Observational evidence for the non-suppression effect of atmospheric chemical modification on the ice nucleation activity of East Asian dust

Jingchuan Chen¹, Zhijun Wu¹, Xiangxinyue Meng¹, Cuiqi Zhang¹, Jie Chen², Yanting Qiu¹, Li Chen¹, Xin Fang¹, Yuanyuan Wang³, Yinxiao Zhang³, Shiyi Chen¹, Jian Gao⁴, Weijun Li³, and Min Hu¹

¹Peking University ²ETH ³Zhejiang University ⁴Chinese Research Academy of Environmental Sciences

November 26, 2022

Abstract

Mineral dust alters cloud microphysical properties by acting as ice-nucleating particles (INPs). The effects of anthropogenic pollution aging on the ice nucleation activity (INA) of mineral dust are still controversial. Such effects were investigated by verifying the chemical aging of airborne size-resolved Asian dust particles via particle chemistry and morphology analyses and comparing the immersion mode INP properties of aged and normal Asian dust. The INP concentrations and ice nucleation active site densities of chemically aged supermicron dust particles (1.0-10.0 μ m) were nearly equal to or slightly higher than those of normal Asian dust, which were 0.70-2.45 times and 0.64-4.34 times at -18, respectively. These results reveal that anthropogenic pollution does not notably change the INP concentrations and does not impair the INA of Asian dust. Our work provides direct observational evidence and clarifies the non-suppression effect of anthropogenic pollution on the INA of airborne East Asian dust.

1 **Observational evidence for the non-suppression effect of atmospheric**

2 chemical modification on the ice nucleation activity of East Asian dust

3 Jingchuan Chen¹, Zhijun Wu^{1,2*}, Xiangxinyue Meng¹, Cuiqi Zhang¹, Jie Chen^{1†}, Yanting

4 Qiu¹, Li Chen³, Xin Fang¹, Yuanyuan Wang⁴, Yinxiao Zhang⁴, Shiyi Chen¹, Jian Gao⁵,

5 Weijun Li⁴, and Min Hu¹

- ⁶ ¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
- 7 Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
- 8 ²Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,
- 9 Nanjing University of Information Science and Technology, Nanjing 210044, China.
- ³Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China.
- ⁴Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou
 310027, China.
- ¹³ ⁵State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research
- 14 Academy of Environmental Sciences, Beijing 100012, China.
- [†]now at: Institute for Atmospheric and Climate Science, ETHZ, Zurich, 8092, Switzerland
- 16
- 17 Corresponding author: Zhijun Wu (zhijunwu@pku.edu.cn)
- 18 Key Points:
- First direct observational evidence relating to the effects of atmospheric chemical aging
 on the ice nucleation of East Asian dust.
- The ice nucleation active site densities of aged supermicron particles are close to or slightly higher compared with normal Asian dust.
- Anthropogenic pollution does not impair the ice nucleation activity of East Asian dust in immersion mode.

25 Abstract

26 Mineral dust alters cloud microphysical properties by acting as ice-nucleating particles (INPs). 27 The effects of anthropogenic pollution aging on the ice nucleation activity (INA) of mineral dust 28 are still controversial. Such effects were investigated by verifying the chemical aging of airborne 29 size-resolved Asian dust particles via particle chemistry and morphology analyses and 30 comparing the immersion mode INP properties of aged and normal Asian dust. The INP 31 concentrations and ice nucleation active site densities of chemically aged supermicron dust 32 particles (1.0-10.0 µm) were nearly equal to or slightly higher than those of normal Asian dust, 33 which were 0.70-2.45 times and 0.64-4.34 times at -18 °C, respectively. These results reveal that 34 anthropogenic pollution does not notably change the INP concentrations and does not impair the 35 INA of Asian dust. Our work provides direct observational evidence and clarifies the nonsuppression effect of anthropogenic pollution on the INA of airborne East Asian dust. 36

37 Plain Language Summary

38 Airborne mineral dust triggers ice formation in clouds by acting as ice-nucleating particles 39 (INPs), potentially influencing weather and climate at regional and global scales. Anthropogenic 40 pollution would modify natural mineral dust during the atmospheric transport process. However, the effects of anthropogenic pollution on the ice nucleation activity of mineral dust remain not 41 42 well-understood. In this study, we investigated the ice nucleation properties and particle 43 chemical characterizations of collected size-resolved Asian dust samples, and testified the 44 chemical modification of aged dust particles according to the mass concentrations of particulate 45 matter, the water-soluble ion concentrations, the mental element concentrations, and single-46 particle morphology. The INP concentrations and nucleation activities of aged supermicron 47 Asian dust (1.0 to 10.0 µm) were similar to or slightly higher than those of normal Asian dust, 48 but the difference was not statistically significant. Therefore, anthropogenic pollution does not 49 notably change the INP concentrations and does not impair the ice nucleation activity of Asian 50 dust. This study provides direct observation of naturally aged mineral dust to evaluate the comprehensive effect of anthropogenic pollution on the ice nucleation activity of Asian dust, 51 52 advancing the understanding of the ice nucleation of airborne aged mineral dust.

53 1 Introduction

54 Heterogeneous ice nucleation is a key process in mixed-phase clouds, influencing the water 55 partitioning between ice and liquid phase, and further determining the lifetime, radiative forcing, 56 and precipitation of clouds (Lohmann et al., 2016; Murray et al., 2012). Mineral dust is one of 57 the most important sources of ice-nucleating particles (INPs) due to its high atmospheric loading 58 (Textor et al., 2006), efficient ice nucleation activity (INA) (Hoose & Mohler, 2012), and long-59 range and even global transport capacity (Pratt et al., 2009; Uno et al., 2009). During the long-60 range transport, dust particles may mix, adsorb, coagulate or react with other substances (such as 61 biological materials, anthropogenic emissions, and secondary products), and these coatings or 62 reactants may in turn alter the INA of mineral dust (Kanji et al., 2017), affecting cloud formation 63 and their microphysical properties.

64 Satellite observations and model simulations reported that a considerable fraction of anthropogenic pollutants can act as INPs to catalyze ice formation in clouds (B. Zhao et al., 65 2019). However, recent studies have found that anthropogenic pollution, particularly black 66 carbon (BC), does not significantly influence regional, global and historical INP concentrations 67 (N_{INP}) relevant to mixed-phase clouds (J. Chen et al., 2018b; Hartmann et al., 2019; Schill et al., 68 69 2020). These studies answer the question of anthropogenic contributions to N_{INP} to some extent, 70 but the understanding of effects of anthropogenic activities on the INA of natural INPs such as 71 mineral dust remains to be clarified.

manuscript submitted to Geophysical Research Letter

72 Previous laboratory studies have evaluated the effects of various reactants/coatings on the 73 freezing activities of dust INPs. Although the same substance would have different aging effects 74 among different studies due to their experimental design, reaction conditions, and mineral types, 75 most immersion freezing studies agreed that not all inorganic acids reduced the INA of dust 76 particles as H₂SO₄ did (Cziczo et al., 2009; Niedermeier et al., 2010; Sullivan et al., 2010b); the 77 exposure to HNO₃ suggested no distinct impact (Kulkarni et al., 2015; Sullivan et al., 2010a); 78 organic coatings (e.g., levoglucosan) also had an unobservable impact(Kanji et al., 2019; Tobo et al., 2012; Wex et al., 2014); and NH_4^+ and K^+ enhanced the INA of dust (Whale et al., 2018; 79 80 Worthy et al., 2021; Yun et al., 2020). These deactivation, equivalence, or enhancement effects 81 of varying substances on mineral dust would coexist in the real atmosphere and finally result in a 82 combined effect. Therefore, the actual effect of atmospheric aging on mineral dust, a 83 comprehensive result of multi-species and complex mechanisms, may differ from laboratory aging experiments based on a single substance. In model simulations, the coating effect may 84 85 obviously alter the INA of particles according to different assumptions (Kulkarni et al., 2015; J. 86 L. Zhu & Penner, 2020), further influencing ice formation in clouds and consequent climate 87 effect. However, the field observation relating to the ice nucleation of mineral dust aged in a real 88 atmosphere is very scarce, which limits the verification of laboratory results and the updating of 89 parameterized schemes in model simulations.

90 Asian dust is the second largest source of dust INPs in the world, and can more efficiently trigger 91 ice nucleation in mixed-phase clouds (Froyd et al., 2022; Kawai et al., 2021). In the downwind 92 of East Asian dust transport path, the severe anthropogenic air pollution occasionally occurred in 93 North China could chemically and/or physically modify these dust particles (Huang et al., 2010; 94 Wu et al., 2020), thus changing the ice nucleation properties of Asian dust. In this study, airborne 95 mineral dust samples were collected during Asian dust events and aged dust periods, respectively. 96 The chemical modification of aged Asian dust particles was confirmed by multiple lines of 97 experimental evidence. On this basis, we compared the INP concentrations and activities of aged 98 and normal Asian dust from the overall and size-resolved perspectives. This study provides 99 direct observation evidence to evaluate the comprehensive effect of anthropogenic pollution on 100 the INA of Asian dust, advancing the understanding of the ice nucleation of airborne aged 101 mineral dust.

102 2 Materials and Methods

103 2.1 Sample collection

104 The samples were collected at the Peking University Atmosphere Environment Monitoring 105 Station (39.99 N, 116.31 E) during the Asian dust events in the spring of 2018 and 2019. An 106 eight-stage Micro-Orifice Deposit Impactor (MOUDI, model 100-R, MSP Corporation, USA) 107 with aerodynamic cut-off diameter (D_{50}) ranging from 0.18 to 10 µm at a flow rate of 30 L min⁻¹ 108 (Marple et al., 1991) was applied with polycarbonate filters (47 mm Nuclepore, 0.2 µm pores, 109 Whatman) to collect size-resolved aerosol samples during the Asian dust events, which were 100 forecasted and monitored by China Meteorological Administration (Text S1).

111 2.2 INP measurements and calculations

112 As described in J. C. Chen et al. (2021), the sampled filter of each MOUDI stage was extracted 113 by an ultrasonic shaker in 20 mL double-distilled water (resistivity of 18.2 M Ω cm at 25 °C) for 114 30 min to shake the particles off the filter. Thus, suspended samples containing mineral dust 115 particles were obtained for further INP measurements and chemical analyses.

116 The PeKing University Ice Nucleation Array (PKUINA), a cold-stage-based instrument, was 117 employed to perform immersion freezing measurements (J. Chen et al., 2018a). Briefly, 90 118 droplets (1 μ L) of suspensions were pipetted onto a hydrophobic glass slide located on the cold 119 stage in each experiment. These droplets were separated from each other by a spacer block and 120 upper and lower glass slides to prevent the Wegener-Bergeron-Findeisen process. A charge-121 coupled device was employed to monitor the cooling process (cooling rate 1 °C min⁻¹) of the 122 cold stage (one frame every 6 s) until all 90 droplets were frozen.

123 The cumulative number concentration of INP (N_{INP}) per unit volume of sampled air (Vali, 1971) 124 is calculated as:

$$N_{INP}(T) = \frac{-\ln(1 - f_{ice}(T))}{V_{air}} \ (L^{-1} \text{ air})$$
(1)

where $f_{ice}(T)$ is the fraction of frozen droplets in the total 90 droplets above temperature *T*, and *V_{air}* is the total volume of sampled air per droplet (standard conditions, 0 °C, 1013 hPa) during each sampling period.

As a comparable parameter of INA commonly used for mineral dust, the cumulative ice nucleation active site density n_s (Connolly et al., 2009; Niemand et al., 2012), i.e., the number of active sites per unit surface area of INPs (Vali et al., 2015) is derived from the N_{INP} as:

$$n_s(T) = \frac{N_{INP}(T)}{A} \,(\mathrm{m}^{-2})$$
 (2)

where A is the total surface area of particles derived from the online particle number-size
distribution measurements within a unit volume of sampled air (aerodynamic diameter, spherical
particle hypothesis, 0 °C, 1013 hPa).

134 Note that, in this study, $N_{INP}(T)$ and $n_s(T)$ for each particle size class (referred to as $N_{INP}(T)$)

and $n_s(T)$ and all particle size spectrum (0.18-10 μ m, referred to as total $N_{INP}(T)$ and total

136 $n_s(T)$) were calculated. The total $N_{INP}(T)$ is a sum of size-resolved $N_{INP}(T)$ ranging from 0.18 137 to 10 µm during each dust event. Whereas, the total $n_s(T)$ is the value of total $N_{INP}(T)$ divided

138 by the total surface area of particles in all size classes.

139 2.3 Particulate matter measurements and chemical analysis

The mass concentrations of particulate matter $\leq 2.5 \ \mu m (PM_{2.5})$ and 10 $\mu m (PM_{10})$, the BC mass concentration, and the number-size distributions of particulate matter were measured throughout the sampling periods by TH2000Z1 (Text S2), Multi-Angle Absorption Photometer (MAAP, Text S3), and Scanning Mobility Particle Sizers (SMPS, Text S4) coupled with Aerodynamic Particle Sizer (APS, Text S4), respectively. The time resolution for TH2000Z1 was 1 min, and for MAAP, SMPS, and APS was 5 min.

Water-soluble ions and elemental composition in the extracted Asian dust samples (suspensions) 146 were analyzed. For water-soluble inorganic ions (Na⁺, Mg²⁺, K⁺, Ca²⁺, NH₄⁺, NO₃⁻, SO₄²⁻, and 147 148 CI^{-}), the suspension was firstly filtered by Polyethersulfone (PES) membrane filters (0.45 μ m), and then it was detected by Ion Chromatography (IC, DIONEX ICS-2000/Integrion, Text S5). 149 150 As for elemental composition (Al, K, Mn, Mg, Ca, Cu, Pb, and Zn), the suspensions containing 151 particles underwent pretreatments until all particles were digested, and then they were 152 determined by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS, XSeries 2, Text 153 S6).

154 **3 Results and Discussion**

155 3.1 Observational evidence of chemically modified Asian dust particles

156 The collected samples were categorized as aged Asian dust (AAD hereafter, three samples

157 including M8, D2, and D5) and Asian dust (AD hereafter, nine samples including M2, M3, M5,

158 M6, M7, D3, D4, D6, and D7) based on the particle number-size distributions and mass

159 concentrations, gaseous pollutants, and meteorological parameters during the sampling periods 160 (Figure S1, S2, Table S1, and Text S7). On average, PM₁₀ concentrations of the AD and AAD samples were 227.2 \pm 123.9 and 203.9 \pm 47.5 µg m⁻³, respectively, suggesting similar 161 atmospheric dust mass loading. Whereas, the concentrations of PM2.5 and BC in AAD were more 162 than twice as high as those in AD (103.7 \pm 25.4 vs 43.3 \pm 17.7 µg m⁻³ for PM_{2.5} and 2.90 \pm 0.37 163 vs $1.33 \pm 0.64 \ \mu g \ m^{-3}$ for BC). And the ratio of PM_{2.5} to PM₁₀ in AAD was 50.8%, which was 164 165 much higher than that in AD (19.1%), indicating that there were much more anthropogenic 166 pollutants mixed with dust particles during the AAD periods.

167 Previous studies have already shown that chemical aging processes enhanced the water-soluble 168 ions by heterogeneous reactions and/or coagulation of CaCO₃ with acidic gases (e.g. NO₂, HNO₃, 169 SO₂, and H₂SO₄) and secondary aerosols (e.g. NH₄NO₃ and (NH₄)₂SO₄) (Fairlie et al., 2010; 170 Laskin et al., 2005; Underwood et al., 2001; T. Zhu et al., 2011). The mineral composition 171 $CaCO_3$ (~5-30%) was converted to more water-soluble $Ca(NO_3)_2$ or $CaSO_4$ during transport (McNaughton et al., 2009). In the aqueous layer facilitated by Ca(NO₃)₂, CaSO₄ and NH₄⁺ can 172 173 rapidly form by the coagulation of particulate (NH₄)₂SO₄ with dust (Heim et al., 2020). 174 Moreover, NH₄NO₃ can efficiently form on the surface of saline mineral particles (Wu et al., 175 2020). Therefore, we propose to use the fraction of water-soluble ion in corresponding elemental concentration (f_{wsice}) , that is, the ratio of water-soluble ion concentration to corresponding 176 177 element concentration in the sample, to evaluate the degree of chemical modification of dust 178 particles.

As illustrated in Figure 1 (a) and Table S2, the mean f_{wsice} values of four mental elements (Na, 179 180 Mg, K, and Ca) were much higher in AAD, especially for Ca, which increased by 67.0% to 90.9 181 \pm 6.3% compared with AD (54.4 \pm 10.3%). Moreover, size-resolved water-soluble ion analysis revealed that the mean relative mass proportions of Ca^{2+} in supermicron AAD particles (1.0 μ m 182 $< D_p \le 10 \mu m$) were higher (3.5-11.2%) than those in AD (Figure 1 (b) and Table S3). Combined 183 184 with the higher relative mass proportions of NO_3^- (4.8-18.5%, Figure S3 and Table S3), the significant increase of Ca²⁺ in supermicron particles demonstrated the formation of 185 186 heterogeneous reaction product $Ca(NO_3)_2$ and the more pronounced chemical aging of AAD.

188 Figure 1. Chemical modification analyses of AD and AAD samples. (a) Fractions of watersoluble ion in corresponding elemental concentration (f_{wsice}) were derived from their IC and 189 ICP-MS measurements. (b) Relative mass proportions of water-soluble calcium ions (Ca^{2+}) in 190 size-resolved AD and AAD samples. (c) Aluminum-normalized water-soluble ions (AWSIs) 191 192 were the ratio of the concentrations of water-soluble ions to the concentration of reference 193 element Al in the samples. (d) Enrichment factors were derived from the elemental 194 concentrations of aerosol and crust with the reference element Al. Nine AD samples and three 195 AAD samples were analyzed, and they are colored by gray and red, respectively. In the box plot (a) and (b), The boxes represent the interguartile range (IOR, IOR = O3 - O1). The whiskers 196 represent the range within 1.5 * IQR. The solid lines, solid circles, and solid diamonds represent 197 198 the median, mean, and outlier, respectively. Values greater than Q3 + (1.5 * IQR) or less than Q1 199 - (1.5 * IQR) are defined as outliers. In the scatter plot (c) and (d), AD and AAD are presented as solid grav squares and solid red circles, respectively. Error bars are the standard deviations. 200 201

We also calculated the aluminum-normalized water-soluble ions (AWSIs) to quantify the degree of particle aging. Aluminum is a major crustal conservative element with constancy and is often used as a reference element for dust particles (Lawson & Winchester, 1979). Thus, the three

205 anions and five cations were divided by the concentration of Al respectively to obtain the 206 normalized parameters in Figure 1 (c). Compared with AD, the AWSIs of AAD samples were 207 about one order of magnitude (7.6-18.3 times) higher for aluminum-normalized NO_3^{-} , NH_4^{+} , and SO_4^{2-} (sulfate, nitrate, and ammonium ions, SNA); 2.3-4.4 times higher for K⁺, Ca²⁺, and Mg²⁺; 208 209 and similar (1.2-1.4 times) for Cl⁻ and Na⁺ (Table S4 and S5). The aging products represented by 210 aluminum-normalized SNA and Ca²⁺ were much higher in AAD, which once again proved that 211 AAD samples had undergone more remarkable atmospheric chemical aging. 212 Enrichment factors (EFs) of eight elements in AD and AAD are illustrated in Figure 1 (d). The

213 EFs were calculated by the normalization of elemental concentrations in aerosol and crust

respected to those of a reference element (Barbieri, 2016). In this study, Al was the reference

element and the crustal abundance was given by Wei et al. (1991), so that EF was calculated as

- 216 $EF = (X/Al)_{aerosol} / (X/Al)_{crust}$. Average EFs in AD and AAD samples were generally ranging
- from 1 to 10 for Al, K, and Mn, suggesting the crustal origin; ranging from 10 to 100 for Mg, Ca,
- and Cu, suggesting both crustal and anthropogenic origin; >100 for Pb and Zn, implying a
- 219 significant enrichment from anthropogenic origin. The element EFs of AAD were all about twice
- as much as those of AD, indicating that the dust particles were more affected by anthropogenic

221 activities during the AAD periods.

222 Environmental scanning electron microscopy (ESEM) and transmission electron microscopy 223 (TEM) analyses (Kiselev et al., 2017; Li et al., 2016) provided detailed information on collected 224 particles (Figure S4, S5, S6, and Text S8), and the particle morphology of modified Asian dust 225 was observed. In an AAD sample, both mineral dust (Figure S7) and anthropogenic pollutants 226 (soot, i.e., BC, Figure S8) were present, and minerals, soot, organics, and inorganics were 227 internally mixed (Figure S9 and S10), meaning that dust particles were aged by physical 228 adsorption and/or chemical reactions during the AAD periods. Similar results were also reported 229 in previous studies. Li and Shao (2009) found that visible coatings (mainly nitrates) were on the 230 surface of most mineral particles (~90%) during brown haze in Beijing, and up to 32% of dust 231 particles were coated with $Ca(NO_3)_2$ in Asian outflow (Li et al., 2014).

232 In conclusion, we demonstrated that the AAD samples have been significantly aged in the

anthropogenic polluted atmosphere. By contrast, the chemical aging degree of AD was notably

lower than that of AAD. Based on the aging differences between AD and AAD, the influence of

anthropogenic pollution on the ice nucleation properties of Asian dust would be investigated inthe following sections.

237 3.2 Effects of anthropogenic pollution on the ice nucleation of Asian dust Figure 2 (a) presents the total N_{INP} of AD and AAD samples, which were 0.47 ± 0.34 and 0.52 ± 238 0.42 L^{-1} at -10 °C, 2.63 ± 2.04 and $2.99 \pm 2.15 \text{ L}^{-1}$ at -15 °C, and 3.75 ± 2.90 and $4.41 \pm 2.75 \text{ L}^{-1}$ 239 at -16 °C (Table S6), respectively. Although the AAD particles were modified by anthropogenic 240 241 pollutants, they were in the same INP concentration range (1.11-1.18 times for mean total N_{INP}) as AD samples at -10, -15, and -16 °C. There was no statistically significant difference between 242 the total N_{INP} of AD and AAD (Two-Sample Independent t-Test, p > 0.05, Text S9), 243 244 demonstrating that anthropogenic pollution did not increase or decrease the N_{INP} of natural dust 245 particles. This conclusion is consistent with previous studies showing that anthropogenic 246 pollution has not affected N_{INP} (J. Chen et al., 2018b; Hartmann et al., 2019).

247

Figure 2. Effects of anthropogenic pollution on the INP concentrations and activities of AD and AAD samples. (a) Total INP concentrations (total N_{INP}) and (b) total ice nucleation active site density (total $n_s(T)$) of AD and AAD samples at three temperatures are colored by gray and red, respectively. Nine AD samples and three AAD samples were involved in the analysis and displayed in box plot. The boxes represent the interquartile range (IQR, IQR = Q3 - Q1). The whiskers represent the range within 1.5 * IQR. The solid lines and solid circles represent the median and mean, respectively.

255

As depicted in Figure 2 (b), the mean total $n_s(T)$ of AAD samples at three temperatures were slightly lower (0.62-0.65 times) than those of AD samples (Table S6), while the lower quartile (such as at -10 °C) was up to an order of magnitude lower. Compared with AD, there were more non-dust particles (e.g. urban pollution aerosols) in the submicron AAD ($D_p < 1.0 \mu m$). These submicron anthropogenic particles contributed less to total N_{INP} than high-activity dust, but had a much higher particle surface area (Figure S11), resulting in a lower total $n_s(T)$ for AAD. Therefore, the actual effects of anthropogenic pollution on the INA of Asian dust need to be further investigated from a size-resolved perspective.

264 3.3 Aging effects on the ice nucleation of size-resolved Asian dust

The effects of anthropogenic pollution on the INP concentrations and activities of size-resolved 265 particles at -15 and -18 °C are depicted in Figure 3 (a)-(d). Compared with AD, the N_{INP} of AAD 266 were an order of magnitude lower for $D_{50} = 0.18$ and $0.32 \,\mu\text{m}$; consistent for $D_{50} \ge 0.56 \,\mu\text{m}$ 267 (such as 0.70-2.45 times at -18 °C, Table S7). Similarly, for particles with $D_{50} < 1.0 \,\mu\text{m}$, the 268 269 $n_s(T)$ of AAD samples were 1 to 2 orders of magnitude lower than those of AD, while aged dust 270 was nearly equal to or even more active than AD for $D_{50} \ge 1.0 \,\mu\text{m}$ at given temperatures (e.g. 271 0.64-4.34 times at -18 °C). There was a more pronounced size-dependent freezing ability in 272 AAD samples, spanning 5 orders of magnitude, implying that different types of INPs may be included. Combined with the much lower N_{INP} of submicron AAD, we think these much less 273 274 active submicron INPs were more likely to be anthropogenic pollutant particles in urban areas. 275 That is, AAD samples were mainly composed of submicron urban pollution particles and 276 significantly aged supermicron Asian dust.

277 To testify above point, we also compared the $n_s(T)$ in this study with urban pollution particles 278 (Pollution-C18 (J. Chen et al., 2018b), marked by dark gray), reference minerals (plagioclase, 279 quartz, albite, and K-feldspar (Harrison et al., 2019), marked by yellow), and dust particles 280 (Asian dust-B19 (Bi et al., 2019), Uncoated AD-K19 (Kanji et al., 2019), and Saharan dust-B16 (Boose et al., 2016), marked by brown) in Figure 3 (d). The $n_s(T)$ of submicron AAD ($D_{50} =$ 281 282 0.18, 0.32, and 0.56 µm) were in the same range as Pollution-C18. On the other hand, considering the lower measurement temperatures (-20/-25 °C) in literature studies, the 283 284 supermicron particles for both AD and AAD samples in this study presented comparable INA with Asian dust-B19 ($D_{50} = 2.5 \,\mu\text{m}$), Uncoated AD-K19 (0.01-3 μm), Saharan dust-B16 285 $(D_{50} = 3.5 \,\mu\text{m})$, and K-feldspar, which were more active than many minerals such as albite, 286

plagioclase, and quartz, demonstrating that these supermicron particles in AD and AAD wereauthentic mineral dust.

- 289 For supermicron dust particles, the AAD presented similar or slightly higher nucleation activity
- than AD, but the difference was not statistically significant (p > 0.05). In other words, the INA of
- 291 Asian dust did not decrease after atmospheric aging. This conclusion was supported by Kanji et
- al. (2019), who found that there was no systematic difference between SOA-coated and uncoated
- Asian dust (Uncoated AD-K19 and SOA-coated AD-K19 in Figure 3 (d), Table S8, and S9).
- 294 Similarly, Boose et al. (2016) reported a small positive effect of anthropogenic emissions on the
- 295 Sahara dust. Based on lidar measurements, He et al. (2021) also revealed that, after long-range
- transport, the INA of Asian dust mixed with pollutants did not distinctly change. Therefore, we
- 297 conclude that anthropogenic pollution does not impair the INA of airborne Asian dust.

298

Figure 3. Comparison of the INP concentrations (N_{INP}) and ice nucleation active site densities 300 301 $(n_s(T))$ among AD, AAD, and literature samples. (a) N_{INP} at -15 °C. (b) $n_s(T)$ at -15 °C. (c) N_{INP} at -18 °C. (d) $n_s(T)$ at -18, -20, and -25 °C. Size-resolved AD and AAD samples in this 302 303 study are colored by gray and red, respectively, and grouped by particle size classes. The boxes 304 represent the interquartile range (IQR, IQR = Q3 - Q1). The whiskers represent the range within 305 1.5 * IQR. The solid lines, solid circles, and solid diamonds represent the median, mean, and outlier, respectively. Values greater than Q3 + (1.5 * IQR) or less than Q1 - (1.5 * IQR) are 306 307 defined as outliers. The $n_s(T)$ of urban pollution particles (Pollution-C18 (J. Chen et al., 2018b), 308 marked by dark gray), reference minerals (Plagioclase, Quartz, Albite, and K-feldspar (Harrison 309 et al., 2019), marked by yellow), and dust particles (Asian dust-B19 (Bi et al., 2019), Uncoated 310 AD-K19 (Kanji et al., 2019), SOA-coated AD-K19 (Kanji et al., 2019), and Saharan dust-B16 311 (Boose et al., 2016), marked by brown) at -18 °C (or -20/-25 °C) are shown for comparison. Note 312 that the four types of mineral dust particles were summarized by Harrison et al. (2019), and the 313 data were measured in previous studies (Atkinson et al., 2013; Augustin-Bauditz et al., 2014; DeMott et al., 2018; Harrison et al., 2019; Harrison et al., 2016; Losey et al., 2018; Niedermeier 314 315 et al., 2015; O'Sullivan et al., 2014; Peckhaus et al., 2016; Reicher et al., 2018; Whale et al., 316 2015; Zolles et al., 2015).

317

318 Previous studies have proposed a variety of possible explanations for aging effects based on 319 single substance (e.g. HNO₃ or $(NH_4)_2SO_4$) aging experiments. One special aspect of this study 320 is that the dust aging process took place in the atmosphere, thus the observed non-suppression 321 effect of INA by atmospheric aging was a comprehensive reflection of multiple possible 322 reactants and influencing mechanisms. First, alkaline calcite and carbonate might not be good 323 INPs. They could react with acids such as HNO₃ and would move away from the surface of 324 particles in the immersion freezing mode due to the dissolution of water-soluble reaction products in a liquid environment. But new surface-active sites of unreacted particles could be 325 exposed in this process. Second, water-soluble coatings (e.g. NO_3^- and SO_4^{2-}) may not affect the 326 INA of Asian dust. These substances are dissolved and reversibly desorbed from particle 327 328 surfaces during hygroscopic growth and droplet activation, revealing the concealed active sites 329 and unaffecting freezing (Sullivan et al., 2010a). Third, ion exchange including the suppression 330 of H⁺ (Augustin-Bauditz et al., 2014; Kumar et al., 2018; Wex et al., 2014) and the enhancement 331 of NH_4^+/K^+ (Whale et al., 2018; Yun et al., 2020) is likely related to the change of mineral INA. 332 According to the pH-dependent suppression theory from Yun et al. (2021), there is no obvious 333 suppression effect at pH >5. Mineral dust particles are alkaline and can maintain high pH (pH = 334 5-7) in the atmosphere (Pye et al., 2020), especially for the supermicron dust particles (Fang et 335 al., 2017). During the severe air pollution periods in China, the particle pH was also about 4-5 and increased in recent years (Song et al., 2019; Xie et al., 2020). Therefore, the suppression 336

337 effect of H⁺ on the INA of dust is very limited at the near-neutral particle reaction interface. On the contrary, there is a large amount of NH_4^+ in the ammonia-rich atmosphere of China (Meng et 338 339 al., 2020; M. Zhao et al., 2016), which may form more active surfaces and enhance the 340 nucleation activity of Asian dust. Finally, the hydrogen bond derived from oxidized hydroxyl groups and adsorbed NH_4^+ could promote ice nucleation on the mineral surface by influencing 341 342 the orientation of near water molecules (Yakobi-Hancock et al., 2013). To sum up, the little or no effect of carbonate and water-soluble coatings, the unobvious suppression effect of H⁺, and the 343 enhancement effect of NH_4^+/K^+ and hydrogen bond might act together and finally present the 344 345 non-suppression effect observed in this study.

346 4 Conclusions

347 To our knowledge, this work is the first to investigate the influence of anthropogenic pollution 348 on the ice nucleation of airborne mineral dust based on size-resolved Asian dust samples aged in 349 the real atmosphere. The chemical modification of AAD particles was confirmed by combining 350 the air quality conditions during sampling periods, physical and chemical properties of collected 351 particles, and microscopic particle morphology. As the characterization parameters of main products of heterogeneous reactions, the mass fraction of Ca^{2+} in element Ca and the mean 352 relative mass proportions of supermicron Ca²⁺ increased by 67.0% and 3.5-11.2% in AAD 353 particles, respectively. Although the AAD particles have been notably aged by anthropogenic 354 355 pollution, their total N_{INP} and total $n_s(T)$ were consistent with those of AD particles (0.62-1.18 times) without a statistically significant difference. From a size-resolved perspective, N_{INP} and 356 $n_{s}(T)$ of supermicron particles for AAD were nearly equal or even slightly higher compared 357 358 with AD samples (0.64-4.34 times at -18 °C). Thus, we conclude that anthropogenic pollution 359 does not reduce the INP concentrations and INA of Asian dust in the atmosphere.

360 This study advances the scientific understanding about the effects of anthropogenic pollution on 361 the INA of Asian dust and will contribute to subsequent laboratory studies to further elucidate 362 the combined effect of multi-species association on dust aging. Furthermore, the significant 363 implications of this study are more embodied in the regional and global climatic effects. The 364 dust-driven droplet freezing has been underestimated in model studies (Villanueva et al., 2021). 365 Following previous understanding assuming that the aging process always significantly impairs 366 dust freezing, the bias in simulations of cloud microphysical processes and assessments of 367 radiative effect will further increase under increasing anthropogenic activity scenarios.

368 Acknowledgments

- 369 This work was supported by National Natural Research Foundation of China (NSFC, grant no.
- 42011530121, 91844301) and Ministry of Science and Technology (MOST, grant no.
- 371 2019YFC0214701). We gratefully acknowledge the China Meteorological Administration for the
- 372 provision of the forecast and monitoring of Asian dust storm and the China National
- 373 Environmental Monitoring Centre for the air quality monitoring data used in this paper.

374 **Conflict of Interest**

The authors declare no conflicts of interest relevant to this study.

376 Data Availability Statement

- 377 The data that support the findings of this study are available at this site
- 378 (http://doi.org/10.5281/zenodo.6578828).

379 References

- 380 Atkinson, J. D., B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, et al. (2013). The
- importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. *Nature*, 498(7454), 355-358.
 doi:10.1038/nature12278
- Augustin-Bauditz, S., H. Wex, S. Kanter, M. Ebert, D. Niedermeier, F. Stolz, et al. (2014). The immersion mode ice
- nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts. *Geophysical*
- 385 Research Letters, 41(20), 7375-7382. doi:10.1002/2014gl061317
- Barbieri, M. (2016). The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. *Journal of Geology & Geophysics*, 5(1). doi:10.4172/2381-8719.1000237
- 388 Bi, K., G. R. McMeeking, D. P. Ding, E. J. T. Levin, P. J. DeMott, D. L. Zhao, et al. (2019). Measurements of Ice
- Nucleating Particles in Beijing, China. Journal of Geophysical Research: Atmospheres, 124(14), 8065-8075.
- 390 doi:10.1029/2019jd030609
- Boose, Y., B. Sierau, M. I. García, S. Rodríguez, A. Alastuey, C. Linke, et al. (2016). Ice nucleating particles in the Saharan Air Layer. *Atmospheric Chemistry and Physics*, *16*(14), 9067-9087. doi:10.5194/acp-16-9067-2016
- 393 Chen, J., X. Y. Pei, H. Wang, J. C. Chen, Y. S. Zhu, M. J. Tang, & Z. J. Wu. (2018a). Development,
- Characterization, and Validation of a Cold Stage-Based Ice Nucleation Array (PKU-INA). *Atmosphere*, 9(9), 13.
 doi:10.3390/atmos9090357
- 396 Chen, J., Z. J. Wu, S. Augustin-Bauditz, S. Grawe, M. Hartmann, X. Y. Pei, et al. (2018b). Ice-nucleating particle
- concentrations unaffected by urban air pollution in Beijing, China. *Atmospheric Chemistry and Physics*, 18(5),
 3523-3539. doi:10.5194/acp-18-3523-2018
- 399 Chen, J. C., Z. J. Wu, J. Chen, N. Reicher, X. Fang, Y. Rudich, & M. Hu. (2021). Size-resolved atmospheric ice-
- 400 nucleating particles during East Asian dust events. *Atmospheric Chemistry and Physics*, 21(5), 3491-3506.
- 401 doi:10.5194/acp-21-3491-2021
- 402 Connolly, P. J., O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, & M. Gallagher. (2009). Studies of
- 403 heterogeneous freezing by three different desert dust samples. *Atmos. Chem. Phys.*, 9(8), 2805-2824.
- 404 doi:10.5194/acp-9-2805-2009

- 405 Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, & D. M. Murphy. (2009).
- 406 Deactivation of ice nuclei due to atmospherically relevant surface coatings. *Environmental Research Letters*, 4(4). 407 doi:10.1088/1748-9326/4/4/044013
- 408 DeMott, P. J., O. Möhler, D. J. Cziczo, N. Hiranuma, M. D. Petters, S. S. Petters, et al. (2018). The Fifth
- 409 International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation
- 410 measurements. Atmospheric Measurement Techniques, 11(11), 6231-6257. doi:10.5194/amt-11-6231-2018
- 411 Fairlie, T. D., D. J. Jacob, J. E. Dibb, B. Alexander, M. A. Avery, A. van Donkelaar, & L. Zhang. (2010). Impact of
- 412 mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes. Atmospheric Chemistry and
- 413 *Physics*, 10(8), 3999-4012. doi:10.5194/acp-10-3999-2010
- 414 Fang, T., H. Guo, L. Zeng, V. Verma, A. Nenes, & R. J. Weber. (2017). Highly Acidic Ambient Particles, Soluble
- 415 Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. *Environmental Science & amp;*
- 416 *Technology*, 51(5), 2611-2620. doi:10.1021/acs.est.6b06151
- 417 Froyd, K. D., P. Yu, G. P. Schill, C. A. Brock, A. Kupc, C. J. Williamson, et al. (2022). Dominant role of mineral
- dust in cirrus cloud formation revealed by global-scale measurements. *Nature Geoscience*. doi:10.1038/s41561-022 00901-w
- 420 Harrison, A. D., K. Lever, A. Sanchez-Marroquin, M. A. Holden, T. F. Whale, M. D. Tarn, et al. (2019). The ice-
- 421 nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar. *Atmospheric* 422 *Chemistry and Physics*, 19(17), 11343-11361. doi:10.5194/acp-19-11343-2019
- 423 Harrison, A. D., T. F. Whale, M. A. Carpenter, M. A. Holden, L. Neve, D. O'Sullivan, et al. (2016). Not all feldspars
- 424 are equal: a survey of ice nucleating properties across the feldspar group of minerals. *Atmospheric Chemistry and*
- 425 Physics, 16(17), 10927-10940. doi:10.5194/acp-16-10927-2016
- 426 Hartmann, M., T. Blunier, S. O. Brügger, J. Schmale, M. Schwikowski, A. Vogel, et al. (2019). Variation of Ice
- 427 Nucleating Particles in the European Arctic Over the Last Centuries. *Geophysical Research Letters*, 46(7), 4007-
- 428 4016. doi:10.1029/2019GL082311
- 429 He, Y., F. Yi, Y. Yi, F. Liu, & Y. Zhang. (2021). Heterogeneous Nucleation of Midlevel Cloud Layer Influenced by
- Transported Asian Dust Over Wuhan (30.5°N, 114.4°E), China. Journal of Geophysical Research: Atmospheres,
 126(2). doi:10.1029/2020JD033394
- 432 Heim, E. W., J. Dibb, E. Scheuer, P. C. Jost, B. A. Nault, J. L. Jimenez, et al. (2020). Asian dust observed during
- KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea.
 Atmospheric Environment, 224. doi:10.1016/j.atmosenv.2020.117305
- 435 Hoose, C., & O. Mohler. (2012). Heterogeneous ice nucleation on atmospheric aerosols: a review of results from
- 436 laboratory experiments. Atmospheric Chemistry and Physics, 12(20), 9817-9854. doi:10.5194/acp-12-9817-2012
- 437 Huang, K., G. Zhuang, J. Li, Q. Wang, Y. Sun, Y. Lin, & J. S. Fu. (2010). Mixing of Asian dust with pollution

438 aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. *Journal of* 439 *Geophysical Research*, 115. doi:10.1029/2009JD013145

- 440 Kanji, Z. A., L. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. Cziczo, & M. Krämer. (2017). Ice Formation and
- 441 Evolution in Clouds and Precipitation: Measurement and Modeling Challenges. Chapter 1: Overview of Ice
- 442 Nucleating Particles. *Meteorological Monographs*, 58, 1-25. doi:10.1175/AMSMONOGRAPHS-D-0006.1
- 443 Kanji, Z. A., R. C. Sullivan, M. Niemand, P. J. DeMott, A. J. Prenni, C. Chou, et al. (2019). Heterogeneous ice
- 444 nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol.
- 445 Atmospheric Chemistry and Physics, 19(7), 5091-5110. doi:10.5194/acp-19-5091-2019
- 446 Kawai, K., H. Matsui, & Y. Tobo. (2021). High Potential of Asian Dust to Act as Ice Nucleating Particles in Mixed-
- 447 Phase Clouds Simulated With a Global Aerosol-Climate Model. *Journal of Geophysical Research: Atmospheres,*
- 448 *126*(12). doi:10.1029/2020jd034263
- 449 Kiselev, A., F. Bachmann, P. Pedevilla, S. J. Cox, A. Michaelides, D. Gerthsen, & T. Leisner. (2017). Active sites in
- 450 heterogeneous ice nucleation—the example of K-rich feldspars. *Science*, *355*(6323), 367-371.
- 451 doi:10.1126/science.aai8034
- 452 Kulkarni, G., K. Zhang, C. Zhao, M. Nandasiri, V. Shutthanandan, X. Liu, et al. (2015). Ice formation on nitric acid-

453 coated dust particles: Laboratory and modeling studies. *Journal of Geophysical Research: Atmospheres, 120*(15),

- 454 7682-7698. doi:10.1002/2014jd022637
- 455 Kumar, A., C. Marcolli, B. Luo, & T. Peter. (2018). Ice nucleation activity of silicates and aluminosilicates in pure
- water and aqueous solutions Part 1: The K-feldspar microcline. *Atmospheric Chemistry and Physics, 18*(10), 7057 doi:10.5194/acp-18-7057-2018
- 458 Laskin, A., M. Iedema, A. Ichkovich, E. Graber, I. Taraniuk, & Y. Rudich. (2005). Direct observation of completed
- 459 processed calcium carbonate dust particles. *Faraday Discussions*, 130, 453-468; discussion 491.
- 460 doi:10.1039/B417366J

- 461 Lawson, D. R., & J. W. Winchester. (1979). Standard Crustal Aerosol as a Reference for Elemental Enrichment
- 462 Factors. Atmospheric Environment, 13(7), 925-930. doi:Doi 10.1016/0004-6981(79)90003-9
- 463 Li, W. J., & L. Y. Shao. (2009). Observation of nitrate coatings on atmospheric mineral dust particles. Atmos. Chem. 464 Phys., 9(6), 1863-1871. doi:10.5194/acp-9-1863-2009
- 465 Li, W. J., L. Y. Shao, Z. B. Shi, J. M. Chen, L. X. Yang, Q. Yuan, et al. (2014). Mixing state and hygroscopicity of
- 466 dust and haze particles before leaving Asian continent. Journal of Geophysical Research-Atmospheres, 119(2),
- 467 1044-1059. doi:10.1002/2013jd021003
- 468 Li, W. J., L. Y. Shao, D. Z. Zhang, C. U. Ro, M. Hu, X. H. Bi, et al. (2016). A review of single aerosol particle
- 469 studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions. Journal of
- 470 Cleaner Production, 112, 1330-1349. doi:10.1016/j.jclepro.2015.04.050
- 471 Lohmann, U., F. Lüönd, & F. Mahrt. (2016). An Introduction to Clouds: From the Microscale to Climate.
- 472 Cambridge: Cambridge University Press.
- 473 Losey, D. J., S. K. Sihvonen, D. P. Veghte, E. Chong, & M. A. Freedman. (2018). Acidic processing of fly ash:
- 474 chemical characterization, morphology, and immersion freezing. Environmental Science: Processes & Impacts. 475 20(11), 1581-1592. doi:10.1039/C8EM00319J
- 476 Marple, V. A., K. L. Rubow, & S. M. Behm. (1991). A Microorifice Uniform Deposit Impactor (MOUDI):
- 477 Description, Calibration, and Use. Aerosol Science and Technology, 14(4), 434-446.
- 478 doi:10.1080/02786829108959504
- 479 McNaughton, C. S., A. D. Clarke, V. Kapustin, Y. Shinozuka, S. G. Howell, B. E. Anderson, et al. (2009).
- 480 Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific
- 481 during INTEX-B. Atmos. Chem. Phys., 9(21), 8283-8308. doi:10.5194/acp-9-8283-2009
- 482 Meng, Z., L. Wu, X. Xu, W. Xu, R. Zhang, X. Jia, et al. (2020). Changes in ammonia and its effects on PM2.5
- 483 chemical property in three winter seasons in Beijing, China. Sci Total Environ, 749, 142208.
- 484 doi:10.1016/j.scitotenv.2020.142208
- 485 Murray, B. J., D. O'Sullivan, J. D. Atkinson, & M. E. Webb. (2012). Ice nucleation by particles immersed in
- 486 supercooled cloud droplets. Chem Soc Rev, 41(19), 6519-6554. doi:10.1039/c2cs35200a
- 487 Niedermeier, D., S. Augustin-Bauditz, S. Hartmann, H. Wex, K. Ignatius, & F. Stratmann. (2015). Can we define an
- 488 asymptotic value for the ice active surface site density for heterogeneous ice nucleation? Journal of Geophysical
- 489 Research: Atmospheres, 120(10), 5036-5046. doi:10.1002/2014jd022814
- 490 Niedermeier, D., S. Hartmann, R. A. Shaw, D. Covert, T. F. Mentel, J. Schneider, et al. (2010). Heterogeneous
- 491 freezing of droplets with immersed mineral dust particles - measurements and parameterization. Atmos. Chem.
- 492 Phys., 10(8), 3601-3614. doi:10.5194/acp-10-3601-2010
- 493 Niemand, M., O. Möhler, B. Vogel, H. Vogel, C. Hoose, P. Connolly, et al. (2012). A Particle-Surface-Area-Based
- 494 Parameterization of Immersion Freezing on Desert Dust Particles. Journal of the Atmospheric Sciences, 69(10), 495 3077-3092. doi:10.1175/jas-d-11-0249.1
- 496 O'Sullivan, D., B. J. Murray, T. L. Malkin, T. F. Whale, N. S. Umo, J. D. Atkinson, et al. (2014). Ice nucleation by
- 497 fertile soil dusts: relative importance of mineral and biogenic components. Atmos. Chem. Phys., 14(4), 1853-1867. 498 doi:10.5194/acp-14-1853-2014
- 499 Peckhaus, A., A. Kiselev, T. Hiron, M. Ebert, & T. Leisner. (2016). A comparative study of K-rich and Na/Ca-rich
- 500 feldspar ice-nucleating particles in a nanoliter droplet freezing assay. Atmospheric Chemistry and Physics, 16(18),
- 501 11477-11496. doi:10.5194/acp-16-11477-2016
- 502 Pratt, K. A., P. J. DeMott, J. R. French, Z. Wang, D. L. Westphal, A. J. Heymsfield, et al. (2009). In situ detection of 503 biological particles in cloud ice-crystals. Nature Geoscience, 2(6), 398-401. doi:10.1038/ngeo521
- 504
- Pye, H. O. T., A. Nenes, B. Alexander, A. P. Ault, M. C. Barth, S. L. Clegg, et al. (2020). The acidity of 505 atmospheric particles and clouds. Atmos. Chem. Phys., 20(8), 4809-4888. doi:10.5194/acp-20-4809-2020
- 506 Reicher, N., L. Segev, & Y. Rudich. (2018). The WeIzmann Supercooled Droplets Observation on a Microarray
- 507 (WISDOM) and application for ambient dust. Atmospheric Measurement Techniques, 11(1), 233-248.
- 508 doi:10.5194/amt-11-233-2018
- 509 Schill, G. P., P. J. DeMott, E. W. Emerson, A. M. C. Rauker, J. K. Kodros, K. J. Suski, et al. (2020). The
- 510 contribution of black carbon to global ice nucleating particle concentrations relevant to mixed-phase clouds.
- 511 Proceedings of the National Academy of Sciences, 117(37), 22705. doi:10.1073/pnas.2001674117
- 512 Song, S., A. Nenes, M. Gao, Y. Zhang, P. Liu, J. Shao, et al. (2019). Thermodynamic Modeling Suggests Declines
- 513 in Water Uptake and Acidity of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015–2018/2019.
- 514 Environmental Science & Technology Letters, 6(12), 752-760. doi:10.1021/acs.estlett.9b00621

- 515 Sullivan, R. C., L. Miñambres, P. J. DeMott, A. J. Prenni, C. M. Carrico, E. J. T. Levin, & S. M. Kreidenweis.
- 516 (2010a). Chemical processing does not always impair heterogeneous ice nucleation of mineral dust particles.
- 517 Geophysical Research Letters, 37(24), n/a-n/a. doi:10.1029/2010gl045540
- 518 Sullivan, R. C., M. D. Petters, P. J. DeMott, S. M. Kreidenweis, H. Wex, D. Niedermeier, et al. (2010b). Irreversible
- 519 loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem.
- 520 Phys., 10(23), 11471-11487. doi:10.5194/acp-10-11471-2010
- 521 Textor, C., M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, et al. (2006). Analysis and quantification of the
- 522 diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6(7), 1777-1813. doi:10.5194/acp-6-1777-523 2006
- 524 Tobo, Y., P. J. DeMott, M. Raddatz, D. Niedermeier, S. Hartmann, S. M. Kreidenweis, et al. (2012). Impacts of
- 525 chemical reactivity on ice nucleation of kaolinite particles: A case study of levoglucosan and sulfuric acid.
- 526 Geophysical Research Letters, 39(19), n/a-n/a. doi:10.1029/2012gl053007
- 527 Underwood, G. M., C. H. Song, M. Phadnis, G. R. Carmichael, & V. H. Grassian. (2001). Heterogeneous reactions
- 528 of NO2 and HNO3 on oxides and mineral dust: A combined laboratory and modeling study. Journal of Geophysical 529 Research: Atmospheres, 106(D16), 18055-18066. doi:10.1029/2000JD900552
- 530 Uno, I., K. Eguchi, K. Yumimoto, T. Takemura, A. Shimizu, M. Uematsu, et al. (2009). Asian dust transported one
- 531 full circuit around the globe. Nature Geoscience, 2(8), 557-560. doi:10.1038/ngeo583
- 532 Vali, G. (1971). Quantitative evaluation of experimental results an the heterogeneous freezing nucleation of
- 533 supercooled liquids. Journal of the Atmospheric Sciences, 28(3), 402-409.
- 534 Vali, G., P. J. DeMott, O. Möhler, & T. F. Whale. (2015). Technical Note: A proposal for ice nucleation
- 535 terminology. Atmos. Chem. Phys., 15(18), 10263-10270. doi:10.5194/acp-15-10263-2015
- 536 Villanueva, D., D. Neubauer, B. Gasparini, L. Ickes, & I. Tegen. (2021). Constraining the Impact of Dust-Driven
- 537 Droplet Freezing on Climate Using Cloud-Top-Phase Observations. Geophysical Research Letters, 48(11). 538 doi:10.1029/2021gl092687
- 539 Wei, F., C. Zheng, J. Chen, & Y. Wu. (1991). Study on the Background Contents on 61 Elements of Soils in China. 540 Environmental Science, 12(4), 12-19. doi:10.13227/j.hjkx.1991.04.005
- 541 Wex, H., P. J. DeMott, Y. Tobo, S. Hartmann, M. Rösch, T. Clauss, et al. (2014). Kaolinite particles as ice nuclei:
- 542 learning from the use of different kaolinite samples and different coatings. Atmos. Chem. Phys., 14(11), 5529-5546. 543 doi:10.5194/acp-14-5529-2014
- 544 Whale, T. F., M. A. Holden, T. W. Wilson, D. O'Sullivan, & B. J. Murray. (2018). The enhancement and
- 545 suppression of immersion mode heterogeneous ice-nucleation by solutes. Chem Sci, 9(17), 4142-4151.
- 546 doi:10.1039/c7sc05421a
- 547 Whale, T. F., B. J. Murray, amp, apos, D. Sullivan, T. W. Wilson, et al. (2015). A technique for quantifying
- 548 heterogeneous ice nucleation in microlitre supercooled water droplets. Atmospheric Measurement Techniques, 8(6), 549 2437-2447. doi:10.5194/amt-8-2437-2015
- 550 Worthy, S. E., A. Kumar, Y. Xi, J. Yun, J. Chen, C. Xu, et al. (2021). The effect of (NH4)2SO4 on the freezing
- 551 properties of non-mineral dust ice-nucleating substances of atmospheric relevance. Atmos. Chem. Phys., 21(19), 552 14631-14648. doi:10.5194/acp-21-14631-2021
- 553 Wu, C., S. Zhang, G. Wang, S. Lv, D. Li, L. Liu, et al. (2020). Efficient Heterogeneous Formation of Ammonium
- 554 Nitrate on the Saline Mineral Particle Surface in the Atmosphere of East Asia during Dust Storm Periods. Environ 555
- Sci Technol, 54(24), 15622-15630. doi:10.1021/acs.est.0c04544
- 556 Xie, Y., G. Wang, X. Wang, J. Chen, Y. Chen, G. Tang, et al. (2020). Nitrate-dominated PM2.5 and elevation of
- 557 particle pH observed in urban Beijing during the winter of 2017. Atmospheric Chemistry and Physics, 20(8), 5019-558 5033. doi:10.5194/acp-20-5019-2020
- 559 Yakobi-Hancock, J. D., L. A. Ladino, & J. P. D. Abbatt. (2013). Feldspar minerals as efficient deposition ice nuclei. 560 Atmospheric Chemistry and Physics, 13(22), 11175-11185. doi:10.5194/acp-13-11175-2013
- 561 Yun, J., A. Kumar, N. Removski, A. Shchukarev, N. Link, J.-F. Boily, & A. K. Bertram. (2021). Effects of
- 562 Inorganic Acids and Organic Solutes on the Ice Nucleating Ability and Surface Properties of Potassium-Rich
- 563 Feldspar. Acs Earth and Space Chemistry, 5(5), 1212-1222. doi:10.1021/acsearthspacechem.1c00034
- 564 Yun, J., N. Link, A. Kumar, A. Shchukarev, J. Davidson, A. Lam, et al. (2020). Surface Composition Dependence
- 565 on the Ice Nucleating Ability of Potassium-Rich Feldspar. Acs Earth and Space Chemistry, 4(6), 873-881.
- 566 doi:10.1021/acsearthspacechem.0c00077
- 567 Zhao, B., Y. Wang, Y. Gu, K.-N. Liou, J. H. Jiang, J. Fan, et al. (2019). Ice nucleation by aerosols from
- 568 anthropogenic pollution. Nature Geoscience, 12(8), 602-607. doi:10.1038/s41561-019-0389-4

- 569 Zhao, M., S. Wang, J. Tan, Y. Hua, D. Wu, & J. Hao. (2016). Variation of Urban Atmospheric Ammonia Pollution
- 570 and its Relation with PM2.5 Chemical Property in Winter of Beijing, China. Aerosol and Air Quality Research,
- 16(6), 1390-1402. doi:10.4209/aagr.2015.12.0699
- 571 572 Zhu, J. L., & J. E. Penner. (2020). Radiative forcing of anthropogenic aerosols on cirrus clouds using a hybrid ice
- 573 nucleation scheme. Atmospheric Chemistry and Physics, 20(13), 7801-7827. doi:10.5194/acp-20-7801-2020
- 574 Zhu, T., J. Shang, & D. F. Zhao. (2011). The roles of heterogeneous chemical processes in the formation of an air
- 575 pollution complex and gray haze. Science China-Chemistry, 54(1), 145-153. doi:10.1007/s11426-010-4181-y
- 576 Zolles, T., J. Burkart, T. Hausler, B. Pummer, R. Hitzenberger, & H. Grothe. (2015). Identification of ice nucleation
- 577 active sites on feldspar dust particles. J Phys Chem A, 119(11), 2692-2700. doi:10.1021/jp509839x

578