prevalent near 250 km in

altitude. They have horizontal spatial extents that vary from a few hundred to a few thousand kilometers, and typically have

the largest horizontal extent at high altitudes. Their vertical extents follow the same pattern of being larger at high altitudes,

but they only vary from 10s of km up to 200 km in vertical size. Temporally, these variations can last for a few hours. The

procedure for using these spatial and temporal distributions to add empirically-driven variance to a smooth truth model is

outlined. This process is used to make a truth model with representative variations, which is compared to ionosonde data as

well as GPS Total Electron Content (TEC) data that was not used to inform the model. The new model resembles the data

much better than the smooth models traditionally used.

1



P
os
te
d
on

26
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
15
28
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

2



P
os
te
d
on

26
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
15
28
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

3



P
os
te
d
on

26
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
15
28
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

4



manuscript submitted to Radio Science

On Constructing a Realistic Truth Model Using1

Ionosonde Data for Observation System Simulation2

Experiments3

Joseph Hughes1∗, Victoriya Forsythe 2†, Ryan Blay 1, Irfan Azeem 1, Geoff4

Crowley 1, Walter “Junk” Wilson 3‡, Eugene Dao 4§, Jonah Colman 4, and5

Richard Parris 4
6

1Orion Space Solutions7
2Naval Research Lab8
3Booz-Allen-Hamilton9

4Air Force Research Lab10

Key Points:11

• The amplitude and spatio-temporal extent of ionospheric variabilities are quan-12

tified across altitude, local time, season, and solar cycle.13

• A method to add these variations into a smooth model is demonstrated and repli-14

cates ionospheric data well.15

• This noisy truth model enables more accurate observation system simulation ex-16

periments.17

∗282 Century Place, Suite 1000, Louisville, CO, 80027
†4555 Overlook Ave SW, Washington, DC 20375
‡745 Space Center Dr., Colorado Springs, CO, 80915
§3550 Aberdeen Avenue SE. Bldg 427. Kirtland AFB, NM 87117-5776

Corresponding author: Joseph Hughes, joe.hughes@orionspace.com

–1–



manuscript submitted to Radio Science

Abstract18

The ionosphere contains many small-scale electron density variations that are under rep-19

resented in smooth physics-based or climatological models. This can negatively impact20

the results of Observation System Simulation Experiments, which use a truth model to21

simulate data. This paper addresses this problem by using ionosonde data to study iono-22

spheric variability and build a new truth model with empirically-driven variations. The23

variations are studied for their amplitude, horizontal and vertical size, and temporal ex-24

tent. Results are presented for different local times, seasons, and at two different points25

in the solar cycle.26

We find that these departures from a smooth background are often as large as 25%27

and are most prevalent near 250 km in altitude. They have horizontal spatial extents28

that vary from a few hundred to a few thousand kilometers, and typically have the largest29

horizontal extent at high altitudes. Their vertical extents follow the same pattern of be-30

ing larger at high altitudes, but they only vary from 10s of km up to 200 km in verti-31

cal size. Temporally, these variations can last for a few hours. The procedure for using32

these spatial and temporal distributions to add empirically-driven variance to a smooth33

truth model is outlined. This process is used to make a truth model with representative34

variations, which is compared to ionosonde data as well as GPS Total Electron Content35

(TEC) data that was not used to inform the model. The new model resembles the data36

much better than the smooth models traditionally used.37

1 Introduction38

The ionosphere is a region of Earth’s upper atmosphere that extends from near 10039

km to 1,000 km in altitude. It is lightly ionized and is influenced by the Sun, Earth’s mag-40

netic field, atmospheric tides, and other processes in the troposphere which propagate41

up to high altitudes.42

There are two central reasons to specify the state of the ionosphere: in order to test43

and extend our knowledge through application of the scientific method, or to construct44

an operational system to support users. In either case, decisions must be made about45

how many sensors, of what type, and at what locations to deploy in order to gather ob-46

servations. A minimum set of observations are usually required to meet a quality met-47

ric related to the operational system. For example, there are a minimum number of GPS48

satellites required to provide a user geolocation support. A cost effective way to eval-49

uate the related sensor requirements is to perform an Observing System Simulation Es-50

periment (OSSE). An OSSE is a simulated experiment that attempts to quantitatively51

assess different sensor architectures and how well they meet the metrics. Such an assess-52

ment can also be coupled to a cost model in order to provide a cost benefit analysis. OSSEs53

are common for operational systems requiring tropospheric specification e.g. (Zeng et54

al., 2020) but are relatively new for the ionosphere. There are three fundamental steps55

to performing an OSSE. First, a truth model must be constructed that is capable of be-56

ing sampled to generate synthetic measurements of the proposed sensor architectures.57

In the troposphere, the truth model is often referred to as a “nature run”. Second, the58

simulated sensor data are provided to the operational model (or a reasonable facsimile)59

that is used to provide information about the metrics under consideration. Third, the60

different architectures are compared according to the quantitative requirements of the61

users.62

Many of the limited number of OSSEs performed for ionospheric applications have63

relied on physics-based models as truth models. Such models cannot currently faithfully64

represent all of the relevant time and space scales typically observed by an ionospheric65

sensor. This is not surprising given the computational limitations but also because the66

models are designed to represent some phenomena while ignoring others. This limita-67

tion can lead to overly optimistic assessments of the utility of a given sensor architec-68
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ture. For example, an OSSE using a smooth truth model will show improvements be-69

tween two sensor locations even though no measurements are taken there because the70

truth model is well-approximated by the interpolant between these measurements. Since71

the real-life ionosphere is more variable and is not well-modeled by an interpolant, this72

is an optimistic assertion of the improvement in the specification. It is therefore crucial73

to have a truth model with realistic variances to ensure accurate OSSE results. In other74

words, it is impossible to know if a sensor system is capable of resolving small-scale fea-75

tures if there are no small-scale features in the truth model.76

In order to illustrate some of these issues in a more quantitative fashion, consider77

the critical frequency of the ionospheric F2 layer above Boulder as observed by an ionosonde78

and as represented by the Thermosphere Ionosphere Electrodynamics General Circula-79

tion Model (TIE-GCM). TIE-GCM (Richmond et al., 1992) is considered a state of the80

art physics based model. The ionosonde measurements are taken with a DGS-256 ionosonde81

using Artist for autoscaling. The left panel of Fig. 1 shows a time series for four days82

in June of 2018. The two sharp spikes in the model-based foF2 are due to the edge of83

the Aurora incorrectly extending down to Boulder which causes the maximum frequency84

to increase. It is immediately apparent that TIE-GCM results are much smoother than85

the ionosonde observations and do not faithfully represent the sensor output.86

Figure 1. Observed and modeled foF2 timeseries (left) and spectra (right) above Boulder,

CO.

The right panel of Figure 1 shows the spectra of the foF2 data for the months of87

June, July, and August 2018. Welch’s periodogram is used to robustly estimate the am-88

plitude of oscillations at short periods. This spectral analysis method splits up a long89

time series into small segments, takes the Fast Fourier Transform (FFT) of all these pieces,90

and averages the spectra together. The spectra for both the model and observed foF291

data are shown with orange and blue lines respectively.92

The amplitude of the diurnal oscillation is slightly weaker in the model than the93

data, which is also evident in the time series where the model foF2 has about a 1/2 MHz94

amplitude (1 MHz peak-to-peak) daily oscillation in contrast to the ionosonde data which95

shows closer to 1-2 MHz amplitude. More importantly, there is more high-frequency vari-96

ability in the data than the model. On 1-hour time scales, the data has 0.1 MHz vari-97

ations, while the model only has ∼0.002 MHz variations. This means that the model is98

50 times smoother than the data. Over a 10-minute period, this factor is closer to 200.99
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Clearly, the model is temporally much smoother than the real ionosphere measured by100

the ionosonde. In order to perform accurate ionospheric OSSEs, the truth model must101

faithfully represent the spatial and temporal variances associated with the sensor mea-102

surements. In addition to enabling realistic truth models, studying the spatial and tem-103

poral variability scales can inform the correlation lengths and times used by many as-104

similative models, and provide scientific insight to the underlying physics.105

The ionospheric temporal, vertical, and horizontal correlation have been studied106

in many prior studies, primarily driven by the need for accurate estimation of the cor-107

relation matrix for assimilation. The horizontal correlation length is studied using To-108

tal Electron Content (TEC) data in (Gail et al., 1993; Klobuchar & Johanso, 1977; Shim109

et al., 2008; Yue et al., 2007; Forsythe, Azeem, & Crowley, 2020). The horizontal cor-110

relation length was studied with foF2 data rather than TEC (McNamara, 2009) using111

small clusters of ionosondes in Europe and South Africa. The vertical correlation dis-112

tance has only been the subject of two studies known to the authors (Yue et al., 2007;113

Forsythe, Azeem, Crowley, & Themens, 2021). Both of these studies used Incoherent Scat-114

ter Radar (ISR) data. The ISR profiles are fit with a Chapman profile in (Yue et al., 2007),115

so there is no information on small variations. The temporal correlation time is only stud-116

ied in one prior published study (Forsythe, Azeem, Crowley, Makarevich, & Wang, 2020)117

to our knowledge. Lastly, the 2017 conference abstract (Holmes et al., 2017) presents the118

first simultaneous and consistent study of horizontal and temporal variations for the pur-119

pose of making a better truth model for use in an OSSE. Four ionosondes in North Amer-120

ica are used to study the spatial and temporal correlation of the critical frequency foF2.121

This paper builds off of this prior work to create a simultaneous and consistent study122

of temporal, vertical, and horizontal correlation of the electron density as well as the am-123

plitudes of the variations. We include more than twenty ionosondes over two years to124

analyse the spatial and temporal density variations. The parameters are found as func-125

tions of altitude, local time, season, and solar cycle point. We use mid-latitude data from126

2014 and 2018 to capture the ionosphere at solar minimum (2018) and solar maximum127

(2014). We also present a method for using these correlation distances to create a truth128

model with realistic variances. This is inspired in part by (Holmes et al., 2017) but con-129

tains much that is novel since foF2 was the only parameter varied in (Holmes et al., 2017)130

while this work varies electron density at all altitudes.131

This paper is organized as follows: Section 2 describes the ionospheric data and its132

processing. Section 3 shows the amplitude and vertical, horizontal, and temporal extent133

of the variance not resolved by the model. Section 4 describes a method to use these pa-134

rameters to add this variance to a smooth model to make a more realistic truth model.135

Section 5 validates this new noisy truth model against real measurements. Finally, con-136

clusions and recommendations for future work are made in Section 6.137

2 Data Processing138

The National Oceanic and Atmospheric Administration (NOAA) maintains a large139

quantity of ionosonde data on their FTP site (ftp://ftp.ngdc.noaa.gov/ionosonde/140

data). This data is compiled from a number of different sensor, antenna, and software141

configurations and is not necessarily of uniform quality. Only cursory checks of the data142

were performed for this study. The majority of these ionsondes are DPS-4D models which143

use Artist 5002 for scaling. Data from 2014 and 2018 is used and is divided based on sea-144

son: summer (June, July, and August), winter (December, January, and February), and145

equinox (March, April, May, September, October, and November). Only data from ionoson-146

des between 20 and 55o in magnetic latitude are included. Between 21 and 28 ionoson-147

des meet these requirements depending on the year and season. Only data taken when148

the planetary K index (KP ) is less than 4 are included.149
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Many of these ionosondes have different measurement cadences, and all of them150

exhibit data gaps. Even though ionosondes only measure the bottom side of the iono-151

sphere, the auto-scaled profiles that are available usually contain model-driven data for152

the topside. Some auto-scaling software packages also use model-derived data for the E153

layer. In this study, only data below the altitude of the maximum plasma frequency (hmF2)154

and within the frequency measurement range of the ionosonde are analyzed. Since the155

altitudes and frequencies that are directly measured change with time even for the same156

ionosonde, careful data management is required to avoid accidentally analyzing model157

driven data. Once the extrapolated data is removed, the remaining data is interpolated158

onto a uniform 10 km grid. This is done for each measurement from each ionosonde.159

Figure 2. Observed electron densities in Boulder. Only data within the ionosonde measure-

ment range and below hmF2 are shown.

A sample of the processed ionosonde data from Boulder, CO is shown in Fig. 2. In160

this figure, time is shown on the x axis, altitude on the y axis, and the electron density161

is shown with color. Only two days of data from June 25th to June 27th, 2018 are plot-162

ted here to show detail. Since the nominal sampling cadence for this ionosonde is 5 min-163

utes, this type of plot shows hundreds of profiles at once. Both the temporal gaps and164

the variable measurement altitudes are visible. The highest altitudes directly measured165

by the ionosonde occur during local night. There are no direct measurements at low al-166

titudes during this time when the E region disappears and the plasma frequency below167

∼225 km is too low for the ionosonde to measure. The obvious outlier on the first night168

where the recorded densities are all between 200 and 220 km is likely the result of an auto169

scaling failure. This example is typical in that such failures often occur in clusters and170

and among data drop outs.171

The TIE-GCM model is interpolated to the place and time of each ionosonde mea-
surement and is shown for Boulder in Fig. 3a. The Aurora which causes the two foF2
spikes in Fig. 1 can be seen here as well. In principle, any smooth climatological or physics-
based model can be used for this work. The most important model requirements are that
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Figure 3. Processing technique used to make the parameters x and y. (a) The TIE-GCM

model for the same place and time as the ionosonde data shown. (b) A low-passed version of the

ionosonde measurements. (c) The parameter x. (d) The parameter y.

it reproduce the smooth features faithfully and with minimal bias. This will allow us to
add unresolved features as normalized perturbations in order to construct the truth model.
The TIE-GCM model is used as the basis for this study because some of the authors have
used it previously for OSSEs and it may capture some features not present in a median
climatology. Here we define the perturbation in terms of a variable x, the difference of
the log densities of the ionosonde and corresponding TIE-GCM electron densities which
can also be expressed as a ratio in eqn. (1).

x = log10(NeI)− log10(NeM ) = log10

(
NeI

NeM

)
(1)

In this equation, NeI is the electron density from the ionosonde, and NeM is the elec-172

tron density from the model. The variable x is 0 when the ionosonde and model den-173

sities are equal, ∼0.3 when the ionosonde density is double that of the model, and about174

-0.3 when the model is double the ionosonde density. A lognormal basis is chosen because175

electron densities are lognormally distributed in the ionosphere (Garner et al., 2005), which176
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means that x can be well described by a Gaussian distribution. This basis also implic-177

itly assumes that the ionosonde data is as likely to be half the model density as it is to178

be twice the model density. This variable is computed for each ionosonde for all avail-179

able times and altitudes and is the heart for all but one of the unresolved variance char-180

acteristics. Figure 3c shows x between 100 and 350 km in altitude. A bifurcating color181

scale is used to better show deviations from zero. Often, x is near zero, as evidenced by182

the yellow shaded regions. However, sometimes it is as high as 0.5, which means that183

the ionosonde electron density is 100.5 ∼ 3.16 times larger than the model density. Other184

times, x is as low as -0.5 when the ionosonde densities are ∼ 3.16 times lower than the185

model densities.186

The parameter x captures the unresolved variance well, but occasionally has large,
low-frequency differences with the ionosonde model. For example, there is a lot more blue
(indicating higher measurement than model densities) than red in Fig. 3c. If x was used
to compute the amplitudes of the variations, very high results would be produced be-
cause of these long-period differences which are not the subject of this study. For cases
where such low frequency differences would impact the results, such as a consistent di-
urnal bias, we compute and use the variable y where the ionosonde data is compared to
a low-passed version of itself rather than the model results. This approach ensures that
only the high-frequency differences are used to make the amplitudes. The low pass fil-
ter is a sixth-order Butterworth filter with a cutoff frequency corresponding to a 3-hour
period and is applied to each altitude separately. Data with less than 1.75 hours of con-
tinuous measurements are not used. This also has the effect of removing periods where
the autoscaling software failed as discussed for Fig. 2. The low passed ionosonde data
are shown in Fig. 3b where there are frequent gaps in coverage due to the continuous time
requirement.

y = log10

(
NeI

Low Pass(NeI)

)
(2)

Once the low-passed version of the measurements is created, the variable y is used to quan-187

tify the amplitude of high-frequency variations. The parameter y is defined similar to188

x, but with the low passed data in the denominator. The variable y is also well-modeled189

with a Gaussian distribution.190

We acknowledge that the parameters used to create y are arbitrary, and that it is191

in principle possible to perform the following analyses using only y instead of x. How-192

ever, the resulting variances may not be ideal to add back onto a TIE-GCM model to193

make a more realistic truth model. Such further investigations are exciting avenues for194

further study.195

3 Characteristics of the Unresolved Variance196

This section presents the vertical, horizontal, and temporal characteristics as well197

as the amplitude of the unresolved variance. Results are presented for four local time198

bins corresponding to the morning sector (3 to 9 LT), noon sector (9 to 15 LT), after-199

noon sector (15 to 21 LT), and the nighttime sector (21 to 3 LT). Data from the solar200

maximum (2014) and solar minimum (2018) are used and divided into three seasons: Sum-201

mer (June, July, August), Equinox (September, October, November, March, April, May),202

and Winter (December, January, February). The characteristics are studied as a func-203

tion of altitude from 100 to 400 km inside each of these local time bins for each season204

and year combination where the data is available. Referring to Fig. 3c for example, low-205

altitude data is expected to be sparse in the nighttime sector.206

It should be noted that the ionosonde data contains both instrument noise and pro-207

cessing artifacts in addition to the real ionospheric measurement. It is difficult to sep-208

arate these contributions and know whether a variation has instrumental of ionospheric209
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origin. In each subsection, we discuss our approach to attributing variations in x to ei-210

ther the instrument or to the ionosphere.211

3.1 Vertical Correlation212

The vertical correlation length describes how well x at one altitude is correlated
to x at the same time, latitude, and longitude, but a different altitude. At the vertical
resolutions used in this study (10 km), we expect both the model and ionosonde data
to be relatively smooth and therefore expect that x will be a relatively smooth function
of altitude. In Fig. 3c, x does not change rapidly with altitude. To study this quanti-
tatively, the Pearson correlation coefficient r is calculated for x at each possible pair of
altitudes from the covariance and the standard deviations as follows:

r =
Cov(x1, x2)

σx1σx2

(3)

Here, the subscripts 1 and 2 refer to the two different altitudes, and σ is the standard213

deviation. Figure 4 shows the square of this value for the Boulder ionosonde for sum-214

mer 2018. The four local time bins are shown as separate panels. Only cells with at least215

10% of the maximum possible data are considered. This reduces the impact of outliers216

when the total data volume is low.217

Figure 4. Correlation coefficients between different altitudes for the Boulder ionosonde for

summer 2018. The four panels show different local time bins indicated in the upper left corner of

the panels.

The correlation coefficient is high when the two altitudes are close, and exactly 1
when the two altitudes are the same. Altitudes far from each other are poorly correlated

–8–
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as evidenced by the deep blue regions in the upper left and lower right corners of the plots.
altitude pairs with insufficient simultaneous data are shown as blank cells. Referencing
Fig. 3, we expect the nightime LT sector to only have high altitude data. The correla-
tion drops more quickly with altitude difference at some altitudes and local times than
others. This can be seen by the wider yellow central band in the noon sector than the
morning sector for example.

r2 = e−|∆a|/dv (4)

For each ionosonde and every height, the correlation coefficient is plotted against the al-218

titude difference and fit with an exponential decay function described by eqn. (4) where219

dv is the vertical correlation length and ∆a is the difference in altitude. Since this func-220

tion is guaranteed to be 1 when ∆a = 0, we implicitly assume that all the unresolved221

variance is attributed to the ionosphere and none to the instrument when calculating the222

vertical correlation length.223

Altitude and LT sectors with fewer than 1/10th of the possible data are not con-224

sidered. Since the absolute value of the altitude difference is used, correlation to altitudes225

above is not separated from correlations to altitudes below. The median value of the ver-226

tical correlation length is shown as a solid line in Fig. 5 for all seasons and both years227

corresponding to solar maximum (2014) and solar minimum (2018). The range between228

the 25% and 75% quantiles (the middle half) is shown as a shaded region of the same229

color to give a sense of the variation from one ionosonde to another. Some of this vari-230

ation is undoubtedly the result of autoscaling errors as evidenced by the systematically231

large nighttime values. A maximum of 200 km is enforced to keep the optimizer from232

choosing a very high correlation length in the nighttime sector where there is poor al-233

titude coverage to compare against. The correlation length is generally small at lower234

altitudes, which indicates the prevalence of small-scale variations. This means that the235

differences between the ionosonde data and the model data will be more consistent over236

larger altitude ranges at high altitudes than at low altitudes.237

Prior work from (Forsythe, Azeem, Blay, et al., 2021) found similar structure in238

the vertical correlation length in that the correlation length increases with altitude and239

is typically between 50 and 200 km, however they do not use a 200 km limit so their high240

altitude correlation lengths are much larger. Our use of exclusively bottomside ionosonde241

data also contributes to this difference. (Yue et al., 2007) also used ISR data to study242

the vertical correlation length and and found a nearly linear increase in the vertical cor-243

relation length from near 60 km to 200 km.244

3.2 Horizontal Correlation245

Pairs of ionosondes are used to compute the horizontal correlation length. The val-246

ues of x at one ionosonde are correlated with the values of x at the same time and al-247

titude but at a different ionosonde. The correlation coefficient from this pair of ionoson-248

des is recorded along with the horizontal distance between the ionosondes. The horizon-249

tal distance used here is the great circle distance, e.g (Vallado, 2013) Chapter 11.3. This250

process is similar to that used by (McNamara, 2009) to study the horizontal correlation251

length of foF2 deviations.252

This process is repeated for all pairs of ionosondes, and for every year, season, lo-253

cal time sector, and altitude. Since many ionosondes do not have the same sampling ca-254

dence and do not always have data for the same time and altitude, considerable data wran-255

gling is required. Time differences smaller than 1 minute 26 seconds (1/1000th of a day)256

are ignored and results are compared directly. If there are fewer than 10 points in com-257

mon for a given pair of ionosondes in a given altitude-LT bin, the pair is not considered.258

An example of the output is shown in Fig. 6. Different colors represent different259

LT bins and the size of the symbol indicates the number of measurements that were used260
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Figure 5. Vertical correlation length for all ionosondes in two years and three seasons. Solid

lines show the median value while shading shows the region between the 25th and 75th per-

centiles or middle half of the data.

to make the correlation coefficient. Large dots indicate values that are less susceptible261

to outlier-induced errors. Since any two ionosondes must be no further than six hours262

apart in local time to be in the same local time sector, there is an upper limit of one-263

quarter of the earth’s circumference on the maximum horizontal distance, which explains264

why there are no points further away than about 8,000 km.265

The data from each LT bin and altitude are fitted with an exponential decay func-266

tion similar to eq. (4) but with the ratio of horizontal separation to horizontal correla-267

tion length in the exponent. The number of points used to make the correlation coef-268

ficient are used as a weighting in the curve fit. These correlation lengths are used to make269

the solid curves in Fig. 6 for each LT bin. Although the exponential decay fits capture270

the trend of the data, much variability still exists. Since the fit is guaranteed to be 1 for271

no horizontal separation, we also implicitly assume that all the unresolved variance is272

attributed to the ionosphere and none to the instrument when calculating the horizon-273

tal correlation length. Since the closest pair of ionosondes are about 110 km apart, we274

cannot comment on how strong or weak an assumption this is.275

The fit horizontal correlation lengths are shown in Fig. 7 with color indicating the276

LT bin. A shaded region shows the ±2σ range for the correlation length that is provided277

by the curve fit. Note that the x scale varies for each panel. This scale cuts off some data,278

but shows detail well and allows for easy comparison across seasons.279

For many seasons, altitudes, and LT bins, the correlation lengths are larger dur-280

ing solar maximum (2014) than solar minimum (2018). This indicates that deviations281
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Figure 6. Scatter plot of correlation coefficient as a function of horizontal separation for all

possible pairs of ionosondes. Color of dots indicates the LT sector and size indicates the amount

of data used to make correlation coefficient. An altitude of 250 km is used for summer 2014.

of the ionosonde data from the smooth TIE-GCM model are larger in horizontal size dur-282

ing solar maximum. The correlation length also increase with altitude generally, which283

indicates that small scale variations are more common at low altitudes. This trend is most284

apparent in summer and least apparent in winter. The largest horizontal scales are typ-285

ically found at night, especially at high altitudes. The horizontal correlation length peaks286

near 300 km during the afternoon in equinox seasons, but not in other local time bins287

or seasons.288

All of the prior comparable work for horizontal correlation using GNSS-derived TEC289

data ((Gail et al., 1993; Klobuchar & Johanso, 1977; Shim et al., 2008; Yue et al., 2007;290

Forsythe, Azeem, & Crowley, 2020)) is difficult to compare since the TEC will average291

out small vertical structures that will impact our approach using ionosonde electron den-292

sity. In addition, none of these models use TIE-GCM as a baseline to compute devia-293

tions. Many of them also separate the meridonal and zonal distances, which we do not294

separate. Nevertheless we note that our approach yields values between 1,000 and 3,000295

km in most cases near the F2 peak which contributes the most to the TEC. This range296

is similar to that found in the majority of the TEC-based methods taking into account297

differences across season and year. The work in (Holmes et al., 2017) used foF2 values,298

and found a correlation length near 1,000 km for summer 2015 while (McNamara, 2009)299

found values between 700 and 1500 km depending on whether the zonal or meridional300

distance is considered and the solar activity. There is no known work to compare our301

results at non-foF2 altitudes.302

3.3 Temporal Correlation303

In addition to vertical and horizontal correlation, the parameter x also has tem-304

poral structure. If x is high at one time, it is likely to still be high a few minutes later305

since large electron density gradients are not expected to occur in time. As a case study,306

the calculated noise values in the ionosonde data shown in Fig. 3c do not abruptly change307

in time. To study the spectral characteristics, the ionosonde data are once again binned308

in altitude and LT. Since each LT bin is only 6 hours long, there is never more than 6309

hours of continuous data. This limitation, in addition to the frequent gaps in data, makes310
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Figure 7. Horizontal correlation length over two years and three seasons. Solid lines show the

fit value while shading shows the ±2σ region.

a traditional Fourier transform infeasible. The repeated pattern of 6 hours of data fol-311

lowed by 18 hours of no data introduces spurious signals to a Lomb-Scargle Peridogram312

(LSP) at harmonics of 18 and 6 hours. Using multiple LSPs for every 6 hour block and313

averaging (a modification of Welch’s Peridogram) also does not provide robust results.314

The most stable results come from a standard Fourier transform of data interpolated onto315

a regular sampling grid. For every ionosonde, local time, and altitude, x is split into seg-316

ments whenever there is a gap larger than 30 minutes. Each of these segments are in-317

terpolated onto a regular grid with the median cadence and Fourier transformed. After318

this is done for every segment, an exponential decay function is fit to all the spectra. This319

is shown just for the Boulder ionosonde at 150 km altitude in summer of 2018 in Fig. 8.320

The left panel shows a time series of x for a short time period at 150 km altitude.
Both short and long-period trends can be seen. There are no nighttime measurements
at this altitude which is why only three local time sectors are shown. The right panel
shows the spectra of the entire season of data (not just the few days shown in the left
panel). Since there are multiple short segments for each LT bin, there are many sepa-
rate spectra which are all shown as scatter points. Since these segments do not all have
the same number of points, the periods from the Fourier transform are not identical. These
points are fit with a modified exponential decay function:

Ae−f/fd +A0 (5)

where A is the amplitude, f is the frequency, fd is the decay frequency, and A0 is the321

offset. This equation differs from eqn. (4) in that there are additional parameters to de-322

scribe the amplitude and offset. The amplitude is needed since x is by no means con-323

strained to be 1 at a frequency of 0, in contrast to the correlation coefficient based anal-324
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Figure 8. Time series and spectra of Boulder ionosonde data in the summer of 2018. left

panel shows x for one and a half days while right panel shows a modified Fourier Transform of x

for the whole season at different local times.

ysis where the correlation is constrained to be 1.0 for no altitude difference. The fits for325

all LT sectors are shown as dashed lines in the right panel of Fig. 8. The offset A0 is needed326

to account for the variability that is not temporally correlated. While much of this white327

noise is undoubtedly instrumental in nature, some may be from the ionosphere itself. This328

approach of allowing for non-correlated noise differs from the vertical and horizontal anal-329

ysis. High temporal sampling rates show a transition to non-correlated noise that is not330

possible with the coarse spatial sampling for the horizontal correlation lengths.331

Since the amplitude is described separately (see Sec. 3.4), A is not saved. Since we332

assume the non-temporally-correlated noise (described by A0) comes from instrument333

errors, it can be neglected. However, an OSSE will not produce realistic ionosonde mea-334

surements using this truth model if a sophisticated ionosonde error model is not also used.335

In order to produce realistic OSSEs without a sophisticated ionosonde error model, we336

save A0/A to be able to introduce this noise in the truth model.337

The decay period is shown for all years, seasons, local times, and altitudes in Fig. 9.338

As with Figs. 7 and 5, solid lines show the median value for all ionosondes, and shad-339

ing shows the middle half of the distribution. Columns have the same year while rows340

have the same season. A low decay period means that there is still significant power at341

high frequencies (short periods). A high decay period indicates that there is not signif-342

icant power at short periods. The decay periods for most local times, seasons, and years343

are highest near 125 km, indicating that the ionosphere is especially temporally smooth344

there. This trend is particularly evident for the morning sector, which is also the calmest345

sector for many seasons and years, particularly below ∼250 km. The most short-period346

variability typically occurs near 225 km, although this is more dramatic in winter than347

in other seasons.348

The one comparable study of ionospheric correlation time (Forsythe, Azeem, Crow-349

ley, Makarevich, & Wang, 2020) used TEC data rather than ionosonde-provided elec-350

tron density. They also defined the correlation time by when the correlation coefficient351
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Figure 9. Decay periods for all ionosondes in two years and three seasons. Solid lines show

the median value while shading shows the region between the 25th and 75th percentiles or middle

half of the data.

dropped below 0.8, whereas we use the time at which is drops below e−1 ≈ 0.368. There-352

fore, to translate the results from (Forsythe, Azeem, Crowley, Makarevich, & Wang, 2020)353

to ours, they must be multiplied by −1/ln(0.8) ≈ 4.48. For mid-latitudes they find times354

from 2 to 2.5 hours, which translate to between 9 and 11 hours in our system. These times355

are higher than our results in the F region, which will contribute the majority of elec-356

tron density to the TEC.357

Figure 10 shows the ratio of A0, which describes the amplitude of the temporally
uncorrelated noise, to A which describes the amplitude of the temporally correlated noise.
The format is the same as Figs. 9, 7 and 5. Throughout different seasons and years, this
ratio is typically near 0.1 with a peak near 150 km in altitude. Solar maximum (2014)
has slightly higher values than solar minimum (2018). There are only small differences
in local time. While it would be easy to interpret this plot to say that 10% of the noise
is temporally uncorrelated, the situation is more subtle. The total power for the corre-
lated (PC) and uncorrelated (PU ) noise is given by:

PC =

∫ fM

0

e−f/fd df = fd(1− efM/fd) ≈ fd (6)

PU =

∫ fM

0

A0/Adf = fM
A0

A
(7)

where fM is the measurement frequency. For measurement cadences on the timescale358

of minutes, efm/fd is very small and can be neglected with little impact. At very high359

measurement cadences, fM dominates and the majority of the unresolved variance is un-360

correlated. For example, if A0/A is 0.1 and the decay period is 5 hours (fd = 0.2 cy-361
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Figure 10. Ratios of uncorrelated to correlated noise for all ionosondes in two years and three

seasons. Solid lines show the median value while shading shows the region between the 25th and

75th percentiles or middle half of the data.

cles per hour), then the variance will be equal parts correlated and uncorrelated when362

0.1 fM = 0.2. Thus, the majority of the variance will be temporally uncorrelated as long363

as the measurement cadence is lower than 30 minutes (2 cycles per hour). If the mea-364

surement cadence is 15 minutes, then 2/3 of the unresolved variance is temporally un-365

correlated and 1/3 is correlated and so forth. We are not aware of any prior work to com-366

pare to for this analysis.367

3.4 Amplitudes368

To estimate the amplitude of the variance of the ionosonde data not resolved by369

the model, we use the variable y (see eqn. 2) which better captures the high-frequency370

(shorter than 3-hour period) noise and is less sensitive to the low-frequency differences371

between the ionosonde and model data. Since the ionosonde data is non-uniform and con-372

tains gaps, computing a low-pass of the ionosonde data is a non-trivial task. For each373

ionosonde, data at each altitude bin with intervals having no gaps longer than 6 hours374

are identified. The ionosonde electron density in each of these periods is interpolated onto375

a uniform time grid. This uniformly grided data is then low passed with the filter de-376

scribed in Sec. 2 and then interpolated back onto the original measurement times. The377

original electron density is divided by the low passed electron density, and the log of this378

ratio is taken to compute y.379

The relatively large gap threshold (six hours) makes these periods long enough that380

edge effects from the filter are minimal, and since y is only computed at the actual mea-381

surement times, linearly interpolating through these gaps does not corrupt the data. Af-382
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ter y is formed, it is binned in local time and altitude, and its variance is found. The square383

root of this value, the standard deviation, is shown in Fig. 11. As in Figs. 5, 7, and 9,384

columns show seasons, rows show years, and colors show local time sectors. Shading shows385

the middle half of the data while solid lines show the median value.386

Figure 11. Noise amplitudes for all ionosondes in two years and three seasons. Solid lines

show the median value while shading shows the region between the 25th and 75th percentiles or

middle half of the data.

The amplitude of variations peaks near 250 km for many local times in all seasons387

and years. The notable exception is the noon sector which tends to have a less dramatic388

peak, and that peak tends to be lower (e.g. Winter and Equinox 2014). The nighttime389

sector tends to have has the highest amplitudes, followed by the morning and evening,390

and finally followed by the noon sector. The amplitudes max out at ∼0.1 but tend to391

be a little higher during solar maximum in 2014. The amplitude of 0.1 for y means that392

one should expect a 100.1−1 ≈ 25% increase above or decrease below the smooth back-393

ground relatively often. Rarer 3σ events will indicate a doubling or halving of the elec-394

tron density relative to the smooth background. We are unaware of any prior work to395

compare to for the amplitudes of the variations. This work does not consider resolved396

variance that is simultaneously temporally and spatially correlated which we would ex-397

pect from a Traveling Ionospheric Disturbance (TID). This could be an exciting avenue398

for further study.399

This section has studied the vertical (Sec. 3.1), horizontal (Sec. 3.2), and tempo-400

ral (Sec. 3.3) characteristics of ionospheric variabilities as well as their amplitudes (Sec. 3.4).401

The variations have larger vertical and horizontal scales at high altitudes, but highest402

amplitudes near 250 km. The persist for longer times near 150 km, but are fairly short-403

lived elsewhere. The next section will use these four parameters - temporal, vertical, and404
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horizontal scales and their amplitudes - to create a variable truth model from a smooth405

physics-based one.406

4 Truth Model Creation407

A realistic truth model is created by beginning with a smooth truth model and mul-408

tiplying by a factor of 10x. There are four main steps in creating this factor so that it409

has the correct amplitude as well as spatial and temporal characteristics. First, uncor-410

related Gaussian white noise is created with the correct amplitude. Secondly, a Gaus-411

sian kernel is created and used to enforce the spatial correlation. Thirdly, this smoothed412

noise is Fourier transformed and a frequency-dependent gain is applied before inverting413

it back into the time domain. Finally, this factor is applied to the smooth truth model.414

The first step is to compute an array of Gaussian white noise (NW ) of shape [nt, na, nlat, nlon, nLT]415

for an array with nt times, na altitudes, nlat latitudes, and nlon longitudes. This noise416

is unscaled (all having a standard deviation of 1, and uncorrelated in time or space).417

4.1 Spatial Smoothing418

The second step in computing the truth model is to enforce vertical and horizon-
tal correlation onto x. This is done by convolving the uncorrelated noise with a 3D Gaus-
sian kernel. To compute the smoothed noise at a given time, altitude, latitude, longi-
tude, and local time bin, the white noise at the same time and local time bin, but across
all vertical and horizontal space are averaged, with points closer to the point in ques-
tion contributing more to the average. This process is similar to a rolling “boxcar” mean
in three dimensions, except that points closer to the center of the boxcar have a stronger
contribution to the mean. In an equation, this is given by:

NS [ti, ai, lai, loi] =
∑

K ×NW [ti, :, :, :] (8)

where NS is the spatially smoothed noise, ti, ai, lai, loi are the indices corresponding to
a given time (ti), altitude (ai), latitude (lai), and longitude (loi), and K is the spatial
smoothing kernel. The kernel has shape [na, nlat, nlon] and the sum is performed over all
dimensions specified with an colon (:) to provide a scalar for NS . The kernel is given by:

K = e−
(
(∆x/lH)2+(∆v/lV )2

)
/2 (9)

where ∆x is the horizontal distance between the chosen point (at ai, lai, loi) and every419

other point in the grid, ∆v is the vertical distance between the chosen point and every420

other point in the grid, and lV and lH are the vertical and horizontal correlation lengths421

found in sections 3.2 and 3.1.422

If the horizontal distance between a point and its neighbors was constant across423

the globe and the vertical and horizontal correlation lengths the same for all local times424

and altitudes, this convolution would be quite simple, and could be performed as a mul-425

tiplication in the frequency domain. However, a grid in latitude and longitude is used,426

so points near the poles are much closer (when measured in kilometers) to their neigh-427

bors than points near the equator. Additionally, the correlation lengths change with al-428

titude and local time, which is a function of both universal time (described by ti) and429

longitude. To account for these real-world problems, the smoothing is done in a four-430

dimensional nested for loop. The innermost two loops are executed inside a function which431

is accelerated with the numba python library to make use of just-in-time (JIT) compi-432

lation and parallel processing.433

After the first two loops (over latitude and longitude), the horizontal great circle434

distance to every other point is computed and has shape [nLat, nLon]. In the third loop435

(over altitude), the vertical distance from the point to every other point is computed as436
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∆a = |alt[ai]−alt| which just has shape [na]. Once time is specified in the fourth and437

innermost loop, the local time is computed and the vertical and horizontal correlation438

lengths are computed via a standard interpolation in altitude, and a more complex in-439

terpolation over local time – to avoid sharp discontinuities near local time boundaries,440

the correlation lengths transition over the period of 1 hour. For example, if the horizon-441

tal correlation length is 100 km in the morning sector and 200 km in the noon sector,442

the correlation length would be 100 km at 8:30, 150 km at 9:00, and 200 km at 9:30. Once443

the correlation lengths are calculated, the kernel is formed by multiplying the vertical444

and horizontal kernels with broadcasting:445

KH = e−
(
(∆x/lH)2

)
/2 (10)

KV = e−
(
(∆v/lV )2

)
/2 (11)

K = KH [None, :, :]×KV [:,None,None] (12)

In many situations, the model extent is much larger than the vertical and horizon-446

tal correlation lengths, so K is mostly zeros. To accelerate computation, K is only com-447

puted for three correlation lengths which ensures that the largest values of K being ne-448

glected are less than e−9/2 ∼ 0.011. However, the corner points which are three cor-449

relation lengths in latitude, longitude, and altitude are measured out to a much further450

resolution. The kernel is normalized by its sum, and the spatially smoothed noise is com-451

puted for that time, altitude, latitude, and longitude.452

After the noise is spatially smoothed, its amplitude is adjusted inside a three-dimensional453

for loop over altitude, time, and longitude. The local times are computed and the am-454

plitudes from section 3.4 are interpolated for the given altitude and local time using the455

previously described method to avoid harsh gradients at local time boundaries. Even with456

the dramatic speedup provided by the numba library, this spatial smoothing step is by457

far the most computationally intensive.458

4.2 Temporal Smoothing459

Even after the spatial smoothing, the noise is still “white” in that it has equal power460

at all frequencies. To enforce the correct spectral structure, the smoothed noise is Fourier461

transformed, multiplied by a frequency-dependent gain, and then inverse transformed462

back into the time domain. Since this gain is a function of local time (and therefore uni-463

versal time), a larger array of size [nt, na, nLat, nLon, nLT ] is created and used to store464

the results where nLT is the number of local time bins (4 here). For each altitude and465

local time bin, the correct decay period from Sec. 3.3 is selected and the gain is given466

by either:467

g(f) = e−f/fd or g(f) = e−f/fd +A0/A (13)

where f is the frequency, fd is the decay frequency, and A0/A is the offset needed468

to account for uncorrelated variance that could be provided either by a combination of469

the truth model and a detailed sensor model. To keep x at a mean of zero, the gain470

at zero frequency is set to zero before multiplying and inverting. The gain is also nor-471

malized by its mean to not drastically change the amplitude of the unresolved variance.472

Even with this modification, x still needs to be re-normalized after inverting back into473

the time domain. Each altitude and local time bin is multiplied by a factor to re-normalize474

the standard deviation to the desired amplitudes found in section 3.4. After this, the tem-475

porally smoothed noise is constrained to lie between the minimum and maximum of the476

spatially smoothed noise to avoid any large outliers.477

–18–



manuscript submitted to Radio Science

4.3 Inversion478

There is not full coverage of noise parameters across local time and altitude. For479

example, there are insufficient low altitude measurements in the night sector to allow us480

to derive the required parameters of variation. To prevent sudden gradients when tran-481

sitioning from altitude/local times without data to those with data, x is varied from 0482

to its predicted value over 25 km of altitude for each local time sector. After this, lon-483

gitude and time are used to determine the local time and therefore which copy of the484

noise to use in the final x array. The final multiplicative factor is then given by 10x, and485

is of shape [nt, na, nlat, nlon].486

The smooth model used as the background is TIE-GCM which is run on uniform487

pressure levels and then interpolated onto a uniform height grid between 80 and 400 km488

altitudes. To extrapolate up to Global Positioning System (GPS) altitudes (20,000 km),489

an exponential decay function is fit to the last few points and extended up to 20,000 km.490

This exponential decay model under-predicts plasmaspheric electron densities, which con-491

tribute a few TECU to the vertical TEC (Total Electron Content). To assess this de-492

ficiency, the exponential decay model can be transitioned to a more accurate model of493

the plasmasphere described in (Fridman et al., 2006) based on hydrostatic equilibrium494

from 400 to 700 km altitude.495

4.4 Data Size Considerations496

The size of the resulting truth model can quickly become prohibitively large if suf-497

ficiently high resolution is used to avoid aliasing. Since the minimum horizontal corre-498

lation length is 82 km (summer 2018, 190 km altitude, morning sector), a truth model499

should have a latitude and longitude resolution of (6378 km/82 km)/2 × (180o/π) ≈500

0.35o to meet the Nyquist criteria at the equator. The smallest vertical correlation length501

is 3.7 km (summer, 2018, 100 km altitude, morning sector) so a vertical resolution of half502

this should be used to ensure that all variability is well modeled. To estimate the tem-503

poral sampling frequency, we require that we model 99% of the power so that e−fs/fdm =504

0.01 where fN is the sampling frequency and fdm is the largest decay frequency (19.2505

cycles per day, summer, 2018, alt = 240 km, morning sector). This requirement trans-506

lates to a sampling frequency of fs = −19.2 cycles per day × ln(0.01) = 88.1 cycles per day =507

16.3 minute period. Picking round numbers near these theoretical limits gives the size508

of a global, 24 hour truth model as:509

N =
300 km

2 km
× 24 hours

15 min
× 360o

0.25o
× 180o

0.25o
≈ 15 Billion Numbers ≈ 60 GB (14)

A value of 4 Bytes per float has been assumed for this calculation. A range of 300510

km has been used since the truth parameters span from 100 to 400 km in altitude. Re-511

membering that the Fourier transformed data requires an array four times as large (to512

account for local time bins) gives a value near 240 GB. Clearly, this is above the mem-513

ory (and possibly storage) capabilities in even high performance modern computers. This514

is why the presented code favors explicit for loops over vectorized operations, so less data515

needs to be held in storage at once. There are two methods to reduce the computational516

burden. First, a small region can be simulated rather than the entire globe. Second, these517

sampling requirements can be relaxed. The minimum horizontal and vertical correlation518

lengths from Figs. 7 and 5 have been used here, but apply to only a few of the altitudes519

and local times.520
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5 Truth Model Validation521

This section visualizes the truth model and compares it to both the smooth truth522

model and measured data. The results presented use a vertical resolution of 2.5 km, a523

temporal resolution of 15 minutes, and an angular resolution of 2 degrees inside a small524

region over North America. Since the truth model is four-dimensional, it is difficult to525

visualize all at once. First, we look at just one time and two altitudes. In Fig. 12, the526

electron density is shown as a function of latitude and longitude at 18 UT for both the527

new noisy truth model (top row) and the original smooth model (bottom row). The left528

column shows the electron density at 150 km while the right column shows the electron529

density at 220 km. The color scale is the same for all four plots and is shown in the col-530

orbar at the top.531

Figure 12. Electron density at 150 and 220 km for both the new and original truth model.

At 150 km, the smooth model is explained almost completely by the solar zenith532

angle and the aurora. In contrast, the noisy truth model has much more complex struc-533

ture with many small regions of increased or decreased electron density. The size of these534

regions is governed by the horizontal correlation length for this altitude and local time.535

At 220 km, the equatorial ionization anomaly is clearly visible in the smooth model,536

but harder to see in the noisy model. The regions of increased and decreased electron537

density are both more dramatic (larger changes relative to the background), as well as538

physically larger (larger extent in latitude and longitude) compared to 150 km. This ex-539

pected, since the horizontal correlation length (see Fig. 7) and amplitudes (see Fig. 11)540

are larger at 220 km.541
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Figure 13. Electron density as a function of time and altitude for different models.

Next we visualize the truth model at just one latitude and longitude, but at all al-542

titudes and times in Fig. 13. As with Figs. 2 and 3, time is on the x axis, altitude is on543

the y axis, and electron density is shown as color. There are four panels, each showing544

the ionosphere above the Austin, TX ionosonde. The top panel shows the original smooth545

truth model and the second panel shows a noisy truth model with a pure exponential546

temporal gain (g = e−f/fd). The third panel shows a noisy truth model with a tem-547

poral gain that includes a white noise offset (g = e−f/fd+A0/A) to better capture the548

temporally uncorrelated noise in the absence of a sophisticated ionosonde error model.549

The last panel shows actual measurements from the Austin ionosonde. Although the ionosonde550

makes a measurements every 5 minutes, it is decimated to a cadence of 15 minutes to551

match the cadence of the truth models. As with earlier processing, only the parts of each552

ionosonde profile that are in the measurement range and below the F2 peak are used.553

–21–



manuscript submitted to Radio Science

There are many small variations in the ionosonde data not present in smooth truth554

model. This should not be surprising given the spectral analysis shown in Fig. 1. The555

second panel shows a truth model which used a gain with no white noise offset. While556

this model introduces some temporal variations, they are all quite slow. For example,557

note the different shape of the F region between 15 and 18 UT, and a slightly faster os-558

cillation between 21 and 24 UT and near 250 km in altitude. Since no ionosonde error559

model is used to make this figure, we do not expect this second panel to match the data560

(fourth panel) well. However, the third panel shows a truth model made with the white561

noise offset which matches the ionosonde data much better in the absence of a sophis-562

ticated ionosonde error model with which to view the truth model.563

Figure 14. Time series (left) and spectrum of TEC from a real and simulated GPS ground

station.

As a final comparison, consider Fig. 14 which shows a time series and spectrum of564

TEC from a real GPS ground station and simulated TEC using the new noisy truth model.565

This comparison is especially valuable since TEC data was not used in the formation of566

the truth model and is therefore an independent measurement. The chosen GPS station567

(RG16) is near Kremling, Colorado, and the data was for December 5th, 2018 to match568

the truth model. The data have a 30 second cadence in both cases, although the sim-569

ulated data uses interpolation to reach this cadence. In both plots, TEC derived from570

the phase advance rather than code delay is used. Since this measurement type is am-571

biguous, we level both measurements so that the minimum TEC is zero. There are dif-572

ferences in the overall shape of the TEC profile, which come from the background model573

differing from reality and do not concern us. Rather, we are concerned with the size and574

frequency of the small variations. These can be quantified using the spectra in the right575

subplot which shows the amplitude of oscillations as a function of the period. While there576

are higher amplitudes in the real data than the simulated data at nearly all frequencies,577

the slope of both curves are incredibly close. Contrasting this to the spectra and time578

series shown in Fig. 1 shows significant improvement.579

6 Conclusions580

A truth model with realistic variances is needed to properly assess the ability of581

a sensor system and an assimilation system to specify the ionosphere. If a smooth truth582

model is used, one could expect better specifications than would be obtained in the real583
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world. While this use case motivates the work here, the resulting study of ionospheric584

variability is scientifically interesting in its own right. Section 2 describes the data pro-585

cessing techniques used to study the spatial and temporal structure of the ionosphere.586

This involves significant “data wrangling” since the data are not uniformly spaced and587

have frequent gaps. Section 3 uses ionosonde data to find the amplitude of small iono-588

spheric density variations, and their temporal and spatial size. Section 4 discusses the589

algorithms used to compute the truth model. This is difficult primarily because of the590

large size of the arrays needed to adequately capture the small spatial and temporal scales.591

Finally, Section 5 compared the truth model to real data and found it much closer than592

the original smooth model.593

This work represents the first published method to introduce empirically driven vari-594

ations to a smooth model for more realistic OSSEs. These variations have been studied595

as a function of altitude, local time, season, and year (as a proxy for solar cycle). There596

are two primary avenues for future work on this topic. First, the variations could be stud-597

ied during periods of active space weather and at different high latitudes. The work here598

only considers geomagnetically quiet (KP < 4) conditions and mid magnetic latitude599

(between 20 and 55o). We expect the parameters to change substantially at equatorial600

and polar latitudes as well as during storms.601

Secondly, additional data sources could resolve many of the limitations in this model.602

Since ionosondes do not measure above the F2 peak or in the valley region, it is impos-603

sible to study those regions or compute representative noise statistics. Using Incoher-604

ent Scatter Radar (ISR) data or GPS TEC data either from ground stations or Radio605

Occultation (RO) data could help illuminate some of these regions. Additionally, there606

are not many very close pairs of ionosondes, so it is difficult to study variations with small607

(< 100 km) horizontal sizes.608
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