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Abstract

Genomic selection (GS) can improve the efficiency of tea breeding compared to phenotypic selection (PS) by shortening the

generation interval, increasing selection accuracy, and shortening the duration of the entire breeding program, especially at

early stages. Tea (Camellia sinensis (L.) O. Kuntze) is mainly grown in low- to middle-income countries (LMIC) and is a global

commodity. Breeding programs in these countries face the challenge of increasing genetic gain because the accuracy of selecting

superior genotypes is low and resources are limited. Recurrent phenotypic selection has traditionally been the primary method

for developing improved tea varieties and can take over 16 years. Therefore, the main objective of this study was to investigate

the potential of implementing GS in tea breeding programs to speed up genetic progress despite the low labour costs in LMIC.

We used stochastic simulations to compare three GS breeding programs with a commercial PS program over a 40-year breeding

period. All GS breeding programs achieved higher genetic gains compared to PS. Seed-GSconst, in particular, proved to be

the most cost-effective strategy for introducing GS into tea breeding programs. It introduces GS at the nursery stage, thereby

increasing the predictive accuracy at the early stage of the breeding program. It also shortens the duration of the entire breeding

program by three years and reduces the generation interval to two years. Our results indicate that GS is a promising strategy

to improve genetic gain per unit time and cost in tea breeding programs.
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Core ideas 10 

 Genomic selection could result in 1.6 times greater genetic gain than phenotypic selection in 11 

tea breeding programs. 12 

 All genomic selection strategies achieved higher genetic gains per unit time and cost than 13 

phenotypic selection method. 14 

 Seed-GSconst is the most cost-effective strategy for introducing GS into tea breeding programs. 15 

 16 
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Abstract 25 

Genomic selection (GS) can improve the efficiency of tea breeding compared to phenotypic 26 

selection (PS) by shortening the generation interval, increasing selection accuracy, and shortening the 27 

duration of the entire breeding program, especially at early stages. Tea (Camellia sinensis (L.) O. 28 

Kuntze) is mainly grown in low- to middle-income countries (LMIC) and is a global commodity. 29 

Breeding programs in these countries face the challenge of increasing genetic gain because the 30 

accuracy of selecting superior genotypes is low and resources are limited. Recurrent phenotypic 31 

selection has traditionally been the primary method for developing improved tea varieties and can take 32 

over 16 years. Therefore, the main objective of this study was to investigate the potential of 33 

implementing GS in tea breeding programs to speed up genetic progress despite the low labour costs 34 

in LMIC. We used stochastic simulations to compare three GS breeding programs with a commercial 35 

PS program over a 40-year breeding period. All GS breeding programs achieved higher genetic gains 36 

compared to PS. Seed-GSconst, in particular, proved to be the most cost-effective strategy for 37 

introducing GS into tea breeding programs. It introduces GS at the nursery stage, thereby increasing 38 

the predictive accuracy at the early stage of the breeding program. It also shortens the duration of the 39 

entire breeding program by three years and reduces the generation interval to two years. Our results 40 

indicate that GS is a promising strategy to improve genetic gain per unit time and cost in tea breeding 41 

programs. 42 

 43 

Abbreviations 44 

ACT, Advanced Clonal Trial stage; ECT-GS, Elite Clonal Trials Genomic Selection Breeding 45 

Program; ECT, Elite Clonal Trial stage; GS, Genomic selection; LMIC, low- to middle-income 46 

countries; PS, Phenotypic selection; Seed-GSconst, Constrained Seedlings Genomic Selection 47 

Breeding Program; Seed-GSunconst, Unconstrained Seedlings Genomic Selection Breeding Program 48 
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1 Introduction 49 

Tea (Camellia sinensis (L) O. Kuntze) is mainly grown in tropical and subtropical regions in 50 

low- to middle-income countries (LMIC) (Han, Li, and Ahammed 2018). It is an important crop for 51 

the economies of these countries as it provides a source of income for many smallholder farmers and 52 

those employed in tea processing companies (Mukhtar and Ahmad 2000). Additionally, the tea 53 

growing areas (mainly rural) have benefitted from improved social infrastructure such as good road 54 

networks, schools and hospitals. All tea varieties currently grown in the world originated in India and 55 

China and were either directly or indirectly imported from these two countries to other countries 56 

(Meegahakumbura et al. 2016). The world population is steadily increasing and is expected to reach 9 57 

billion people by 2050 (Perroy 2015) leading to an increase in demand for food and beverages (Valin 58 

et al. 2014). Conventional tea breeding is well established in the major tea growing countries such as 59 

India, China and Kenya and has led to the development of many superior varieties (Meegahakumbura 60 

et al. 2016). Tea varieties developed through breeding have superior yield, quality and are resistant to 61 

drought compared to seedling genotypes (Corley and Tuwei 2018). However, to sustain long-term tea 62 

production and the increasing demand for tea, tea breeders need to continuously bring new improved 63 

varieties to the market. The objectives of tea breeding vary among major tea-growing countries, 64 

depending on local needs. However, the most important breeding objective is to develop varieties with 65 

high yield and improved quality (colour, aroma, taste and mouthfeel) (Kamunya et al. 2012, Mondal 66 

2014). Currently, tea productivity is seriously threatened by climate change, which is already causing 67 

yield losses (Gunathilaka, Smart, and Fleming 2017, Sitienei, Juma, and Opere 2017), and decreased 68 

quality (Han et al. 2017). Climate change has led to extreme and unpredictable weather patterns, 69 

resulting in longer dry spells, heavy rainfall, more hail, and higher temperatures (Marx, Haunschild, 70 

and Bornmann 2017, Batley and Edwards 2016). Additionally, the changing climate has led to 71 

increased attacks of pests and diseases. Therefore, effective tea breeding strategies are needed to 72 
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develop high-yielding and high-quality tea varieties that are also tolerant to biotic and abiotic stresses 73 

(Mondal 2011, Muoki et al. 2020).  74 

Tea breeding programs use recurrent phenotypic selection (PS) to select the best individuals 75 

based on phenotypic values estimated from the per se performance of clones in clonal evaluation trials. 76 

This involves the creation of genetic variation through crossing, followed by many years of recurrent 77 

selection aimed at determining the genetic value of promising genotypes, leading to the identification 78 

of new parents for crossing and the release of commercial varieties to farmers. In the initial phase of 79 

the breeding program, new genotypes are first tested as seedlings in single bush (preliminary) trials. 80 

Then, genetically identical teas (clones) are generated from selected seedlings through clonal 81 

propagation (cuttings), allowing genotypes to be tested in clonal plots in multiple replications, at 82 

multiple locations, and in multiple years (Carr 2018). PS has been quite successful in delivering 83 

improved tea varieties over many years (Mondal 2014). However, this is a time-consuming process as 84 

it takes 16 years to develop a tea variety from cross to release (Figure 1). 85 

In modern times, plant breeding has started to move from complete reliance on PS to genomic-86 

assisted selection due to improved molecular biology and high-throughput genotyping technologies 87 

(Leng, Lübberstedt, and Xu 2017). Quantitative trait loci (QTL) mapping (Kamunya et al. 2010, 88 

Malebe et al. 2021) and association mapping (Jin et al. 2016, Fang et al. 2021) have been tested in the 89 

genetic improvement of tea, and several QTLs associated with yield and quality have been identified. 90 

However, these QTLs have not been successfully applied in the genetic improvement of tea (Xia et al. 91 

2020), since marker-assisted selection (MAS) methods do not account for the effects of minor QTLs 92 

influencing quantitative traits. Only a few major QTLs have been identified in tea (Fang et al. 2021, 93 

Yamashita et al. 2020), while the minor QTLs which influence important quantitative traits are ignored 94 

(Heffner, Sorrells, and Jannink 2009). Many complex traits, including yield, quality and drought 95 

tolerance are controlled by many genes with small effects, and therefore MAS is of limited use due to 96 

low statistical power to detect individual QTLs (Bernardo and Yu 2007). 97 
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Genomic selection (GS) uses all available (genome-wide) markers to predict breeding values 98 

(Meuwissen, Hayes, and Goddard 2001) and offers a great potential for identifying the best parents for 99 

crossing and superior clones for variety development in tea breeding programs. Genomic estimated 100 

breeding values (GEBVs) are calculated by summing marker effects that may or may not be in linkage 101 

disequilibrium with one or more QTLs across the entire genome (Bernardo and Yu 2007). GS uses a 102 

prediction model that is first trained using a population of genotyped and phenotyped individuals. The 103 

trained model is then used to predict GEBVs of selection candidates with genotyping information but 104 

no phenotypes. By then correlating estimated phenotypic values based on GEBVs  with the actual 105 

phenotypic data, it is possible assess the accuracy of the genomic selection model (Heffner, Sorrells, 106 

and Jannink 2009, Meuwissen, Hayes, and Goddard 2001). For example, Lubanga, Massawe, and 107 

Mayes (2021) investigated the potential use of GS to improve tea quality. They reported higher 108 

prediction accuracies for all genomic prediction models compared to the pedigree model. Similar 109 

findings were also reported by Yamashita et al. (2020), who also investigated the potential of GS for 110 

improving tea quality. They found moderate prediction accuracies for the 6 GS models tested. In a tea 111 

breeding program, GS can be used in four ways:  112 

1. to reduce the generation interval as new parents can be selected at the Seedlings stage. 113 

Genotypes in the nursery can be genotyped. Superior genotypes can then be selected based on 114 

GEBVs and planted in the germplasm garden for population improvement (Figure 2 and Figure 115 

3),  116 

2. to increase the accuracy of selecting superior tea genotypes at the Seedlings stage,  117 

3. to increase the selection intensity. More seedlings can be genotyped at the nursery stage and 118 

promising ones predicted accurately compared to PS, 119 

4. to shorten the entire breeding program by eliminating some of the stages in a breeding program 120 

to enable faster release of varieties (Figure 2 and Figure 3). 121 
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However, the implementation of GS in LMIC faces limitations. In most of these countries, the 122 

cost of phenotypic selection is much lower compared to Europe and North America because the local 123 

population provides cheap labour. In addition, most breeding programs have limited investment 124 

budgets for conducting research. In addition, there is a lack of qualified personnel who are trained and 125 

understand the technique of GS and its practical implementation in breeding programs. The 126 

implementation of GS in tea breeding should therefore take into account the particular challenges of 127 

these programs. 128 

Plant breeders have traditionally relied on field trial experiments to inform their decisions 129 

(Rutkoski et al. 2015). However, evaluating these field trials takes a long time and is also expensive 130 

(Wang and Wolfgang H 2007). Simulations are useful in determining the best breeding strategies and 131 

can also be used to study the genetic gain, predictive accuracy, and cost-effectiveness of GS under 132 

different scenarios (Gaynor, Gorjanc, and Hickey 2021). Stochastic simulations have been conducted 133 

for many crops, including wheat (Gaynor et al. 2017), clonally propagated crops (Werner et al. 134 

2020), maize (Powell et al. 2020), sorghum (Muleta, Pressoir, and Morris 2019), and trees (Iwata, 135 

Hayashi, and Tsumura 2011). However, to our knowledge, no simulation studies have been published 136 

integrating GS into tea breeding programs to investigate their feasibility and long-term outcomes. 137 

This study aims to test the feasibility of implementing GS into a tea breeding program using 138 

stochastic simulations. To this end, we used a PS breeding program as a baseline in which the number 139 

of crosses, seedlings, replicates, and locations mimicked an actual commercial tea breeding program 140 

(Unilever Tea Kenya). We estimated variance parameters from real field data. We developed three new 141 

breeding programs based on the PS breeding program that integrated GS. Using simulations, we then 142 

compared the baseline PS breeding program with three GS breeding programs. All simulations were 143 

performed using AlphaSimR (Gaynor, Gorjanc, and Hickey 2021). Our objectives in this study were 144 

(i) to investigate the potential of implementing GS in tea breeding programs despite the limited 145 

breeding program resources and low labour costs in LMIC, (ii) to compare different strategies for 146 
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implementing GS in tea breeding programs at the same cost as PS, (iii) to investigate whether 147 

shortening the tea breeding generation interval and the entire breeding program duration by 148 

incorporating GS in breeding programs leads to higher genetic gains. In addition, we also evaluated 149 

two different strategies of parent selection. 150 

2 MATERIALS AND METHODS 151 

We used stochastic simulations to evaluate the possibility of implementing GS in tea breeding 152 

programs. We compared a PS breeding program and three breeding strategies incorporating GS. We 153 

subdivided the materials and methods section into simulation of the founder genotype population and 154 

simulation of the breeding programs. 155 

We simulated the founder genotype population as follows: 156 

i. Genome simulation: a genome sequence was simulated for a hypothetical diploid tea species 157 

(Camellia sinensis (L) O. Kuntze). 158 

ii. Simulation of founder genotypes: the simulated genome sequences were used to generate a 159 

base population of 20 diploid founder genotypes.  160 

iii. Simulation of genetic values: a single trait representing yield was simulated for all founder 161 

genotypes by summing the additive effects with 2400 quantitative trait nucleotides (QTN).  162 

iv. Simulation of phenotypes: the phenotypes of all founder genotypes were simulated by adding 163 

random error to the total genetic value of the tea genotypes.  164 

We simulated the breeding programs as follows: 165 

i. Recent (burn-in) breeding phase: a PS breeding program for tea was simulated for a period of 166 

40 years (burn-in) to provide a shared starting point for the future breeding phase.  167 

ii. Future breeding phase: three different GS breeding programs were simulated and compared to 168 

the PS breeding program for an additional 40 years of breeding. 169 

2.1 Simulation of the founder genotype population 170 
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2.1.1 Genome simulation  171 

We simulated a genome sequence with 15 pairs of chromosomes for a hypothetical diploid tea 172 

species (Camellia sinensis (L) O. Kuntze). We then assigned a physical length of 108 base pairs and a 173 

genetic length of 1 Morgans to these chromosomes. We generated the chromosome sequences using 174 

the Markovian coalescent simulator (MaCS) (Chen, Marjoram, and Wall 2009) implemented in 175 

AlphaSimR (Gaynor, Gorjanc, and Hickey 2021). We estimated recombination rate as the ratio 176 

between genetic length and physical genome length (i.e., 1 Morgans / 108 base pairs = 10-8). We set the 177 

per-site mutation rate to 2.5 x 10-8 mutations per base pair. We set the effective population size (Ne) 178 

to 100, as described by Werner et al. (2020). 179 

2.1.2 Simulation of founder genotypes 180 

We used the simulated genome sequences to generate a base population of 20 diploid founder 181 

genotypes in Hardy-Weinberg equilibrium. These genotypes were formed by randomly sampling 15 182 

chromosome pairs per genotype. A set of 160 biallelic quantitative trait nucleotides (QTNs) and 600 183 

single nucleotide polymorphisms (SNPs) were randomly selected along each chromosome, to simulate 184 

a quantitative trait that was controlled by 2400 QTN and an SNP marker array with 9000 genome-wide 185 

SNP markers. 186 

2.1.3 Simulation of genetic values  187 

We simulated genetic values for a single trait representing yield by summing the additive 188 

genetic effects at 2,400 randomly sampled QTN. We sampled additive genetic effects (a) from the 189 

standard normal distribution and scaled them to obtain an additive genetic variance of σa
2 = 1 in the 190 

founder population, as described in detail by Gaynor, Gorjanc, and Hickey (2021). The environmental 191 

effect represented the environmental component of the genotype by year (G x Y) interaction and was 192 

sampled for each year of the simulation from the standard normal distribution as described by Gaynor 193 

et al. (2017).  194 
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2.1.4 Simulation of phenotypes  195 

We calculated the phenotypic values for yield by adding G x Y and random error to the additive 196 

genetic values. Therefore, the phenotypic value of genotype i grown in stage k of a breeding program 197 

in year j was calculated as; 198 

𝑦𝑖𝑗 = 𝑔𝑖 + (𝑔𝑦)𝑖𝑗 + 𝑒𝑖𝑗𝑘, 199 

where 𝑔𝑖 is the additive genetic value of genotype i; (𝑔𝑦)𝑗 is G x Y interaction effect associated with 200 

genotype i and year j; and 𝑒𝑖𝑗 is error associated with genotype i, year j, and stage k. The random error 201 

was sampled from the standard normal distribution with mean zero and an error variance 𝜎𝑒
2 defined 202 

by the target level of heritability at each testing stage of the tea breeding program. In the founder 203 

population, we calculated the entry-mean values based on real data from Unilever Tea Kenya breeding 204 

program for narrow-sense heritability (ℎ2) at each of the breeding stages. The ℎ2 at the Seedling and 205 

PT stages was 0.05, 0.45 in the advanced clonal testing stage (ACT) and 0.65 in the elite clonal testing 206 

(ECT) stage. Narrow-sense heritabilities in later testing stages were higher because of the increased 207 

number of replicates per genotype. We calculated narrow-sense heritability as 208 

𝜎𝑎
2

(𝜎𝑎
2+ 𝜎𝑔𝑦

2  /𝑒 + 𝜎𝑒
2 /𝑒𝑟)

, 209 

where 𝜎𝑎
2 is the additive genetic variance, 𝜎𝑔𝑦

2  is the G x Y interaction variance, 𝜎𝑒
2 is the residual 210 

variance and 𝑒 and 𝑟 are the number of environments and replicates within each environment, 211 

respectively. 212 

2.2 Recent (burn-in) breeding phase 213 

We simulated a PS breeding program over a 40-year period (burn-in) to establish a common 214 

baseline for the future tea breeding phase. The structure of the PS breeding program was based on the 215 

Unilever Tea Kenya breeding program (Figure 1). A description of the Unilever Tea Kenya breeding 216 

program can also be found in Corley and Tuwei (2018). To fill the breeding pipeline and provide a 217 
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starting point for the burn-in phase, we performed 16 crossing and selection cycles prior to the burn-in 218 

phase. Each of these 16 cycles started with the same twenty founder genotypes in the crossing block 219 

to perform 100 bi-parental crosses and 100 pollinations per cross (10,000 crosses in total). Based on 220 

our experience, we assumed that 2,000 (approximately 20%) seedlings germinated and were grown in 221 

the nursery for one year. In the third year, seedlings were planted in the field as preliminary trials (PT), 222 

followed by a three-year evaluation period. Five hundred superior clones were selected and planted as 223 

advanced clonal trials (ACT) and yield data were recorded for 5 years. Forty high yielding clones were 224 

selected, advanced to the elite clonal trial (ECT) and yield data recorded for 6 years (Figure 1). 225 

Selection of new parents and best clones in each testing stage were based on phenotypic records. In the 226 

burn-in phase, the selection of new parents was done at the ECT stage in the year 16. Each year, we 227 

replaced the 5 genotypes in the crossing block with the oldest per se performance with new high 228 

yielding varieties from the ECT stage. The total duration of the PS breeding program was 16 years 229 

(Figure 1).  230 
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 231 

Figure 1. Schematic overview of the phenotypic selection breeding program (PS). This program 232 

is based on the commercial breeding program (Unilever Tea Kenya). The solid line represents the stage 233 

at which the 5 or 20 new parents are selected based on phenotypic information. PT, Preliminary Trial 234 

stage; ACT, Advanced Clonal Trial stage and ECT, Elite Clonal Trial stage.  235 

2.3 Future Breeding Phase 236 

We used the future breeding phase to evaluate the PS breeding program and the three GS 237 

breeding programs. We simulated each breeding program for an additional 40 years after the burn-in 238 

breeding phase to evaluate each program with an equivalent starting point. The three GS strategies 239 

were Seed-GSconst, Seed-GSunconst, and ECT-GS (see their description below). The GS programs 240 

replaced PS with GS at different stages of the PS breeding program. The costs of the three GS strategies 241 

were equalized to the estimated cost of the PS breeding program ($71,880). Table 1 shows the sizes 242 

and costs of the breeding programs. Equalization of operating costs in GS programs was done using 243 

the estimated costs of genotyping and reducing program sizes at different breeding stages. Briefly, the 244 

PT stage was eliminated for the Seed-GSconst and Seed-GSunconst programs, while the PT and ACT 245 
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stages were eliminated for the ECT-GS program. A summary of the key differences between the 246 

breeding programs can be found in Table 2. A complete schematic description of the programs is shown 247 

in Figures. 1, 2, 3. We assumed that the cost of genotyping per individual was $15 248 

(http://techservicespro.com/test-locations/). Phenotyping costs were estimated based on the Unilever 249 

Tea Kenya breeding program.  250 

Table 1. Summary of the tea breeding program sizes and annual costs of simulated breeding 251 

programs. 252 

Breeding 

program 

Number of 

parents 
Seedlings PT ACT ECT Cost ($) 

PS 20 2,000 2000 500 40 71,880 

Seed-Gsconst 20 800 0 300 40 69,980 

Seed-

GSunconst 
20 2,000 0 500 40 100,980 

ECT-GS 20 800 0 0 90 72,970 

PT, Preliminary Trial stage; ACT, Advanced Clonal Trial stage; and ECT, Elite Clonal Trial stage; PS, 253 

phenotypic selection breeding program; GS, genomic selection; Seed-GSconst, seedlings GS breeding 254 

program; Seed-GSunconst, seedlings GS breeding program with unconstrained budget; and ECT-GS, 255 

elite clonal GS breeding program. 256 

 257 

We also compared two parent replacement methods for each strategy, namely: 258 

1. replacing 25% of the parents after each breeding cycle, 259 

2. replacing all the parents after each breeding cycle. 260 

Table 2. Summary of the key differences between the four breeding programs. 261 

Breeding 

Program 

Parent 

selection 

stage 

Number 

of 

parents 

Generation interval 

/ program duration 

(years) 

Parent 

selection 
Key features 

PS ECT 

15 old, 5 

best 

parents 

16/16 Phenotype 
Conventional 

breeding 

Seed-

GSconst 
Seedlings 

15 old, 5 

new 

parents 

2/13 GS 

PT stage removed; 

800 seedlings 

genotyped 

Seed-

GSunconst 
Seedlings 

15 old, 5 

new 

parents 

2/13 GS 

PT stage removed; 

2,000 seedlings 

genotyped 

ECT-GS Seedlings  

15 old, 5 

new 

parents 

2/8 GS 
PT and ACT stages 

removed; increased 
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number of clones 

tested in ECT stage 

PT, Preliminary Trial stage; ACT, Advanced Clonal Trial stage; and ECT, Elite Clonal Trial stage; PS, 262 

phenotypic selection breeding program; GS, genomic selection; Seed-GSconst, seedlings GS breeding 263 

program; Seed-GSunconst, seedlings GS breeding program with unconstrained budget; and ECT-GS, 264 

elite clonal GS breeding program. 265 

2.3.1 Constrained Seedlings Genomic Selection Breeding Program (Seed-GSconst) 266 

The Seed-GSconst program introduced genotyping and GS at the earliest Seedlings stage and 267 

eliminated the PT stage (Figure 2). Eight hundred (8 per family) seedlings from the 2,000 germinated 268 

seeds in the nursery were randomly selected for genotyping. Genomic selection was used to advance 269 

genotypes to the next stage and to select the best 5 or 20 genotypes to replace the oldest parents in the 270 

crossing block. The PT stage was eliminated to avoid three years of field testing, and hence, GS was 271 

used to advance the best 300 genotypes from the Seedlings stage to the ACT stage. Yield trials were 272 

recorded at the ACT stage for 5 years. Genomic selection was used to advance 40 promising clones to 273 

the ECT stage. The yield trials at the ECT stage were recorded for another 6 years. The Seed-GSconst 274 

program has a 2-year generation interval and lasts a total of 13 years, which is three years shorter 275 

compared to the PS breeding program. 276 
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 277 

Figure 2. Schematic overview of the seedlings GS breeding program with constrained costs 278 

(Seed-GSconst) and unconstrained costs (Seed-GSunconst). The solid line represents the stage at 279 

which the 5 or 20 new parents are selected based on genomic prediction. The values outside parenthesis 280 

relate to Seed-GSconst and the values inside parenthesis relate to Seed-GSunconst. ACT, Advanced 281 

Clonal Trial stage; and ECT, Elite Clonal Trial stage. 282 

2.3.2 Unconstrained Seedlings Genomic Selection Breeding Program (Seed-GSunconst) 283 

The Seed-GSunconst program used a similar strategy to the Seed-GSconst program, only that 284 

it used an increased operating budget (Figure 2). There are two main differences between the two 285 

programs: (i) all 2,000 seedlings inside the Seedlings stage were genotyped and predicted with GS, and 286 

(ii) GS is used to advance a total of 500 genotypes (instead of 300) to the ACT stage. The Seed-287 

GSunconst program also has a 2-year generation interval and lasts a total of 13 years, which is three 288 

years shorter compared to the PS breeding program. 289 
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2.3.3 Elite Clonal Trials Genomic Selection Breeding Program (ECT-GS) 290 

The ECT-GS program introduced genotyping and GS at the earliest Seedlings stage and 291 

eliminated the PT and ACT stages (Figure 3). The two stages were eliminated to avoid eight years of 292 

testing and to reallocate the resources into genotyping of all 2,000 seedlings at the Seedlings stage as 293 

in the PS program. Compared to the previous two GS programs, the seedlings were planted in the 294 

nursery for an additional year to produce enough cuttings for direct planting at the ECT stage. Genomic 295 

selection was then used to advance genotypes to the next stage and to select the best 5 or 20 genotypes 296 

to replace the oldest parents in the crossing block. Ninety promising clones were advanced from the 297 

Seedlings stage to the ECT stage, where they were evaluated for 6 years. The ECT-GS breeding has a 298 

2-year generation interval and lasts a total of eight years, which is eight years shorter compared to the 299 

PS breeding program. 300 
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 301 

Figure 3. Schematic overview of the elite clonal breeding program with GS (ECT-GS). The solid 302 

line represents the stage at which the 5 or 20 new parents are selected based on genomic prediction. 303 

ACT, Advanced Clonal Trial stage; and ECT, Elite Clonal Trial stage. 304 

2.4 Training population & Genomic Selection Model 305 

To initialize the training population, the last 6 years of the burn-in phase were used to collect 306 

phenotypic data at the ACT stage for training the GS model (in year 41 and onwards). The initial 307 

training population consisted of 6,000 phenotypic records. In subsequent years, new phenotypic data 308 

were added to the training population as new yield trials were recorded. For the Seed-GSunconst and 309 

Seed-GSconst programs, ACT and ECT data were used to update the training population, while only 310 

ECT data were used to update the ECT-GS program. After 40 years of future breeding, the training 311 

population records grew to 24,600 (Seed-GSunconst), 16,600 (Seed-GSconst), and 6,600 (ECT-GS) 312 

records. We estimated genomic predictions using a ridge regression best linear unbiased prediction 313 

model (RR-BLUP) (Meuwissen, Hayes, and Goddard 2001). In the model, we fitted year as a fixed 314 

effect and allowed for heterogeneous error variance for each breeding stage. The predicted additive 315 

Year Stage

Crossing1
20 Parents, 
100 crosses

Population Action

Make bi-parental crosses,
100 pollinations per cross

Seedlings2 10,000 seedlings

GS

P x P

ECT3-8 90 Clones

Variety Release

ECT-GS GS

TP* : Phenotypic records for training 
population

Germinate 10,000 seeds , select 8 
germinated seedlings per cross; grow 

selected seedlings in nursery for 2 years 

to produce enough cuttings, h2=0.05

Elite clonal trial 7 locations, 2 
replicates/ location , TP*, h2=0.65
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SNP effects at each marker locus were used to estimate the average effect of allele substitution for each 316 

SNP. The allele substitution effects were then summed to estimate GEBVs. GEBVs of each genotype 317 

were calculated by summing the predicted additive SNP effects at each marker locus. 318 

2.5 Evaluation and comparison of the tea breeding programs 319 

We compared the efficacy of the three GS breeding programs with the PS program by measuring 320 

the mean genetic values of the newly developed genotypes at the Seedlings stage over time. All 321 

simulations for each strategy were replicated 10 times. We examined the genetic values of seedlings at 322 

the Seedlings stage as this is the earliest stage at which all programs evaluate new crosses (F1 323 

seedlings). We also evaluated genetic variance and selection accuracy in all breeding programs. We 324 

evaluated genetic gain and genetic variance by plotting the mean and variance of seedling population 325 

genetic values over time. We calculated the prediction accuracy for the GS breeding programs as the 326 

correlation between the true genetic values and their GEBVs at the Seedlings stage. Conversion 327 

efficiency was plotted as the change in genetic gain over genic variance. 328 

3 RESULTS 329 

We showed that all GS programs outperformed the PS breeding program. The Seed-Gsunconst 330 

program had the highest overall genetic gain. All GS breeding programs had higher selection 331 

accuracies compared to the PS breeding program. Although genetic variance decreased over time for 332 

all breeding programs, the GS programs had a large decrease in genetic variance compared to the PS 333 

breeding program. Replacement of all parents resulted in a slightly higher genetic gain, with a small 334 

decrease in genetic variance compared to replacement of 25% of parents. The PS breeding program 335 

had the highest conversion efficiency, but the lowest genetic gain compared to the GS programs.  336 

3.1 Genetic gain 337 
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The GS breeding programs (Seed-GSunconst, Seed-GSconst, and ECT-GS) achieved greater 338 

genetic gain compared to the PS breeding program, regardless of the number of parents replaced. This 339 

is shown in Figure 4, where the population mean genetic value is plotted against the number of years 340 

of breeding at the Seedlings stage. The first plot shows the trends for the mean genetic values of all 341 

replicates for each of the tea breeding programs evaluated in the future breeding component when 25% 342 

of the parents are replaced. The second plot shows the same trend when all parents are replaced after 343 

each cycle for all breeding programs. Seed-GSunconst showed the greatest genetic gain compared to 344 

all other programs. Both plots show that the overall ranking of the breeding programs in terms of total 345 

genetic gain was consistent across the two proportions of parents replaced. The ranking of the breeding 346 

programs from highest to lowest mean genetic gain was as follows: Seed-GSunconst, Seed-GSconst, 347 

ECT-GS and PS.  348 

The breeding programs where all parents were replaced showed slightly higher genetic gain than 349 

when 25% of the parents were replaced. When all parents were replaced, the best program, Seed-350 

GSunconst, generated 1.6 times the genetic gain of the PS breeding program. Seed-GSconst and ECT-351 

GS generated 1.53 and 1.50 times the genetic gain of the PS breeding program, respectively. When 352 

25% of the parents were replaced, Seed-GSUnconst generated 1.43 times the genetic gain of the PS 353 

breeding program. On the other hand, Seed-GSconst and ECT-GS generated 1.39 and 1.36 times the 354 

genetic gain of the PS breeding program, respectively. All GS breeding programs had a generation 355 

interval of 2 years compared to 16 years generation interval of the PS breeding program (Figure 4). 356 
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 357 

Figure 4. Genetic gain over time for the four simulated breeding programs. Results are shown for 358 

25% (left) and 100% (right) parents replaced separately. The lines within each of the two panels 359 

represent the four breeding programs where each line represents population mean of genetic values for 360 

the 10 simulated replicates and the shaded area showing 95% confidence intervals of the mean. Genetic 361 

gain was measured at the seedlings stage. The black-coloured line is the phenotypic breeding program 362 

(PS), the green-coloured line represent the seedlings GS breeding program (Seed-GSconst), the blue-363 

coloured line represent the GS breeding program with increased funding (Seed-GSunconst) and the 364 

red-coloured line represent the elite clonal GS breeding program (ECT-GS). 365 

3.2 Selection accuracy 366 

GS increased selection accuracy compared to PS, as shown in Figure 5, which plots the 367 

correlations between true and estimated genetic values for seedling entries over time. The first plot 368 

shows the selection accuracy for all breeding programs when 25% of all parents were replaced, and the 369 

second plot shows the selection accuracy when all parents were replaced. All GS breeding programs 370 

had higher selection accuracy compared to the PS breeding program, regardless of the number of 371 

parents replaced. Higher selection accuracy was observed when 25% of parents were replaced than 372 
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when all parents were replaced. Selection accuracy was the same across years and the two methods of 373 

parent replacement. In the early years of future breeding, selection accuracy for the ECT-GS program 374 

was lower compared to the other GS breeding programs, but then gradually increased until it reached 375 

a plateau in year 20. Selection accuracy for the Seed-GSunconst, Seed-GSconst, and PS breeding 376 

programs remained constant over time. Both plots show that the ranking from highest to lowest mean 377 

selection accuracy is as follows: Seed-GSunconst, Seed-GSconst, ECT-GS, and PS (Figure 5).  378 

 379 

Figure 5. Accuracy of selection over time for the four simulated breeding programs. Results are 380 

shown for 25% (left) and 100% (right) parents replaced separately. The lines within each of the two 381 

panels represent the four breeding programs where each line represents the mean accuracy of selection 382 

for the 10 simulated replicates and the shaded area showing 95% confidence intervals of the mean. 383 

Accuracy of selection was measured at the seedlings stage. The black-coloured line is the phenotypic 384 

breeding program (PS), the green-coloured line represent the seedlings GS breeding program (Seed-385 

GSconst), the blue-coloured line represent the GS breeding program with increased funding (Seed-386 

GSunconst) and the red-coloured line represent the elite clonal GS breeding program (ECT-GS). 387 

3.3 Genetic variance 388 
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The change in genetic variance over time is shown in Figure 6. The first plot shows the mean 389 

genetic variance over time when 25% of the parents are replaced. The second plot shows the same 390 

breeding programs when all parents are replaced. All breeding programs showed a decrease in genetic 391 

variance over time. However, the rate of loss of genetic variance varied from breeding program to 392 

breeding program. All GS breeding programs showed a tremendous decrease in genetic variance, while 393 

the phenotypic selection program showed a slow and gradual decrease in genetic variance over time. 394 

The difference in genetic variance when 25% and 100% of parents were replaced was small, except 395 

during the transition period when GS was introduced and 25% of parents were replaced. Both plots 396 

also show that the rank order from highest to lowest genetic variance was as follows: PS, Seed-397 

GSconst, ECT-GS and Seed-GSunconst (Figure 6).  398 

 399 

Figure 6. Genetic variance over time for the four simulated breeding programs. Results are shown 400 

for 25% (left) and 100% (right) parents replaced separately. The lines within each of the two panels 401 

represent the four breeding programs where each line represents mean genetic variance for the 10 402 

simulated replicates and the shaded area showing 95% confidence intervals of the mean. Genetic 403 

variance was measured at the seedlings stage. The black-coloured line is the phenotypic breeding 404 

program (PS), the green-coloured line represent the seedlings GS breeding program (Seed-GSconst), 405 
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the blue-coloured line represent the GS breeding program with increased funding (Seed-GSunconst) 406 

and the red-coloured line represent the elite clonal GS breeding program (ECT-GS). 407 

3.4 Conversion efficiency 408 

All breeding strategies had almost similar conversion efficiencies when all parents were replaced. 409 

When 25% of the parents were replaced, the PS breeding program had more than twice the conversion 410 

efficiency (56) but about 3.5 times less genetic gain than the GS breeding programs. This is illustrated 411 

in Figure 7, which shows the long-term genetic gain in standard deviation units when all genic variance 412 

is exhausted and is calculated by regressing realized genetic gain on lost genic variance over 40 years 413 

of tea breeding. The first plot shows the change in genetic mean over genic standard deviation when 414 

25% of the parents are replaced. The second plot shows the change in genetic mean over the genic 415 

standard deviation when all parents are replaced. The slope of the change in genetic mean over the 416 

change in the genic standard deviation quantifies the efficiency of converting genetic diversity into 417 

genetic gain. The ranking of the breeding programs in terms of conversion efficiency when all parents 418 

were replaced from highest to lowest was as follows: Seed-GSconst (34), PS (33), ECT-GS (32), and 419 

Seed-GSunconst (31). The ranking of conversion efficiency of breeding programs when 25% of parents 420 

were replaced from highest to lowest was as follows: PS (56), Seed-GSconst (28), Seed-GSunconst 421 

(25), and ECT-GS (25).  422 
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 423 

Figure 7. Efficiency plot showing change of genetic mean and genic standard deviation over time 424 

for the four simulated breeding programs. Results are shown for 25% (left) and 100% (right) parents 425 

replaced separately. The black-coloured line is the phenotypic breeding program (PS), the green-426 

coloured line represent the seedlings GS breeding program (Seed-GSconst), the blue-coloured line 427 

represent the GS breeding program with increased funding (Seed-GSunconst) and the red-coloured line 428 

represent the elite clonal GS breeding program (ECT-GS). 429 

4 DISCUSSION 430 

 Tea breeding programs require the integration of efficient genomic-assisted breeding 431 

approaches to increase the rate of genetic progress. However, currently, it is not clear how these could 432 

be integrated into existing programs and whether the additional costs these approaches incur are worth 433 

the effort. In our study, we used stochastic simulations for the first time to show that tea breeding 434 

programs in LMIC can benefit from genomic selection despite low labour costs and limited research 435 

budgets. We developed three different genomic selection breeding programs (Seed-GSconst, Seed-436 

GSunconst and ECT-GS) and compared them with a phenotypic selection (PS) program based on the 437 

commercial breeding program from Unilever Tea Kenya. To discuss our results, we examine the effects 438 

of each breeding strategy on genetic gain, genetic variance, selection accuracy, and conversion 439 
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efficiency. We also compared the effects of replacing all parents and 25% of parents after each breeding 440 

cycle. Our results confirm that the use of GS increases genetic gain compared to traditional PS in tea 441 

breeding by shortening the generation interval and increasing the accuracy of selection of superior 442 

parents in the Seedlings stage. GS also allowed shortening the entire breeding program by eliminating 443 

some of the stages. For example, in Seed-GSconst and Seed-GSunconst, we eliminated the PT stage, 444 

hence saving 3 years, while in ECT-GS we removed the PT and ACT stages, resulting in an 8-year 445 

reduction in the duration of the breeding program. 446 

4.1 Genetic gain 447 

Phenotypic selection is a very slow process in tea breeding as it takes 16 years to develop an 448 

improved tea variety (Figure 1). This is because tea is a perennial crop with a long generation interval 449 

– it takes between 3-6 years for tea bush to grow from seed to flower (Kamunya 2010). The multi-year 450 

testing of clones at many locations is also a time-consuming process. The selection accuracy at the 451 

Seedlings and PT stage is very low because selection is based on per se performance of single bush 452 

unreplicated seedlings. This contributes to the slow genetic progress in tea breeding programs and 453 

hence, genomic-assisted breeding approaches need to be considered. 454 

Our results showed that all breeding programs using GS achieved greater genetic gain 455 

compared to the PS breeding program, hence showing the potential of improving the rate of genetic 456 

gain in tea breeding programs. This may be attributed to the improved prediction accuracy of selecting 457 

superior parents by the GS model and the short generation interval (Cobb et al. 2019). All GS breeding 458 

programs had a generation interval of two years, compared to 16 years for the PS breeding program. 459 

This demonstrates the importance of reducing generation interval to increase genetic gain in tea 460 

breeding programs. Our results showed a perfect rank correlation between generation interval and 461 

genetic gain. Similar findings were reported by Bančič et al. (2021), who used stochastic simulations 462 

to investigate the potential of using GS to improve yield during intercropping. They found that all 463 
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programs using GS produced significantly more yield than the PS breeding program mainly because 464 

of reduced generation interval and increased prediction accuracy. Gaynor et al. (2017), using stochastic 465 

simulations, also reported that both conventional GS breeding methods and the two-part GS strategy 466 

significantly increased grain yield of inbred wheat compared to the PS breeding program. Reducing 467 

cycle time has the advantage of increasing the frequency with which haplotypes are recombined and 468 

exposed for selection, increasing the likelihood that a superior allele combination will emerge and be 469 

selected (Atlin, Cairns, and Das 2017). Although Seed-GSunconst produced the most genetic gain, the 470 

difference was not large when compared to the Seed-GSconst program, in which only a limited 471 

proportion of seedlings were genotyped due to cost constraints. This was less expected and suggests 472 

that genotyping more seedlings and testing more genotypes at ACT stage did not improve the genetic 473 

gain. Replacing all the parents in the crossing block with new improved parents produced a higher 474 

genetic gain, suggesting that substituting the poorest yielding and old parents with new higher yielding 475 

parents increases the probability of combining favourable alleles in tea breeding programs.  476 

Selection of superior seedlings is the major challenge in tea breeding programs due to high 477 

selection intensity and extremely low selection accuracy at the seedlings stage. In the PS breeding 478 

program, seedlings are selected based on per se performance, so the selection accuracy is very low. In 479 

this study we estimated broad sense heritabilities at the PT, ACT and ECT stages from real data. The 480 

heritability at the PT stage was 0.05 compared to the ACT (0.45) and ECT (0.65) stages. The PT stage 481 

consists of a single bush (unreplicated) trial, and hence the low heritability. The ACT and ECT stages 482 

are clonal trials with larger plots consisting of more clones of each seedling. The ACT stage is also a 483 

multilocational trial. In clonal breeding programs, many seedlings are usually selected, thus the 484 

increased selection intensity (Werner et al. 2020). For instance, at Unilever Tea Kenya, 500 seedlings 485 

are selected each year in the PS breeding program to advance to the ACT stage (Corley and Tuwei 486 

2018). The PS breeding program showed a cyclical pattern of genetic gain over time. This is because 487 

the parents in the PS breeding program are updated after 16 years, whereas in the GS breeding 488 
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programs, they were updated every two years, making genetic progress more continuous. In practice, 489 

this means that the GS breeding programs can deliver new varieties adapted to new biotic and abiotic 490 

stress factors and market requirements more quickly. 491 

4.2 Selection accuracy 492 

All GS breeding programs had higher selection accuracy compared to the PS program. The 493 

prediction accuracy is high in the GS breeding program because selection at the Seedlings stage is 494 

based on the predicted performance of the seedlings as clones, since the GS model is trained using data 495 

from the clonal testing stages (Werner et al. 2020). In our simulation, the 500 clones from the ACT 496 

stage were used as the initial training population using 6 years of historical phenotypic records (3,000 497 

records). This improved the selection accuracy of parents because the phenotypic records at the ACT 498 

stage used to train the prediction model had a higher heritability than the individual bushes at the 499 

Seedlings stage in the PS breeding program. Additionally, there is increased accuracy of advancing the 500 

promising genotypes from the Seedlings to ACT and from the ACT to ECT stages using GEBVs. There 501 

is also a strong relationship between the training population and the selection candidates in the case of 502 

GS prediction model (Neyhart et al. 2017). We also updated the training population each year with 503 

new data from the previous cycle. As breeding cycles progress, the required linkage disequilibrium 504 

(LD) between quantitative trait loci and markers is expected to change as a result of recombination, 505 

selection and drift, leading to a decay in prediction accuracy (Lorenz et al. 2011). Therefore, the 506 

training population should be regularly updated during recurrent selection to maintain the prediction 507 

accuracy, as was also the case in our GS breeding programs. Previous research has identified the need 508 

to update the training population using new data that may capture new LD generated over breeding 509 

cycles. For instance, Neyhart et al. (2017) evaluated several methods for updating the training 510 

population in a long-term GS. They reported that using a smaller but more recent training population 511 

provided a slight advantage in prediction accuracy and genetic gain.  512 
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In the early years of the future breeding phase, selection accuracy was lower for the ECT-GS 513 

program compared to the other two GS breeding programs. This could be because fewer clones were 514 

used to update the training population each year. Each year, only 90 clones from the ECT stage in the 515 

ECT-GS breeding program were used to update the training population. In the Seed-GSunconst and 516 

Seed-GSconst breeding programs, clones from the ACT and ECT stages were used to update the 517 

training population model. The number of clones used to update the Seed-GSunconst and Seed-518 

GSconst breeding programs was 540 and 340 clones, respectively. The Seed-GSunconst breeding 519 

program had the highest overall prediction accuracy, confirming that training population size is an 520 

important factor in the development of GS breeding programs. This is consistent with the results of 521 

previous studies that showed that a large training population is required to accurately estimate marker 522 

effects (Zhang et al. 2017, Combs and Bernardo 2013). We also observed higher selection accuracy 523 

when 25% of parents were replaced than when 100% parents were replaced. This could be because 524 

when all the parents are replaced, there is a large shift in LD pattern leading to a decay in prediction 525 

accuracy. Selection over time causes a change in LD between the quantitative trait loci (QTL) and the 526 

markers. Shifts in the pattern of QTL-marker LD, if not captured, can result in decreased prediction 527 

accuracy (Lorenz et al. 2011). 528 

4.3 Genetic variance and conversion efficiency 529 

In our simulation, all breeding programs showed a decrease in genetic variance over time. 530 

However, all the GS breeding programs had a huge decrease in genetic variance compared to the PS 531 

breeding program, which showed a slow and gradual decrease over time. Similar results were reported 532 

by Tessema et al. (2020), who used stochastic simulations based on real data to quantify the increase 533 

in genetic gain by implementing GS in a traditional wheat-breeding program. They reported a 534 

significant decrease in genetic variance over a 25-year period for the breeding strategies using GS. The 535 

loss of genetic variance is due to increased selection accuracy in the early stages of a breeding program 536 
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as well as shorter generation interval. Increased selection accuracy results in the Bulmer effect, which 537 

decreases genetic variance under directional selection due to the build-up of negative linkage-disequi-538 

librium between causal loci (Bulmer 1971). Selection causes changes in in genetic variances, allele 539 

frequencies and LD relationships between markers and QTL (Muir 2007). 540 

Our results showed that the GS breeding programs had lower conversion efficiency compared 541 

to the PS breeding program when 25% of the parents were replaced. The conversion efficiency of the 542 

PS breeding program decreased significantly when all parents were replaced, while it increased slightly 543 

for the GS breeding programs when all parents were replaced. This implies that the PS program 544 

converted the genetic gain over loss efficiently compared to the GS programs. A large reduction in 545 

genetic variance limits long-term genetic gain in plant breeding because genetic variance is important 546 

for continuous and sustained progress (Cobb et al. 2019). Genomic selection strategies that balance the 547 

rates of genetic gain and loss of diversity and could be implemented in tea breeding programs include 548 

optimal contribution selection (Sonesson, Woolliams, and Meuwissen 2012), optimal cross selection 549 

(Gorjanc, Gaynor, and Hickey 2018), optimal contribution selection with branching (Santantonio and 550 

Robbins 2020), optimal population value selection (Goiffon et al. 2017) and expected maximum 551 

haploid breeding value selection (Müller, Schopp, and Melchinger 2018). 552 

Interestingly, little difference in genetic variance was observed when 25% and 100% of the 553 

parents were replaced, except for the transition period when GS was introduced and 25% of parents 554 

were replaced. This is mostly because tea is a highly outcrossing and has an extremely highly 555 

heterozygous nuclear genome (Xia et al. 2020). Wang et al. (2020) reported that hybridization 556 

increased the heterozygosity and wide-ranging gene flow among tea populations with the spread of tea 557 

cultivation. 558 

4.4 Simulation constrains and practical implementation of GS in tea breeding programs 559 
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We used a real commercial tea breeding program of Unilever Tea Kenya and its parameters as a 560 

baseline to test the possible integration of GS. Our key constraints were the low operating cost of the 561 

breeding program due to cheap labour and limited resources for research. Kenya is one of the LMICs 562 

where labour costs are significantly lower compared to countries with advanced economies. For 563 

example, the average daily wage of a field worker at Unilever Tea Kenya is ~$5 (based on the 564 

ccollective bargaining aagreement (CBA) between the workers and tea companies in Kenya) while in 565 

the UK the hourly wage is ~$8-12 (based on salary reports from glassdoor.co.uk). Our simulations 566 

showed that despite these constraints, it is possible to use GS in tea breeding. Our results provide 567 

guidance for several important decisions regarding resource allocation to increase genetic gain in tea 568 

breeding programs:  569 

1. Genotyping seedlings in nurseries and selecting the best parents based on GEBVs can increase 570 

genetic gain by reducing generation interval and increasing selection accuracy. 571 

2. Elimination of preliminary evaluation (PT) stage reduced the cost of breeding and shortened 572 

the breeding cycle by 3 years. The saved costs could be reallocated to genotyping more 573 

seedlings in the nursery. 574 

3. Eliminating the PT and ACT stages in the ECT-GS program reduced the duration of the 575 

breeding cycle by 8 years. However, genetic gains were lower compared to the other GS 576 

strategies. 577 

4. If a breeding program has extra budget ($30,000), genotyping all the seedlings and increasing 578 

the number of genotypes evaluated at the ACT stage can increase genetic gain, however, only 579 

slightly. 580 

5. GS is cost-effective for tea breeding programs with limited budgets when genotyping costs are 581 

$15. We expect the benefit of GS to increase in the future when costs of high-throughput 582 

genotyping decrease even more - this will increase the selection intensity in a breeding program. 583 
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6. GS can also be used to advance superior genotypes for variety development, e.g., from the PT 584 

to ACT and from ACT to ECT stages at a higher selection accuracy. 585 

In addition, breeders will also need to consider whether all necessary facilities and equipment are 586 

available on site (e.g., freezers, sterile laboratories), train field technicians appropriately, determine 587 

whether genotyping can be done on site or else transportation costs should be considered, potentially 588 

collaborate with biometricians to optimize field trials, and develop GS pipelines for prediction using 589 

an appropriate modelling framework. Standardization and digitization of phenotyping protocols to 590 

ensure the best data quality will also be an important challenge, as this can greatly improve the 591 

predictive ability of GS. 592 

5 Genomic selection for improvement of tea quality and practical implementation 593 

Tea quality is an important attribute as it is the main determinant of price at the tea auction. It 594 

is measured based on colour, aroma, taste and mouthfeel of tea liquor and the appearance of dry tea 595 

(Zheng et al. 2016). These sensory attributes originate from biochemical compounds present in fresh 596 

tea shoots such as catechins, alkaloids, amino acids and volatile compounds (Borse and Jagan Mohan 597 

Rao 2012). Sensory evaluation using professional tasters is traditionally the main method used to 598 

evaluate, grade and determine the price of tea (Liang et al. 2003). Although sensory evaluation is quick 599 

and practical to use, it is limited since it requires identification and training to produce skilled and 600 

experienced professional tasters (Stone and Sidel 2004), who are not easily found (Corley and Chomboi 601 

2005). It is also time-consuming, the tasters sometimes get exhausted and the approach is susceptible 602 

to many sources of variation because of individual tasters’ preferences and moods (Sinija and Mishra 603 

2011). Chemical and physical analytical methods have also been developed for identifying biochemical 604 

components associated with tea quality (Liang et al. 2008) and they include; liquid chromatography 605 

coupled with mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), near infrared (NIR) 606 

spectroscopy and chromatographic methods such as high-performance liquid chromatography (HPLC) 607 
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and gas chromatography (GC) (Yashin et al. 2015, Zheng et al. 2016). Most of these techniques are 608 

objective, repeatable and reproducible (Chen et al. 2015). However, most of these analytical techniques 609 

are expensive to acquire and maintain and require specialized expertise to operate. 610 

 GS could be used to improve the selection of superior quality tea varieties (Lubanga, Massawe, 611 

and Mayes 2021). The best way to implement GS in tea breeding programs is to integrate it into an 612 

existing PS program. GS could be incorporated into an existing PS program by genotyping seedlings 613 

at the nursery stage and predicting their genetic values using a GS model. Professional testers could be 614 

used to obtain sensory data for training the GS model. Biochemical traits could also be measured at the 615 

nursery stage using highly reproducible equipment such as HPLC, NMR or LC-MS. Samples (between 616 

100-200) from ACT and ECT stages can be used for training the GS model using both genotypic and 617 

phenotypic data. Low-cost genotyping platforms such as genotyping by sequencing (GBS) could be 618 

used to obtain SNPs. Seedlings at the nursery stage could then be genotyped and predicted using the 619 

trained model using only the genotypic data. Parents with high quality attributes could be selected for 620 

crossing at the nursery stage while poor quality seedlings can be discarded at the seedlings stage. GS 621 

could be implemented as described in Seed-GSconst, Seed-GSunconst and ECT-GS programs.  622 

The use of GS for breeding of high-quality tea varieties can reduce the disadvantages associated 623 

with sensory evaluation methods and analytical techniques. For instance, high quality seedlings can be 624 

predicted at the nursery stage without the need to be tested by professional testers or analysed by 625 

analytical technical techniques. This increases the accuracy of predicting superior seedlings based on 626 

GEBVs, hence reducing the subjectivity associated with the professional testers. Additionally, the 627 

expensive costs associated with analytical equipment can be eliminated.  628 

Our study used a practical breeding program at Unilever Tea Kenya and cost estimates to 629 

measure the cost-effectiveness of implementing genomic selection in tea breeding programs. All the 630 

programs in this study were constrained to equal operating costs, and therefore we can conclude that 631 

implementing genomic selection in tea breeding programs can increase the rate of genetic gain despite 632 
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the challenges experienced in LMIC. Methods such as optimal cross selection (Gorjanc, Gaynor, and 633 

Hickey 2018) could be used to ensure that the newly introduced diversity is not quickly eliminated 634 

through genomic selection. It optimises the efficiency of converting genetic diversity into genetic gain 635 

through reducing the loss of genetic diversity and reducing the drop of genomic prediction accuracy 636 

with rapid cycling (Gorjanc, Gaynor, and Hickey 2018). 637 

6 Conclusion 638 

Our study provides excellent insights into the implementation of genomic selection in tea 639 

breeding programs for yield in LMIC. The genomic selection scenarios and results will help tea 640 

breeders with knowledge on how to design genomic selection strategies in breeding programs. We 641 

show that incorporating GS in tea breeding programs can increase genetic gain up to 1.6 times more 642 

than PS program, despite the low labour cost in LMIC. Moreover, the integration of GS does not 643 

significantly change the structure of the existing tea breeding program. Rather, it can significantly 644 

shorten its’ duration. The increase in genetic gain in the GS breeding programs was due to higher 645 

prediction accuracy and reduced generation interval. After 40 years of future breeding, the GS breeding 646 

programs had lower genetic variance compared to PS, indicating the need to incorporate strategies that 647 

balance genetic gain and genetic variance, such as the optimal contribution algorithm. We also 648 

observed that replacing all parents resulted in higher genetic gain without significant loss of genetic 649 

diversity. Tea quality is a very important attribute, but expensive and difficult trait to phenotype and 650 

predict in breeding programs. We recommend further research to determine the most cost-effective 651 

pipeline for implementing GS to improve tea quality and yield simultaneously. 652 
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