
P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
14
88
/v

3
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Enhancement of Scanco micro-CT images of granodiorite rocks

using a 3D convolutional neural network super-resolution algorithm

Alexandra Roslin1,1, Maxim Lebedev2,2, Travis Ryan Mitchell3,3, Italo Andres Onederra1,1,
and Christopher Ross Leonardi3,3

1University of Queensland
2Curtin University
3The University of Queensland

November 30, 2022

Abstract

X-Ray micro-computed tomography (micro-CT) is a standard method to perform three-dimensional analysis of the internal

structure of a rock sample. 3D X-Ray microscopes, such as those from the XRadia Versa family, provide images of high

resolution and contrast. Medical scanning machines can also be used for scanning rock samples to reduce operational cost

and time, but they generally provide poorer spatial resolution and contrast compared to 3D X-Ray microscopes. Recent

success in implementing deep learning algorithms to enhance image quality demonstrated that, in some cases, the application of

convolutional neural network (CNN) models might significantly enhance the resolution of the micro-CT images. In this research,

a super-resolution technique employing the U-Net 3D CNN architecture is applied to enhance the resolution of granodiorite rock

sample images obtained by two different 3D scanning machines. The high-resolution dataset was obtained using the XRadia

Versa XRM-500 microscope. It contained images with nominal resolutions of 10.3 and 5 microns. The low-resolution scanning

was performed using a Scanco medical μCT 50 machine, and the images from this dataset had a nominal resolution of 10.3

microns. Several models were created to enhance the quality of the low-resolution images, and the results were analysed. It was

observed that super-resolution processing could significantly improve the low-resolution micro-CT image quality and suppress

noise that appeared on medical images. The results presented in this study are of particular interest and value to geoscientists

that use medical scanners to study the structure of rock samples at large scale.
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Abstract

X-Ray micro-computed tomography (micro-CT) is a standard method to perform three-dimensional anal-

ysis of the internal structure of a rock sample. 3D X-Ray microscopes, such as those from the XRadia Versa

family, provide images of high resolution and contrast. Medical scanning machines can also be used for scan-

ning rock samples to reduce operational cost and time, but they generally provide poorer spatial resolution and

contrast compared to 3D X-Ray microscopes. Recent success in implementing deep learning algorithms to en-

hance image quality demonstrated that, in some cases, the application of convolutional neural network (CNN)

models might significantly enhance the resolution of the micro-CT images. In this research, a super-resolution

technique employing the U-Net 3D CNN architecture is applied to enhance the resolution of granodiorite rock

sample images obtained by two different 3D scanning machines. The high-resolution dataset was obtained

using the XRadia Versa XRM-500 microscope. It contained images with nominal resolutions of 10.3 and 5

microns. The low-resolution scanning was performed using a Scanco medical µCT 50 machine, and the images

from this dataset had a nominal resolution of 10.3 microns. Several models were created to enhance the quality

of the low-resolution images, and the results were analysed. It was observed that super-resolution processing

could significantly improve the low-resolution micro-CT image quality and suppress noise that appeared on

medical images. The results presented in this study are of particular interest and value to geoscientists that use

medical scanners to study the structure of rock samples at large scale.
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Plain language summary

In the field of geology, it is common to examine the structure of rocks through X-Ray imaging. It provides

a non-destructive method to estimate the mineral content and other important properties of a rock when consid-

ering the extraction of natural resources. The issue of cost, time, and accessibility to quality X-Ray scanning

equipment often leads geologist to perform this imaging on medical equipment, rather than that designed for the

analysis of earth materials. As a result, the obtained scans can be poor quality leading to large uncertainties in

the properties of interest. In this work, we used deep learning techniques to improve images obtained from the

more accessible, medical X-Ray microscopes such that they were comparable to those obtained from a purpose

built X-Ray machine. This was done by providing a neural network with medical X-Ray images, and training it

to improve them to high-resolution images of the same material. Following this, unseen images were provided
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to the network and the improved output images were observed to accurately correspond to those obtained with

a microscope designed for geomaterials.

1. Introduction1

X-Ray micro-computed tomography (micro-CT) is an imaging method that produces three-dimensional2

representations of the internal microstructure of materials without destroying the analysed samples [1, 2]. In3

order to obtain fine feature details and a representative image of the sample interior, high-resolution micro-4

CT images are required. The term “resolution” may seem intuitively clear, but various terminology is used5

in the literature to describe the resolution capacity of micro-CT instruments. Spatial resolution is the most6

comprehensive metric describing a micro-CT instrument. It measures the output of the system and accounts for7

multiple scanning characteristics, including X-ray source spot size, detector resolution, vibrational, electrical8

and thermal stability, magnification geometry, and imaging conditions [3]. Contrary to this, nominal resolution9

is a theoretical parameter that does not provide evidence of the true performance of a system. It is a resolution10

in ideal conditions. While the spatial resolution reflects the system performance, the nominal resolution is11

related to the system design. Practically, the term “nominal resolution” is often used to refer to the minimum12

achievable voxel size. The voxel size is a geometric calculation referring to a cross-sectional area in the sample13

that is imaged onto a single detector pixel. The voxel size accounts for only the detector pixel size and system14

geometry but does not consider the imaging conditions. Researchers that work with micro-CT images are often15

referencing the voxel size when talking about resolution. In this work, the authors are generally referring to the16

voxel size when mentioning the resolution of the micro-CT images and assume that the nominal resolution of17

the images is equal to their voxel size.18

It has already been demonstrated that the same voxel size of the images produced by different CT instru-19

ments does not guarantee similar image quality. Figure 1 compares two images of a carbon fibre composite20

material. Both images were taken with the same voxel size (1 µm), but using different micro-CT systems (simi-21

lar to the instruments used in the current research). However, only the image on the right can adequately resolve22

the carbon fibres. Another problem related to high-quality scanning is that a higher resolution requires physical23

reduction of the sample size, which reduces the possible volume of investigation [4]. Thus, the scanning system24

hardware, as well as the physical characteristics of the sample, often limit the ability to obtain high-resolution25

micro-CT images. In these circumstances, the potential to combine the output of different scanners and enhance26

the image resolution to maintain a large field of view (FOV) and sample size may have a significant practical27

value.28

To enhance the quality of low-resolution images, super-resolution algorithms that employ neural networks29

can be applied to the image data [5–10]. As opposed to the convenient interpolation methods (nearest neigh-30

bour [11], random forest [12], linear [13], and bicubic [14] interpolation), the convolutional neural network31

(CNN) methods, which are built within a deep learning framework [15], may use the real high-resolution im-32

age data for training to enhance the quality of the low-resolution data [16, 17].33

Various CNN architectures have been built for super-resolution processing, and their performance tested on34

the most common sedimentary rocks – sandstone, limestone, and coal. The effectiveness of super-resolution35

(SR) CNN models (SRCNN), such as the SR-Resnet, Enhanced Deep SR (EDSR), and Wide-Activation Deep36

SR (WDSR), for enhancing the quality of digital rock images has been demonstrated in the literature [10]. Most37

of these architectures are currently available for the users in 2D and 3D, along with the U-Net architecture which38

was used in this research. The U-Net architecture was first introduced by Ronneberger et al. [18] for medical39
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(a) (b)

Figure 1: Illustration of the difference between the voxel size and spatial resolution metrics for (a) a non-ZEISS commercially available
micro-CT system at 1 µm and (b) a ZEISS Xradia Versa at 1 µm. Although the same carbon fibre composite sample was imaged at the
same voxel size of 1 µm, the resulting image quality differs greatly (reproduced from [3]).

image segmentation. Since its introduction, the architecture and its modifications [19, 20] has become known40

as one of the most successful and reliable CNN architectures for segmentation purposes. It is presumably41

explained by the U-shape organisation of the structural blocks and the presence of concatenation blocks that42

combine the low-layer and high-layer features [21]. Although the U-Net is widely used for image segmentation,43

the architecture is not commonly used for super-resolution. However, the architectures that were built based on44

the U-Net, were previously used for SR [22, 23].45

This research logically continues the work which was reported in Roslin et al. [24]. In the authors’ earlier46

research, the U-Net 3D architecture was used to build a SRCNN model. The model was trained on two triplexes47

of micro-CT XRadia Versa image data, and it was demonstrated that the U-Net 3D architecture significantly48

enhanced the quality of the lower resolution images. The work also demonstrated how the enhanced image49

quality influences the segmentation results. This work investigates the validity and performance of the U-Net50

3D model when trained on a combination of Scanco Medical and XRadia Versa datasets. It studies how the51

different training parameters are related to the quality of the processed images and presents the results for each.52

It is also discussed in this paper how SR processing can be optimised to reduce the time required for CNN53

model training.54

To summarise, since the introduction of artificial intelligence methods for image processing, the evolution of55

these methods has gone in three main directions, namely: creating new techniques and architectures; improving56

the performance of the existing methods and complicating the architectures, and; applying the current methods57

for new materials and finding the practical application of the existing methods in the applied sciences.58

The authors consider all the above-mentioned research areas as equally important and contributing to the59

field of science. The research described in this work can be classified as related to the third research area and60

is aimed at applying the previously written convolutional neural network architecture to explore how AI image61

processing may help improve the resolution of the rock images made by the low-resolution scanning machine.62

Many previous studies investigated image quality enhancement using high-resolution images and downsampled63
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images to demonstrate the performance of the algorithms. Low-resolution images are generally downsampled64

using the predefined coefficient, as discussed in the literature review. Studies focused on combining real images65

of different origins, and thus, which resolution is not directly correlated, are not widely presented in the liter-66

ature but, based on the authors’ experience, present significant importance for the industry. Another key point67

highlighted in this work is the application of deep learning methods for solid ore rocks. Some attempts were68

made to apply deep learning segmentation for ore rocks, but ore rocks are still out of the scope of the majority69

of the researchers, although successful deep learning implementation examples may encourage the industry to70

adapt the described practices.71

This paper is structured to, first, introduce the applied methodology and the rock samples used for the72

research (Section 2). This includes a description of the analysed samples, low- and high-resolution micro-CT73

imaging and an explanation of the U-Net architecture. Following this, the results of the application of super-74

resolution processing are demonstrated, different combinations of XRadia and Scanco micro-CT images are75

tested and the results are validated using several image quality assessment criteria (Section 3). The obtained76

results are discussed (Section 4), and conclusions (Section 5) are drawn on how the research can be used in77

practice.78

2. Methodology79

In this research, the 3D U-Net architecture was used for super-resolution processing. The structure of this80

CNN architecture is presented and described in this section. The input data for SR were obtained by micro-81

CT scanning of a granodiorite sample. The sample was scanned with different resolutions using two different82

micro-CT scans, namely XRadia for high-resolution scanning and Scanco for low-resolution imaging.83

2.1. Samples84

Figure 2 shows the sample of subvolcanic igneous rock that was used in this study. The mineral composition85

of the sample corresponds to granodiorite. The sample has a porphyritic texture and contains pores, partly-86

healed fractures, and grains of accessory minerals such as pyrite, rutile, sphalerite, molybdenite, and corundum.87

Some signs of hydrothermal alteration, such as quartzification and sericitisation, were observed. The sample88

was subjected to stress induced by a blast wave before the scanning. The blast wave produced several fractures89

which crossed the entire sample. The sample has a cuboidal shape with dimensions of approximately 18× 18×90

34 mm.91

2.2. Low-resolution micro-CT scanning92

The rock sample was analysed with a micro-computed tomography medical tool (µCT50, SCANCO Med-93

ical AG, Brütisellen, Switzerland). The sample was positioned, and stabilised with foam padding, in 34 mm94

tubes before being scanned with an isotropic voxel size of 10.3 µm3. The sample was scanned in air at an95

energy of 90 kV p and a current of 155 µA. The integration time was set at 1320 ms, once averaged, resulting in96

a 1.32 s sample time. A 0.1 mm copper filter was used. The images were exported as a DICOM stack to allow97

for further processing. Characteristics of the micro-CT Scanco dataset are listed in Table 1.98

2.3. High-resolution micro-CT scanning99

Three resolutions were used to scan the sample to provide sufficient data for training and validation of the100

deep learning algorithms applied in this study. The sample was scanned at nominal resolutions of 5, 10.3 and 36101
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Figure 2: Photographic images of the cuboidal rock sample used to examine SR processing of images obtained from medical scanners.

Table 1: Characteristics of the micro-CT data obtained with Scanco and XRadia scanners.

Width Height Depth Voxel size
Image set [px] [px] [px] [µm]

Scanco 10.3 3388 3304 3000 10.3000
XRadia 5.0 988 1012 994 5.0000
XRadia 10.3 1000 1024 1009 10.3000
XRadia 36.0 1004 1024 1016 36.0002

microns (µm). The VersaXRM-500 can potentially achieve a true spatial resolution of 0.9 µm with a minimum102

achievable voxel size of 0.3 µm. Advanced absorption and phase contrast (for soft or transparent materials)103

provide greater versatility in overcoming the limitations of traditional computed tomography. Characteristics104

of the micro-CT XRadia dataset are additionally listed in Table 1. The parameters of the micro-CT scanning are105

summarised in Table 2. After scanning, the images were exported in a .txm file format for further processing.106

Table 2: Scanning parameters used for the three resolutions obtained from the XRadia 3D microscope.

Lens Voltage Filter Voxel size
Image set [kV] [µm]

XRadia 5.0 0.4× 80 Air 5.0
XRadia 10.3 0.4× 80 Air 10.3
XRadia 36.0 0.4× 80 Air 36.0

2.4. Convolutional neural network architecture107

The current research employed a CNN architecture which is called U-Net 3D. The U-Net architecture was108

introduced by Ronneberger [18] to segment large medical images. This architecture can be described as a109

U-shape architecture consisting of two networks, namely the encoder and the decoder (Figure 3).110

The U-Net architecture consists of a convolution operation, max pooling, rectified linear unit (ReLU) acti-111

vation, concatenation, and upsampling layers. These blocks form a contracting path (left side) and expansive112

path (right side) [18]. The contracting path (encoder) is composed of the repeated convolutional layers in which113

the filters slide along the input data and produce specific feature maps, thus, extracting the key features from114
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Figure 3: The 3D U-Net architecture in which blue boxes represent feature maps. The number of channels is denoted above each
feature map (reproduced from [19]).

the input dataset. The size of the filters is 3 × 3 × 3. The process of sliding the filter along the data is referred115

to as a stride. For example, a stride of one means that the filter moves one unit along the data matrix. Each116

convolution layer is followed by an activation function. The activation function defines how the weighted sum117

of the input from the previous layer is transformed into an output from a node or nodes in the next layer of the118

network. The U-Net uses the ReLU activation function, which is one of the most popular activation functions119

in deep learning due to its simplicity and effectiveness. The ReLU function is calculated as the maximum of120

zero and x, which means that if the input value, x, is negative, the function returns a value of zero, otherwise,121

the value x is returned,122

f (x) =

0, if x ≤ 0

x, if x > 0.
(1)

The activation function is followed by the pooling layer. This layer is used to downsample the feature123

maps by summarising the presence of the elements in the feature map’s patches while preserving the essential124

structure of the data [25]. The U-Net uses a 2 × 2 × 2 maximum pooling operation with a stride of two for125

downsampling.126

The second part of the architecture is the decoder. The decoder consists of upsampling and concatenation127

blocks followed by convolution operations. The upsampling procedure expands the feature dimensions and128

halves the number of feature channels, restoring the feature map to the original size of the input image. It is129

required to meet the same size with the corresponding concatenation blocks from the encoder part. The 3D130

U-Net architecture has a similar organisation, but an extra depth dimension is added.131

3. Results132

The real micro-CT rock images were utilised to enhance the quality of the low-resolution input data using133

the 3D U-Net architecture. The training parameters are presented in this section, as well as the quality assess-134

ment criteria used to analyse the accuracy of the SR processing. A combination of the micro-CT images with135

different resolutions from two micro-CT scanners was used. Several configurations were tested, and the results136

were analysed. Conclusions about the most accurate combination were drawn, and different combinations of137

micro-CT data were analysed to estimate the most optimal model training time.138
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3.1. Training139

The input dataset consisted of micro-CT images obtained at different resolutions, as given in Table 1. Those140

datasets were aligned and registered on the XRadia 36.0 image set and resampled to correspond to the resolution141

of the XRadia 5.0 set. Figure 4 shows the area of investigation for the low-resolution input (Scanco 10.3 dataset)142

and the high-resolution ground truth images (Xradia 5.0 and XRadia 10.3 image sets). The XRadia 36.0 image143

set was used only for data registration. After registering, the same volume of investigation was clipped from144

each set for training. The clipped volume consisted of 690× 651× 875 voxels. The model was trained with and145

without a mask. When the mask was used, only one out of four slices was kept for training. The total number146

of voxels for the input dataset was 393,041,250 without the mask and 98,372,610 with the mask. The volumes147

contained only the rock material, while the background (air and the sample holder material) was excluded.148

(a) (b) (c)

Figure 4: Comparison of the (a) 5 µm XRadia set (ground truth), (b) the 10.3 µm XRadia set (second ground truth), and (c) the 10.3 µm
Scanco set (input dataset). The same area of investigation is shown. Each image size is 690 × 651 voxels, or 3, 450 × 3, 255 voxels.

The next step was to create the U-Net 3D models. This was done using the Deep Learning Tool in the149

software package, Dragonfly (Object Research Systems Inc.). The default model architecture parameters were150

used, including a depth level of four, patch size of 32 × 32 × 32, and initial filter count of 32. The models151

were trained with the Adadelta optimiser using a default learning rate parameter of 1.0. The learning rate was152

reduced by a decay factor of 0.1 once the learning stagnated, given a patience of 10 epochs. The models were153

trained for 100 epochs, using mini-batch stochastic gradient descent on a mean square error loss function, with154

a batch size of 128.155

Several U-Net models were created to enhance the resolution of the Scanco images. The input image set was156

the same for all models (for one of the models, XRadia 10.3 set was added as a second set). The output image157

set was XRadia 10.3 or XRadia 5.0. These datasets were also used as ground truth, as shown in Figure 4. The158

models were trained with and without augmentation. When augmentation was used, two times augmentation159

with default flip, rotate, shear, and scale parameters was chosen. Augmentation was used together with a mask160

for model training. The models which were used and the configurations specified are summarised in Table 3.161

3.2. Validation162

The first round of validation is performed during the model training. The training process was controlled163

using a mean squared error (MSE) loss function, and the output model was validated against 20% of the total164

training data that had been reserved for this purpose. When the models were trained, they were applied to165

the whole volume of investigation of the studied samples and several metrics were analysed to estimate the166
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Table 3: The 3D U-Net models created for comparison of performance in SR processing of Scanco data.

Model Input dataset Output dataset Mask used Augmentation used Resulted dataset
#1 Scanco 10.3 XRadia 10.3 no no Processed #1
#2 Scanco 10.3 XRadia 5.0 no no Processed #2
#3 Scanco 10.3, XRadia 10.3 XRadia 5.0 no no Processed #3
#4 Scanco 10.3 XRadia 10.3 yes yes Processed #4
#5 Scanco 10.3 XRadia 5.0 yes yes Processed #5
#6 Scanco 10.3 XRadia 10.3 yes no Processed #6
#7 Scanco 10.3 XRadia 5.0 yes no Processed #7

quality of the processed and input image data. This volume of investigation contained the overlapping volumes167

from each dataset. The first parameter was the peak signal-to-noise ratio (PSNR). PSNR is expressed as the168

ratio between the maximum possible value (power) of a signal and the power of distorting noise that affects169

the quality of its representation. The second parameter was the structural similarity index measure (SSIM)170

which is a perceptual metric that quantifies image quality degradation caused by processing. SSIM measures171

the perceptual difference between two similar images. In this case, these are the ground truth and processed172

input image, and the ground truth and resampled input image. In other words, SSIM looks for similarities173

within pixels (if the pixels in the two images line up and or have similar pixel density values). SSIM is a174

standardised quality metric and is often considered one of the most objective criteria to estimate the quality of175

image reconstruction. The analysed parameters are summarised in Table 4 for each U-Net model created, as176

well as the raw Scanco images. For models which used the XRadia 5.0 image set, solely or together with the177

XRadia 10.3 set, as an output dataset (Table 3), the Xradia 5.0 set was used as a ground truth (Table 4). For the178

models trained using the XRadia 10.3 dataset only, the processed images were assessed using the XRadia 10.3179

set.180

As soon as the quality control parameters are analysed, the models were also applied to the whole volumes181

of data (for which the ground truth high-resolution data were not available). When the entire input datasets are182

reprocessed, the images were also analysed visually to estimate the quality of the reconstruction in the areas183

where ground truth high-quality images were not available.184

Table 4: Image quality assessment criteria for datasets compared with the ground truth sets (XRadia 5.0 and XRadia 10.3 image sets).

Processed dataset Ground truth dataset PSNR (dB) SSIM
Processed #1 XRadia 10.3 32.74 0.85
Processed #2 XRadia 5.0 35.35 0.86
Processed #3 XRadia 5.0 35.14 0.87
Processed #4 XRadia 10.3 33.02 0.86
Processed #5 XRadia 5.0 35.31 0.86
Processed #6 XRadia 10.3 21.02 0.78
Processed #7 XRadia 5.0 35.15 0.86
Scanco 10.3 XRadia 10.3 9.28 0.57

Table 4 also contains the quality metrics for the input Scanco 10.3 image set. It can be seen that the PSNR185

of the Scanco set is much lower than that of the processed datasets. PSNR (in dB) is defined as,186

PS NR = 20log10(Vmax) − 10log10(MS E), (2)
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where Vmax is the maximum possible voxel value. For the analysed images (16-bit images), it is 65,535.187

As the MSE approaches zero, the PSNR tends to infinity. It is usually supposed that the higher the PSNR,188

the better the quality of the reconstructed images. Wang et al. [10] demonstrated good super-resolution pro-189

cessing results and the reported average PSNR was in the range of approximately 23 − 29 dB depending on the190

rock type. For the SR processing of the XRadia triplexes, the PSNR was reported in the range of 34 − 36 dB191

[24].192

The SSIM ranges between zero and one. For good reconstruction techniques, the SSIM should be close to193

one. The reported values of the SSIM for the XRadia triplexes were in the range 0.81-0.91.194

Figure 4 supports the conclusion that the input medical image set is characterised by a significant noise level195

(grain effect). Figure 5 compares the processed datasets with the input Scanco image set. Both Figure 5 and196

Table 4 show that SR processing can significantly enhance the resolution of the micro-CT data by sharpening197

the contrast and suppressing background noise. The grain noise which was present on the input images is not198

observed on the reconstructed images, while the appearance of the image features is improved. The importance199

of this observation will be discussed in the next section. Figure 6 demonstrates an example of 3D cube and200

three orthogonal projections for the processed #2 set. In turn, Figure 7 shows an example of the processed201

masked dataset (processed #7).202

Assessment of all processed images demonstrates that the models that used the XRadia 5.0 dataset per-203

formed better than the models trained on the XRadia 10.3 set (see Table 4). The performance of the model built204

on the XRadia 10.3 set can be slightly improved by adding a second set of XRadia 10.3 images (processed #3205

dataset). However, using two image datasets increases the training time (from approximately 18 hours to 26206

hours). To optimise the training process, masked datasets can be used instead of the original image datasets.207

In this study, masked datasets were used with and without augmentation. Augmentation did not influence the208

performance of the models built on the XRadia 5.0 set, but in the case of the model trained with the XRadia 10.3209

set, the absence of augmentation significantly degraded the processed images. These results will be discussed210

in more detail in the next section.211

This paper is primarily focused on combining two different scanners, and the detailed analysis of the influ-212

ence of the SR on the permeability and porosity estimation. However, it has been done in the previous paper of213

the authors [24].214

4. Discussion215

The current research builds on the work of Roslin et al. [24], which investigated the application of SR216

processing to granodiorite rock samples. In this earlier work, super-resolution techniques were applied to217

the combination of XRadia micro-CT images obtained with different resolutions using the same minicores and218

instrument. The performance of the SRCNN models was analysed, as well as the manner in which the enhanced219

quality of the processed images influenced the segmentation results, and how to choose the resolutions of the220

image pair to get the optimal improvement of the image quality. In this research, SR processing was employed221

for a dataset comprised of Scanco and XRadia images of the same rock sample.222

SR processing of micro-CT images of rocks is an actively developing area of research. However, the ongo-223

ing published research studies have primarily focused on creating and testing the performance of different CNN224

architectures. The images which are usually utilised for SR processing are the downsampled high-resolution225

XRadia images. To the best of the authors’ knowledge, only a few attempts have been made to combine real226

rock images obtained from different instruments. However, combining the images from different instruments to227

9



(a) processed #1 set (b) processed #2 set (c) processed #3 set (d) processed #4 set

(e) processed #5 set (f) processed #6 set (g) processed #7 set

(h) input Scanco 10.3 set (i) 5 µm XRadia set (j) 10.3 µm XRadia set

Figure 5: Comparison of the processed and input image sets, showing (a) the processed #1 set, (b) the processed #2 set, (c) the processed
#3 set, (d) the processed set #4, (e) the processed set #5, (f) the processed set #6, (g) the processed set #7, (h) the input Scanco 10.3 set,
(i) the 5 µm XRadia set (ground truth), and (j) the 10.3 µm XRadia set (second ground truth). The same area of investigation is shown.
Each image size is 690 × 651 voxels, or 3, 450 × 3, 255 voxels.

increase the resolution of low-resolution images may have significant practical value. It could make it possible228

to revise previously acquired image datasets to enhance their quality, or scan large volumes of cores faster due229

to the opportunity to reprocess low-resolution images rather than physically scanning entire samples with high230

resolution.231

The research conducted in this study and previously published work [24] was preceded by a literature survey232

of existing CNN architectures used to enhance image quality. The literature review section demonstrates the233

overview of the different super-resolution methods which were also considered for image enhancement. U-Net234

is not the most modern deep learning architecture, but the performance of this architecture is sufficient to make235

the U-Net acceptable for rock image resolution enhancement. This particular research and some other studies236

mentioned in the literature review show that the U-Net architecture and its modifications may significantly237

improve the image resolution, and there are no objective reasons not to use this architecture (as well as any238

other CNN architecture) for image processing. As a part of the CNN exploratory process, the performance of239
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Figure 6: 3D cube and three orthogonal projections for the processed #2 set.

available CNN architectures (2D and 3D U-Net, EDSR, WDSR) was analysed and the outcomes from 2D and240

3D architectures was compared using a small image dataset. As demonstrated, the performance of the U-Net is241

comparable to or better than that of the other most popular CNN models (e.g., WDSR and EDSR). Other CNNs242

were also tested in a similar manner (the workflow is presented in the paper). Generally, they demonstrated243

lower PSNR and especially SSIM values for the studied samples, but still comparable to the results published in244

the literature [9, 10, 17]. The methods which were used to compare with the U-Net architectures are explained245

in more detail in the papers cited in the literature review (e.g. [9, 10]).246

In turn, GAN architectures consist of two neural networks – one of which is a convolutional neural network.247

The generator creates an image, and the discriminator evaluates it. The GANs may produce images of superior248

quality, however, the generator is basically not trained to minimise the distance to the ground truth image but249

rather to create the image which will be recognised by the discriminator as realistic. The GANs are often used to250

enhance the quality of the images when the purpose is to create realistic textures rather than optimise for a pixel-251

accurate reproduction of ground truth images during training. The purpose of the authors was to enhance the252

image quality but to ensure that the resulting images are pixel-accurate and close to the real ground truth since253

the images are used to calculate porosity and mineral content. Thus, the authors find it essential to improve the254

quality of the images by focusing on preserving the input images rather than indefinite improvement of texture255

resolution. So, the GANs were not chosen for the super-resolution processing and the main focus was on the256

CNN architectures.257

The 3D U-Net architecture, which was ultimately chosen for super-resolution processing, is one of the most258
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Figure 7: 3D cube and three orthogonal projections for the processed #7 set.

popular architectures for image segmentation. However, it is rarely used for SR processing of rock images even259

though it was reported that U-shape architectures demonstrated successful outcomes for SR enhancement of260

image quality [22, 23]. The 3D U-Net demonstrated more accurate detection of boundaries of the rock features261

(voids and mineral grains) and more robust results when the trained model was applied to unseen image data.262

This can be explained by the nature of the micro-CT images. The signal from the actual materials within a263

single voxel is partially distributed across neighbouring voxels as defined by the point spread function (PSF),264

which can be represented as a Gaussian smoothing kernel. In turn, each micro-CT slide is not a static photo265

of the object but rather an attenuation of the material spread over the 3D grid, where a grid step is equal to the266

voxel size. Thus, it is important to take into account the third (depth) dimension for SR processing of micro-CT267

images.268

In the current research, the 3D U-Net CNN architecture was used to train the models and enhance the269

quality of Scanco images using XRadia images. The XRadia micro-CT tool is generally preferred for digital270

rock analysis, however geoscientists also use medical scanners, such as Scanco, for rock analysis [26]. The271

outcomes of different instruments may have the same voxel size, but different spatial resolution. The spatial272

resolution determines the feature separation (see Figure 8). If the same pair of features is separated by spacing273

smaller than the resolution of the scanning system, it becomes indistinguishable as a pair on the image [3].274

Consequently, poor spatial resolution may influence segmentation accuracy [24]. The comparison of Scanco275

and XRadia images showed that the spatial resolution of the XRadia system is higher than that of the Scanco276

system, even when the voxel size of both image sets is similar (10.3 microns). For this research, SRCNN277
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processing was used to enhance the resolution of the Scanco 10.3-micron images using the XRadia 10.3- and278

5.0-micron image data. All processed images had quality comparable with the ground truth images (see Table 4279

and Figure 5).280

Figure 8: Spatial resolution as a function of feature separation (reproduced from [3]).

The models trained using the XRadia 5.0-micron images outperformed those trained only on the XRadia281

10.3-micron data (for comparison, Model #2 and Model #1). However, adding 10.3-micron images as the282

second training dataset improved the quality of the processed images (see Table 4 Model #3 compared to Model283

#1). The models built on 5.0-micron data produce nearly similar results for the masked dataset. Augmentation284

was also found to have minimal impact on the processing results. For the models built only on 10.3-micron data,285

it is recommended to use the masked dataset with augmentation since the masked dataset without augmentation286

produced the least accurate, yet still acceptable, results (the PSNR values are comparable to that reported in the287

literature [10]).288

After the comparison of the processed results, it was concluded that the training process could be optimised289

by masking. For the analysed data, the training dataset was reduced by choosing every fourth slide. The results290

of SR processing were not degraded, but the training time was significantly reduced (from approximately 18 to291

eight hours without augmentation and 14 hours with augmentation).292

As observed, SRCNN processing performed very well for the combination of images with the exact voxel293

sizes, and also for the pair of the datasets with aliquant voxel sizes. In the case of image sets with different294

nominal resolutions, the lower resolution datasets should be resampled to correspond to the higher resolution295

image set. In this work, a linear interpolation function was employed, but based on the empirical experience in296

some cases, other interpolation functions (such as the nearest neighbour) can be used for resampling.297

Another procedure, which is required before model training, is image registration. The registration was298

done manually on the fixed 36-micron dataset followed by automatic registration using an initial step of VS /10299

microns and smallest step of 0.01 micron (for translation) and initial step of 1◦ and smallest step of 0.2◦300

(for rotation), where VS is the voxel size of the registered image set (in microns). Linear interpolation and301

sum square differences (SSD) functions were employed for image registration. Registration and resampling302

are usually not mentioned in literature studies discussing SRCNN, although these are necessary pre-training303

procedures. For example, even a shift in one voxel significantly degrades the processing results and introduces304

errors in image resampling.305

The images presented in the manuscript were primarily chosen for illustration to visually demonstrate the306

input quality and processed images. The model was trained on 3D volumes and applied to the large 3D volumes307
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of images. The validation results were also obtained for the whole 3D volumes, and the validation results are308

presented in Table 4. This approach assures that the quality assessment is more unbiased and repeatable, and the309

results can be compared to outcomes of the performance of other neural network models. The images presented310

in the manuscript were chosen randomly, and it should be noted that these are not the only successful examples311

but rather the typical examples of the model performance.312

This paper demonstrated that super-resolution can successfully be used for micro-CT image resolution313

enhancement. It was shown that SRCNN processing improves the recognition of feature boundaries and sup-314

presses unwanted noise associated with images obtained from medical CT equipment. However, it was ob-315

served that some types of noise, particularly ring artefacts, could not be removed solely by SRCNN and may316

require a deep learning denoising procedure or massaging of the input images before SR model training. This317

is one of the limitations of the proposed CNN super-resolution model (Figure 9). However, the ring artefacts318

can removed during the post-scanning stage. The images used in the research were not processed to remove the319

ring artefacts and some artifacts are still present on the SR processed images. Other limitations are discussed320

in more detail in another paper by the authors [24], where that question was analysed more thoroughly. The321

main limitations are related to the size of the features, which resolution should be enhanced. Since the CNN322

model enhances the resolution of the input images using the real high-resolution images rather than creating323

high-resolution unpaired images which are not voxel-accurate, the features which are not present on the input324

images won’t appear on the processed images.325

(a) input Scanco 10.3 set (b) processed #2 set

Figure 9: Comparison of the processed and input image sets, showing (a) the input Scanco 10.3 set, and (b) the processed #2 set. The
same area of investigation is shown. The image artefacts are observed very well on the input image, and slightly removed but still
presented on the processed images.

SR processing has been shown to be a powerful tool for digital rock analysis, which has a straightforward,326

practical application for rock characterisation. If SRCNN processing is appropriately applied, namely, pre-327

training stages are accurately conducted, it has been shown in this study that it can improve low resolution328

images to a level comparable to that of high resolution scans. Only a small dataset of the high-resolution329

images is required for the training to ensure that the model relies on the real data. Having this ground truth330
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dataset can be compared to using the reference standard for calibration. Some research studies demonstrated331

that unpaired images could be used to train and apply neural network models. Still, the authors’ position is332

that some high-resolution images should always exist for low-resolution datasets to claim that the result can be333

reliable and not purely mathematical.334

The main practical advantage of applying the proposed method is saving time which is required to scan335

large volumes of rocks with high-resolution settings. Only one high-resolution image set is needed to use a336

deep learning algorithm to receive quite decent processed images. If the model is trained on a high-resolution337

dataset, it can be applied to a large volume of the low-resolution data without re-training. Only image normal-338

isation could be required, which is performed easily. In the future, work targeted at SRCNN processing of a339

combination of micro-CT images with a focus on the practical application of this method for geosciences will340

be continued.341

5. Conclusions342

This research investigated the application of SRCNN processing techniques to enhance the resolution of343

medical micro-CT images of granodiorite rock samples and analysed the processed image quality. The training344

dataset consisted of Scanco 10.3-micron and XRadia 10.3- and 5.0-micron image sets. The CNN was trained345

by taking 80% of the images from the ground truth scan, leaving 20% for validation. Several SRCNN models346

were trained to assess the performance of the 3D U-Net architecture and the influence of different parameters347

on the resultant image quality. It was concluded that the best models were those trained on the XRadia 5.0-348

micron images, and the training process could be expedited if masking was utilised. Masking assumed using349

every fourth slide from the image dataset and reduced the model training time. In turn, augmentation did350

not significantly improve the quality of the processed images. However, in the case of models trained only351

on the XRadia 10.3-micron images, masked datasets without augmentation demonstrated the worst results of352

the processed image quality. It was concluded that augmentation might be necessary for masked datasets of353

lower image resolution. Another method to improve the results of the XRadia 10.3 models was to add XRadia354

5.0-micron images as a second training dataset.355

In this research, it was observed that SR processing improves the image quality not only due to better de-356

tection of feature boundaries but also by noise suppression which is especially important for medical images.357

This research demonstrated that the quality of the rock images obtained by the medical scanners could success-358

fully be improved by SRCNN processing which opens new opportunities for practical implementation of deep359

learning techniques for rock analysis.360
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