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Abstract

We construct a novel Multi-Input Multi-Output Autoencoder-decoder (MIMO-AE) to capture the non-linear relationship of

Southern California precipitation (SC-PRECIP) and tropical Pacific Ocean sea surface temperature (TP-SST). The MIMO-AE

is trained on both monthly TP-SST and SC-PRECIP anomalies simultaneously. The co-variability of the two fields in the

MIMO-AE shared nonlinear latent space can be condensed into an index, termed the MIMO-AE index. We use a transfer

learning approach to train a MIMO-AE on the combined dataset of 100 years of output from a historical simulation with the

Energy Exascale Earth Systems Model version 1 (E3SMv1) and a segment of observational data. We further use Long Short-

Term Memory (LSTM) networks to assess sub-seasonal predictability of SC-PRECIP using the MIMO-AE index. We find that

the MIMO-AE index provides enhanced predictability of SC-PRECIP for a lead-time of up-to four months as compared to Nino

3.4 index and the El Nino Southern Oscillation Longitudinal Index.
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Key Points:6

• We design a novel MIMO-AE to capture the non-linear relationships between trop-7

ical Pacific SSTs and Southern California precipitation.8

• We use long-short term memory models of a MIMO-AE derived index to assess9

predictability of Southern California precipitation.10

• MIMO-AE offers statistically significant improvement in predictive skill of South-11

ern California precipitation on sub-seasonal scales.12
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Abstract13

We construct a novel Multi-Input Multi-Output Autoencoder-decoder (MIMO-AE) to14

capture the non-linear relationship of Southern California precipitation (SC-PRECIP)15

and tropical Pacific Ocean sea surface temperature (TP-SST). The MIMO-AE is trained16

on both monthly TP-SST and SC-PRECIP anomalies simultaneously. The co-variability17

of the two fields in the MIMO-AE shared nonlinear latent space can be condensed into18

an index, termed the MIMO-AE index. We use a transfer learning approach to train a19

MIMO-AE on the combined dataset of 100 years of output from a historical simulation20

with the Energy Exascale Earth Systems Model version 1 (E3SMv1) and a segment of21

observational data. We further use Long Short-Term Memory (LSTM) networks to as-22

sess sub-seasonal predictability of SC-PRECIP using the MIMO-AE index. We find that23

the MIMO-AE index provides enhanced predictability of SC-PRECIP for a lead-time24

of up-to four months as compared to Niño 3.4 index and the El Niño Southern Oscilla-25

tion Longitudinal Index.26

Plain Language Summary27

Traditional El Niño Southern Oscillation indices, like the Niño 3.4 index, although28

well-predicted themselves, fail to offer reliable sub-seasonal to seasonal predictions of West-29

ern US precipitation. Here, we use a machine learning approach called a multi-input, multi-30

output autoencoder to capture the relationship between tropical Pacific and Southern31

California precipitation and project it onto a new index, which we call MIMO-AE in-32

dex. Using machine learning based time-series predictions, we find that MIMO-AE in-33

dex offers enhanced predictability of Southern California precipitation up-to a lead time34

of four months as compared to other ENSO indices.35

1 Introduction36

While El Niño-Southern Oscillation (ENSO) is a prominent predictor of precipi-37

tation over California, extracting sub-seasonal and seasonal predictability afforded from38

it remains a challenge (e.g. LHeureux et al., 2021; Pan et al., 2019; S. Wang et al., 2017).39

This was apparent during the 2015-16 Central Pacific (or Modoki) El Niño event, when40

California received just above average precipitation. This was in contrast to the forecast41

of heavy precipitation, which occurred there during the canonical (Eastern Pacific) 1982-42

83 and 1997-98 strong El Niño events (e.g. Cohen et al., 2017; Lee et al., 2018; LHeureux43
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et al., 2017). Perfect model studies with dynamical models suggest that the potential44

predictability of Western US precipitation on sub-seasonal to seasonal timescales maybe45

larger than the observed forecast skills of dynamical and statistical models (Becker et46

al., 2014). Although, dynamical models capture the chaotic and non-linear nature of the47

climate system, their predictive skill is limited by systematic model biases (largely orig-48

inating from the errors in the representation of sub-grid scale processes that grow rapidly)49

and from complications of model initialization from sparse observations of the coupled50

system.51

Over California, statistical modeling suggests that tropical Pacific sea surface tem-52

peratures (TP-SSTs) offer predictability largely only for Southern California precipita-53

tion (SC-PRECIP) explaining about 20% of the variability there on seasonal to inter-54

annual timescales (e.g. Jong et al., 2016; X. Huang & Ullrich, 2017; G. Wang et al., 2021;55

Cheng et al., 2021). However, ENSO-induced predictability of regional climate using sta-56

tistical models has largely been assessed from the linear relationship with ENSO, using57

linear regression or singular value decomposition, ignoring the inherent non-linearity of58

the climate system. Although, some studies have used non-linear machine learning ap-59

proaches to study ENSO associated atmospheric teleconnections (e.g. Hsieh et al., 2006;60

Wu et al., 2005).61

Further, traditional representations of ENSO in these linear statistical models, in-62

clude spatial averages over specific regions of the tropical Pacific like the Niño 3.4 index,63

or use linear empirical orthogonal functions. These approaches prove to be inadequate64

in capturing the full spectrum of spatial variability of ENSO’s SST pattern and the as-65

sociated diversity of remote responses affecting regional climate predictability (e.g. Tren-66

berth & Stepaniak, 2001; Williams & Patricola, 2018). Several recent studies have ex-67

plored methods to better capture ENSO’s variability, diversity and non-linearity (e.g.68

Williams & Patricola, 2018). However, these approaches largely devise indices that rep-69

resent the oceanic or atmospheric variability over the tropical Pacific in isolation of its70

remote teleconnections.71

Machine learning methods, like autoencoders, allow identification of dominant non-72

linear variability and co-variability patterns that might offer enhanced predictability. Au-73

toencoders are artificial neural networks that regenerate the original data from efficient74

representations (encodings) of the data like principal component analysis (PCA). They,75
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however, transform data to non-linear latent spaces via non-linear activation functions,76

thus imparting the additional capability of capturing the underlying non-linear relation-77

ships within the data (e.g. Y. Wang et al., 2016; Charte et al., 2018; Masti & Bempo-78

rad, 2018). Studies show that autoencoders can better detect dominant variability pat-79

terns over other techniques, like the PCA (e.g. Y. Wang et al., 2016; Zamparo & Zhang,80

2015; Fournier & Aloise, 2019). Some studies (e.g. Tang & Hsieh, 2003; He & Eastman,81

2020) have also demonstrated the use of autoencoders to effectively identify modes of82

climate variability, including those related to ENSO.83

Further, multitask learning (MTL) solves multiple learning tasks at the same time84

while exploiting commonalities and differences across tasks (e.g. Caruana, 1997). MTL85

has been applied to many problems including natural language processing (Collobert &86

Weston, 2008; Liu et al., 2017; S. Chen et al., 2021), speech recognition (Deng et al., 2013;87

Kim et al., 2017; Toshniwal et al., 2017; Shinohara, 2016) and computer vision (Girshick,88

2015; Devries et al., 2014; Kendall et al., 2018) to improve prediction accuracy and learn-89

ing efficiency of task-specific models. Recent studies have shown the usefulness of multi-90

input and/or multi-output networks for segmenting data and extracting useful informa-91

tion when there are multiple variables present (Raza et al., 2017; Yaguchi et al., 2020;92

Ghifary et al., 2015). For example, Ghifary et al. (2015) used a multi-output autoencoder,93

which they call a multi-task autoencoder (MTAE), for domain generalization. The MTAE94

has a single input variable with multiple outputs where the input-hidden weights rep-95

resent variable shared parameters and the hidden-output weights represent domain-specific96

parameters. MTAE learns features shared across all domains.97

Here, we expand on the MTAE approach and construct a novel multi-input multi-98

output autoencoder (MIMO-AE) to effectively extract the most prominent shared fea-99

tures between monthly TP-SSTs and SC-PRECIP anomalies and capture their under-100

lying non-linear relationship using an Earth System Model (ESM) simulation and ob-101

servational data. Our network architecture is designed to yield a temporal index of the102

co-variability of the two variables. We further use Long Short-term Memory (LSTM) mod-103

els to predict this monthly index, which we decode to generate predicted SC-PRECIP,104

and evaluate its predictive skill. We show that MIMO-AE can be a powerful tool to iso-105

late important teleconnections and wield enhanced sub-seasonal regional predictability.106
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1.1 Model Simulations and Data107

We use a 165 years-long historical simulation of the Energy Exascale Earth Sys-108

tem Model version 1 (E3SMv1) (E3SM Project, 2018), and utilize the first 100 years of109

the simulation for training the MIMO-AE network. E3SMv1 is found to effectively cap-110

ture temporal variability of ENSO and reproduce ENSO associated spatial SST patterns111

when compared to observational datasets (Golaz et al., 2019), although with a larger west-112

ward extent of SST anomalies during El Nino events. It also simulates the teleconnec-113

tions of ENSO to US winter season precipitation well (Mahajan et al., 2021). We use ob-114

served precipitation data from NOAA’s PRECipitation REConstruction over Land (PREC/L)115

at 1◦ resolution (M. Chen et al., 2002). PREC/L is a global analysis of interpolated rain116

gauge observations from 1948 to 2020. We use observed SSTs for the same period from117

the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST 1.1) dataset118

available at a 1◦ resolution (Rayner et al., 2003).119

2 Methodology120

2.1 Autoencoder121

An autoencoder is an unsupervised neural network that is trained to learn an iden-122

tity function, a function that returns the same value as its input. It aims to efficiently123

compress and encode data by minimizing the reconstruction error. A simple autoencoder,124

shown in figure 1a, contains a hidden layer h that describes a representation of impor-125

tant attributes of the input (e.g. Goodfellow et al., 2016). The general autoencoder con-126

sists of two parts: an encoder and a decoder. The encoder maps input x to h by a cho-127

sen activation function f(),128

h = f(x · we) (1)

where we are the encoder weights. The decoder then maps h to the reconstruction of x,129

represented by x′:130

x′ = f(h · wd) (2)

where wd are the decoder weights.131

By using a linear activation function, the single hidden layer autoencoder behaves132

similarly to a PCA (e.g. Bourlard & Kamp, 1988; Plaut, 2018). The number of hidden133

layers can also be increased to create a deep autoencoder, with the middle layer often134
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referred to as the bottleneck layer. Tang and Hsieh (2003) used a simple autoencoder135

to extract the leading nonlinear mode of interannual variability of upper ocean heat con-136

tent over the tropical Pacific, with a single node bottleneck hidden layer, to reveal an137

asymmetry in the spatial pattern between characteristic El Niño and La Niña episodes.138

For spatio-temporal data, the temporal vectors at the bottleneck nodes are analogous139

to principal components (PC) of PCA. The value of a temporal vector at a given time140

t results from passing the spatial data at t through the network. The non-linear activa-141

tion functions imply that the spatial pattern derived from reconstructing the data us-142

ing the decoder varies with the magnitude of the temporal vector at t, unlike PCs which143

yield a standing spatial pattern (e.g. Tang & Hsieh, 2003).144

2.1.1 MIMO-AE145

Figure 1b illustrates our MIMO-AE architecture designed to extract the non-linear146

relationship between TP-SSTs and SC-PRECIP on monthly timescales. The encoder con-147

sists of two separate input temporal vectors (TP-SST and SC-PRECIP) that are passed148

through two hidden layers before concatenating and passing through a single hidden node.149

The input (and output) vectors represent SST anomalies at each grid box within the boxed150

domain over tropical Pacific (20◦N to 20◦S, 120◦E to 70◦W) and precipitation anoma-151

lies over each grid box in the boxed domain over Southern California (32◦N to 35◦N, 120◦W152

to 114◦W) (Figure 1b). The first hidden layer, consisting of 50 nodes each for the two153

variables, can be thought of as feature extraction of the original data. The next hidden154

layer then shrinks the data to 10 hidden nodes, again separately for the two variables,155

in order to reduce the computational complexity of data. This data is then passed to a156

single hidden node that is shared by the two input variables. This hidden node repre-157

sents the shared non-linear latent structure of both the SST and precipitation vectors.158

The vectors are then split back into two from the shared hidden node and passed through159

the decoder, which is identical in structure (with different weights) to the encoder, to160

reconstruct back to the original shape in the output layer. We use the ”tanh”, or hyper-161

bolic tangent, activation function for all the hidden layers.162

We performed several iterations of the network design with different number of hid-163

den layers, neurons and activation functions and chose the MIMO-AE architecture (de-164

scribed above) that exhibited a low value of the training loss function as well as explain-165

ing a large fraction of the variability of SC-PRECIP. The loss is calculated by using a166
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mean squared error (MSE) using the following equation:167

MSE =
1

N

∑
i

(Pi − Ti)
2 (3)

where Pi is the predicted value of the reconstructed data at point i and Ti is the true168

value of the data at point i, which here is the original input data. The input variables169

are scaled using a min-max scaler before training is performed. MIMO-AE was trained170

on first 100 years of the E3SM simulation data for 100 epochs with an AdaGrad loss op-171

timizer using tensorflow on one CPU node on the National Energy Research Scientific172

Computing Center’s (NERSC) Cori super computer. The training loss for the scaled TP-173

SST reconstruction (orange) and SC-PRECIP (blue) are shown in figure 1c. We refer174

to this MIMO-AE network as MIMO-AE-E3SM, hereafter.175

Figure 1d and e show the R2 values (fraction of variance explained) between the176

reconstructions from the MIMO-AE and the original data for the 100 years of training177

data for TP-SSTs and SC-PRECIP respectively. The MIMO-AE explains more than 80%178

of the variability of Southern California for most grid points and about 20% of the vari-179

ability of TP-SSTs over most of the domain. The relatively weaker explained variabil-180

ity of MIMO-AE over tropical Pacific is an artefact of our network design preference. We181

ad-hocly chose a network that explained a larger fraction of the variability of SC-PRECIP,182

while also capturing the tele-connections to TP-SST, since our goal was largely to as-183

sess predictability of SC-PRECIP here. Likewise, a network where TP-SST variability184

dominates can also be picked if needed. In the future, we plan to make the network de-185

sign more systematic, for example, by adding a penalizing term for explained variabil-186

ity of each field in the loss function.187

We refer to the temporal vector of the single node bottleneck layer that represents188

the dominant non-linear mode of co-variability of TP-SSTs and SC-PRECIP as the MIMO-189

AE index, hereafter. We apply the MIMO-AE-E3SM trained on 100 years of E3SM his-190

torical simulation on the latter 65 years of the run. As a form of transfer learning, we191

combine the first 100 years of the E3SM simulation with 32 years of observational data192

(1948-1979) to train another MIMO-AE network for application to remaining observa-193

tional data (1980-2020), termed MIMO-AE-OBS. Although, we find that using MIMO-194

AE-E3SM on observational data imparted similar predictability skills (Results section)195

as MIMO-AE-OBS for observational data. Ham et al. (2019) also used a transfer learn-196

ing approach, whereby, they train a convolutional neural network (CNN) with global SST197
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and heat content data from historical simulations of 21 CMIP5 models. They retrained198

the network with observational data but with weights initialized from the CMIP5-trained199

network, which was then used to predict the observed Niño 3.4 index. While we have200

not investigated their approach to transfer learning in our exploratory study of MIMO-201

AE here, we plan to apply this and other transfer learning methods to MIMO-AE in the202

future.203

2.2 LSTM204

To study predictability, we also train long-short term memory (LSTM) recurrent205

neural networks as our time series prediction models. LSTMs are a special kind of re-206

current neural network that learn long term dependencies whose cells are constructed207

with internal mechanisms called ”gates” that control the flow of information through the208

cell (Hochreiter & Schmidhuber, 1997). There are three types of gates: forget, input and209

output. These allow for the model to learn what features in the data are important to210

keep or throw away before passing it down the line to the next cell. LSTM models have211

recently been shown to perform better at time series prediction over linear models for212

Niño 3.4 index (A. Huang et al., 2019; Mu et al., 2020; Broni-Bedaiko et al., 2019; Gupta213

et al., 2020), and we use them here to evaluate the predictability of MIMO-AE index as214

well as SC-PRECIP.215

LSTM models are constructed individually for each of the time series of MIMO-216

AE index, Niño 3.4 index, ELI and regionally averaged SC-PRECIP anomalies using the217

first 100 years of the E3SM data. We train separate LSTMs for the above listed time se-218

ries using the first 32 year segment (1948-1979) of observational dataset used. Given a219

predicted value of MIMO-AE index, predicted SC-PRECIP (and TP-SSTs) can be con-220

structed by passing the index through the decoder of MIMO-AE. We optimize the LSTM221

architecture by choosing the number of hidden nodes that maintains a low training loss222

for all indices, found to be 100 nodes. We train separate LSTMs for each of the forecast223

lead times ranging from 1 to 12 months and evaluate their predictive skill on the remain-224

ing 65 years of E3SM data and the 41 years of observational data.225
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3 Results226

3.1 MIMO-AE227

Figure 2a shows the the three-month moving average of the standardized MIMO-228

AE index time-series for a segment (last 40 years, 1974-2013) of the 65 years of the E3SM229

testing data. MIMO-AE index was generated by passing the TP-SST and SC-PRECIP230

data through the MIMO-AE network trained on the prior 100 years of simulation. Also,231

shown are the three-month moving average time series of standardized Niño 3.4 index,232

ELI and domain averaged SC-PRECIP. The correlations of each time-series against do-233

main averaged SC-PRECIP is also listed for the smoothed data. Fig. 2b shows the same234

but for a segment of the observational data (1980-2019) using MIMO-AE-OBS. To re-235

iterate, MIMO-AE index for observations is computed by passing the observed data through236

the MIMO-AE-OBS network.237

For both E3SM and observations, the correlation between SC-PRECIP and MIMO-238

AE index is higher than that between SC-PRECIP and Niño 3.4 index or ELI, given that239

precipitation data is fed in the generation of MIMO-AE index and MIMO-AE explains240

a large fraction of the SC-PRECIP variability. The correlation between MIMO-AE and241

both Niño 3.4 index and ELI is weak both for E3SM (0.35 and 0.27 respectively) and242

observational data (0.43 and 0.39 respectively). However, the correlation between MIMO-243

AE and Niño 3.4 is higher than the correlation between SC-PRECIP and Niño 3.4. The244

above correlations are indicative of the shared variability captured by MIMO-AE. Fur-245

ther, in observational data, all indices spike during the 1982-83 and 1996-97 El Niño events,246

but only the Niño 3.4 peaks during the 2015-16 El Niño event. Thus, MIMO-AE also247

categorizes the 2015/2016 event weaker than the Niño 3.4, similar to the ELI index (Williams248

& Patricola, 2018).249

Fig. 2c and d show the probability density functions of the Niño 3.4, ELI, MIMO-250

AE index and domain averaged SC-PRECIP for E3SM testing data and observations.251

While the Niño 3.4 index tends to be symmetric, the ELI is skewed towards the left (west-252

wards), both for E3SM data and observations as noted by Williams and Patricola (2018),253

with a thicker right tail (eastwards). ELI is a non-linear SST-based index and represents254

the average longitude of deep convective activity over the tropical Pacific governing the255

Rossby wave trains originating from there. MIMO-AE which represents the shared co-256

variability between the TP-SSTs and SC-PRECIP also shows a leftwards skewed distri-257
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bution with a larger number of strong positive events than strong negative events. The258

leftwards skewness may follow from the density function of precipitation that is natu-259

rally skewed leftwards, even for monthly average data (e.g. Mahajan et al., 2012). But,260

it could also be reflective of the skewed relationship between TP-SSTs and SC-PRECIP,261

with some events over the tropical Pacific triggering extreme positive anomalous events262

in SC-PRECIP. While, co-variability between the two remains weaker during strong neg-263

ative SC-PRECIP anomalous events. The skewness of MIMO-AE index is noted to be264

stronger in E3SM than in observations.265

Fig. 2e and f show the composite of reconstructions of TP-SST and SC-PRECIP266

during the strongest 10 positive and negative monthly MIMO-AE index values for both267

the E3SM testing data. Strong (negative) SC-PRECIP anomalies during those events268

are associated with strong positive (negative) anomalies in central tropical Pacific and269

northeast tropical Pacific and weak positive (negative) anomalies in the Eastern trop-270

ical Pacific. Similar patterns are noted for the strongest positive and negative MIMO-271

index values for reconstructions of TP-SST when observation data is passed through the272

MIMO-AE network (Fig. 2f).273

Fig. 2g shows the December to February average reconstructions for the three strongest274

El-Niño events (1981-82, 1997-98, 2015-16) in observations. It is apparent that the spa-275

tial patterns of these reconstructions are not standing - more clearly here than the com-276

posite plots (Fig. 2e,f) - with varying contour patterns of SST anomalies for each of the277

three events. The 2015-16 El Niño events is associated with weak positive anomalies in278

the MIMO-AE latent space for SC-PRECIP and TP-SST over much of tropical Pacific.279

In contrast, the 1981-82 and 1997-98 events are associated with strong positive anoma-280

lies both in SC-PRECIP and TP-SST, with the stronger 1997-98 SC-PRECIP anoma-281

lies associated with stronger TP-SST anomalies and varied contour delineations. When282

a separate MIMO-AE network is trained on all of the observation data (1948-2020) and283

with no E3SM data, the spatial pattern of the TP-SST during 1981-82 and 1997-98 ex-284

hibits a narrow band of strong anomalies over equatorial Pacific including coastal East-285

ern Pacific (not shown), illustrating the influence of E3SM model bias in MIMO-AE-OBS.286

We plan to explore ways to reduce the influence of model bias in MIMO-AE-OBS, for287

example by appropriately weighing the observational data used during training in the288

future.289
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3.2 Predictability of MIMO-AE Index290

We use LSTM models to predict the MIMO-AE index for lead times of 1 to 12 months.291

Figure 3a shows the predictive skill of the LSTMs to predict the MIMO-AE index for292

the 65 years of E3SM testing data. The predictive skill is computed as the correlation293

between the LSTM predicted value and the true value of the MIMO-AE index when data294

is passed through the network. The predictive skill of Niño 3.4 index and ELI index us-295

ing LSTMs are also shown. One standard deviation spread, computed using the Fisher296

transformation, are shown as color shadings. The MIMO-AE index exhibits a lower pre-297

dictive skill than both the Niño 3.4 and the ELI index at all lead times longer than two298

months. This is likely due to the presence of noisy precipitation data in MIMO-AE, which299

demonstrates poor temporal auto-correlations on these time scales (e.g. Mahajan et al.,300

2012), offering little predictive skill.301

This is evident in the Figure 3a, which also shows the predictive skill of domain302

averaged SC-PRECIP using LSTMs, and serves as a baseline for evaluation of predic-303

tive skill. Precipitation shows a high skill at a lead time of one month like the other in-304

dices, but offers poor predictive skill at longer lead times. MIMO-AE index provides more305

predictive skill than precipitation itself for two and three month lead times, likely due306

to the inclusion of TP-SSTs, which have higher predictive skill due to the thermal in-307

ertia of the oceanic mixed layer. But, MIMO-AE index provides poor skill for longer lead308

times. Figure 3b shows the LSTM skills as a function of the calendar month when the309

prediction is initialized for all indices and generally reflect Fig. 3a, while also showing310

the well-known spring predictability barrier associated with Nino3.4 and ELI.311

The above results hold for the observational data too, with the the MIMO-AE in-312

dex exhibiting poorer predictive skill when compared to Niño 3.4 index and ELI on these313

monthly time scales. Similar to E3SM data, MIMO-AE index demonstrates weaker skill314

at 2-months lead times and longer, while precipitation time series exhibits no skill at lead315

times longer than one month irrespective of the initial month of predictions (Figure 3d).316

Although, the skill of predicting MIMO-AE index is substantially higher than that of317

predicting SC-PRECIP.318

–11–



manuscript submitted to Geophysical Research Letters

3.3 SC-PRECIP Predictability from MIMO-AE Index319

To evaluate the predictability of SC-PRECIP using the MIMO-AE index, we pass320

the predicted MIMO-AE index values through the decoder part of the MIMO-AE to con-321

struct spatio-temporal predictions of SC-PRECIP anomalies. Figure 3e shows the skill322

of predicted SC-PRECIP. The predicted spatial pattern of the SC-PRECIP constructed323

by the MIMO-AE decoder is domain averaged to compute predictive skill. For the Niño324

3.4 and ELI, we predict domain average SC-PRECIP from LSTM predicted values of the325

indices by using linear regression models (also shown). The linear regression models were326

constructed using the training data for E3SM and observations separately. MIMO-AE327

generated predicted precipitation exhibits stronger skill than other indices for lead times328

of up to 3-months.329

However, MIMO-AE index’s skills at lead times of one to three months are statis-330

tically indistinguishable from that of SC-PRECIP index at the 95% confidence level based331

on a two-tailed Student’s t-test of the Fisher transformations of the correlations. To ac-332

count for the auto-correlation in the time-series’, we use effective sample size for the null333

hypothesis tests. We calculate this effective sample size using the following equation Neffective =334

N

1+2
∑N

i
γ2
i

where γi is the auto-correlation of our SC-PRECIP time series at lag i and335

N is our total number of samples (Livezey & Chen, 1983). Although, the improved skill336

is a significant improvement over that of Niño 3.4 index and ELI. MIMO-AE skills are337

weaker and also indistinguishable from that of SC-PRECIP for longer lags, and become338

statistically indifferent from zero at a lead time of 6-months and longer. The skill of Niño339

3.4 and ELI is statistically insignificant at all lead times on these monthly scales. The340

enhanced predictive skill of precipitation from MIMO-AE up to a lead time of 3 months341

is noted for almost all initialization calendar months of the year as compared to other342

indices (Figure 3f).343

Enhanced predictive skill of MIMO-AE of SC-PRECIP is also noted for the 41 years344

of observation testing data (Figure 3g). The improvement in MIMO-AE skill as com-345

pared to other indicies is statistically significant at two to four months lead times at the346

95% confidence level. The high skill at 1-month lead time is statistically indifferent from347

that of SC-PRECIP. And, the skills are statistically zero for 6-months lead time and longer.348

Also, the enhanced skill of MIMO-AE is noted for almost all initialization calendar months349

of the year (Figure 3h). Similar to E3SM, the Niño 3.4 index and ELI demonstrate weak350
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skill at all lead month lengths on monthly scales, although they are statistically differ-351

ent from zero for 1-month and 2-month lead times. This is consistent with other stud-352

ies (e.g. LHeureux et al., 2021; Pan et al., 2019; S. Wang et al., 2017) that find poor skill353

from ENSO on noisier sub-seasonal time scales over Western US - largely due to atmo-354

spheric noise - in spite of significant correlations between SC-PRECIP and Niño 3.4 in-355

dex on smoother seasonal and inter-annual time scales in observational data (e.g. Jong356

et al., 2016; X. Huang & Ullrich, 2017; G. Wang et al., 2021; Cheng et al., 2021, also Fig.357

2b).358

4 Summary and Discussion359

In a novel approach, we apply MIMO-AE to extract the non-linear relationships360

between TP-SST and SC-PRECIP on monthly scales and find it to be a powerful tool361

to enhance sub-seasonal regional predictability. We design the network to yield a tem-362

poral index of the projection of these two data sets on the inherent non-linear space of363

the network. We use LSTMs of the MIMO-AE index to assess the predictability of SC-364

PRECIP afforded by MIMO-AE on monthly time scales. LSTM-predicted values of MIMO-365

AE index are decoded using the MIMO-AE decoder to yield predicted SC-PRECIP. We366

find that the MIMO-AE index offers statistically significant improvements in predictive367

skill of SC-PRECIP up to a lead time of up to four months for both E3SM and obser-368

vations, as compared to that imparted by both Niño 3.4 and ELI.369

Studies (e.g. LHeureux et al., 2021; S. Wang et al., 2017; G. Wang et al., 2021; Cheng370

et al., 2021) suggest enhanced sub-seasonal and seasonal predictability of Western US371

precipitation from atmospheric variables; like geopotential heights, upper level zonal winds,372

moisture transport, etc.; as well as Northern Pacific SSTs. While we have only utilized373

TP-SST here for demonstrating the use of multi-task learning for enhanced predictive374

skills, we plan to incorporate additional variables in the future within the MIMO-AE frame-375

work. Further, atmospheric noise is often associated with poor predictability of regional376

climate induced by modes of climate variability on seasonal timescales (e.g. S. Wang et377

al., 2017; Cheng et al., 2021). We plan to explore techniques, like de-noising autoencoders,378

that account for the presence of noise in data and the modeled system and may allow379

for the extraction of predictability through the atmospheric noise on seasonal and longer380

time scales. Also, we train our MIMO-AE here using a historical simulation from E3SMv1,381

which inherits E3SM’s model bias. In the future, we plan to use multi-model simulations382
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from the CMIP6 archive and use Bayesian and other transfer learning approaches to weight383

the available observations appropriately while training network architectures. We also384

plan to condense the MIMO-AE and LSTMs into one combined MIMO-AE-LSTM net-385

work to account for spatial and temporal variability simultaneously to assess predictabil-386

ity in a more coherent manner.387

Our results demonstrate the promise of multi-task learning to enhance predictabil-388

ity afforded by remote teleconnections, supporting a focused exploration of other per-389

tinent multi-task and multi-modal methods, like multi-task CNNs for such purposes. Dy-390

namical models exhibit more skill at predicting tropical SSTs than precipitation. It would391

be interesting to explore hybrid models that utilize dynamical models predicted trop-392

ical SSTs with MIMO-AE-like networks that extract non-linear remote teleconnections393

to make regional climate predictions. Further, machine learning models have demonstrated394

significantly more skill at seasonal and multi-annual predictions of tropical SSTs than395

dynamical models (e.g. Ham et al., 2019). Combining such networks with multi-task learn-396

ing methods provides the potential to further enhance predictability of regional climate.397
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5.1 Data Availability Statement412

The E3SMv1 data used in this study is freely available through the Earth System413

Grid Federation (ESGF) distributed archives via https://doi.org/10.1029/2018MS001603414

and is available through the ESGF interface https://esgf-node.llnl.gov/projects/415

e3sm/ (E3SM Project, 2018).416

Observational SST data from the HadISST 1.1 dataset (Rayner et al., 2003) can417

be downloaded from the web at https://www.metoffice.gov.uk/hadobs/hadisst/.418

Observed precipitation data from NOAA’s PREC/L (M. Chen et al., 2002) can also be419

found open access at https://psl.noaa.gov/data/gridded/data.precl.html.420
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Figure 1. Network architecture. A simple autoencoder architecture (a), MIMO-AE architec-

ture (b), training losses for MIMO-AE over 100 epochs using scaled data (c), and the average R2

between the MIMO-AE reconstructed and original input data for Southern California precipita-

tion (d) and Tropical Pacific SST (e). We note that the connections between neurons in (b) are

shown selectively for clarity and in actuality all neurons are connected with every neuron in the

adjacent layers.
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iñ

o
3
.4

in
d
ex

(o
ra

n
g
e)

,
E

L
I

(g
re

en
)

a
n
d

d
o
m

a
in

av
er

a
g
ed

S
C

-P
R

E
C

IP
(b

la
ck

)
a
t

fo
re

ca
st

le
a
d

ti
m

es
o
f

1
to

1
2

m
o
n
th

s
fo

r
E

3
S
M

te
st

in
g

d
a
ta

(a
);

a
n
d

o
b
se

rv
a
ti

o
n
a
l

te
st

in
g

d
a
ta

(c
).

S
h
a
d
in

g
re

p
re

se
n
ts

o
n
e

st
a
n
d
a
rd

d
ev

ia
-

ti
o
n

o
f

th
e

co
rr

el
a
ti

o
n

co
effi

ci
en

ts
.

P
re

d
ic

ti
v
e

sk
il
l

o
f

L
S
T

M
s

a
s

a
fu

n
ct

io
n

o
f

in
it

ia
li
za

ti
o
n

ca
le

n
d
a
r

m
o
n
th

a
n
d

fo
re

ca
st

le
a
d

ti
m

e
fr

o
m

d
o
m

a
in

av
er

a
g
e

S
C

-P
R

E
C

IP
,

M
IM

O
-A

E
in

d
ex

,
E

L
I

a
n
d

N
iñ

o
3
.4

in
d
ex

fo
r

E
3
S
M

te
st

in
g

d
a
ta

(b
);

a
n
d

o
b
se

rv
a
ti

o
n
a
l

te
st

in
g

d
a
ta

(d
).

C
ro

ss
m

a
rk

in
g
s

in
d
ic

a
te

va
lu

es
si

g
n
ifi

ca
n
t

a
t

th
e

9
5
%

co
n
fi
d
en

ce
le

v
el

.
P

re
d
ic

ta
b
il
it

y
o
f

S
C

-P
R

E
C

IP
u
si

n
g

M
IM

O
-A

E
.

P
re

d
ic

ti
v
e

sk
il
l

o
f

M
IM

O
-A

E
in

d
ex

(b
lu

e)
,

N
iñ

o
3
.4

in
d
ex

(o
ra

n
g
e)

a
n
d

E
L

I
(g

re
en

)
a
t

p
re

d
ic

ti
n
g

d
o
m

a
in

av
er

a
g
ed

S
C

-P
R

E
C

IP
a
t

fo
re

ca
st

le
a
d

ti
m

es
o
f

1
to

1
2

m
o
n
th

s
fo

r
E

3
S
M

te
st

in
g

d
a
ta

(e
);

a
n
d

o
b
se

rv
a
ti

o
n
a
l

te
st

in
g

d
a
ta

(g
)

S
h
a
d
in

g
re

p
re

se
n
ts

o
n
e

st
a
n
-

d
a
rd

d
ev

ia
ti

o
n

o
f

th
e

co
rr

el
a
ti

o
n

co
effi

ci
en

ts
.

P
re

d
ic

ti
v
e

sk
il
l

o
f

d
o
m

a
in

av
er

a
g
e

S
C

-P
R

E
C

IP
a
s

a
fu

n
ct

io
n

o
f

in
it

ia
li
za

ti
o
n

ca
le

n
d
a
r

m
o
n
th

a
n
d

fo
re

ca
st

le
a
d

ti
m

e

fr
o
m

d
o
m

a
in

av
er

a
g
e

S
C

-P
R

E
C

IP
,

M
IM

O
-A

E
in

d
ex

,
E

L
I

a
n
d

N
iñ

o
3
.4

in
d
ex

fo
r

E
3
S
M

te
st

in
g

d
a
ta

(f
);

a
n
d

o
b
se

rv
a
ti

o
n
a
l

te
st

in
g

d
a
ta

(h
).

C
ro

ss
m

a
rk

in
g
s

in
d
ic

a
te

va
lu

es
si

g
n
ifi

ca
n
t

a
t

th
e

9
5
%

co
n
fi
d
en

ce
le

v
el

.
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