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Abstract

Viscosity is of great importance in governing the dynamics of volcanoes, including their eruptive style. The viscosity of a volcanic

melt is dominated by temperature and chemical composition, both oxides and water content. The changes in melt structure

resulting from the interactions between the various chemical components are complex, and the construction of a physical viscosity

model that depends on composition has not yet been achieved. We therefore train an Artificial Neural Networks (ANN) on

a large database of measured compositions, including water, and viscosities that spans virtually the entire chemical space of

terrestrial magmas, as well as some technical and extraterrestrial silicate melts. The ANN uses composition, temperature,

a structural parameter reflecting melt polymerisation and the alkaline ratio as input parameters. It successfully reproduces

and predicts measurements in the database with significantly higher accuracy than previous global models for volcanic melt

viscosities. A calculator based on our ANN model is available at https://share.streamlit.io/domlang/visc calc/main/final -

script.py. Viscosity measurements are restricted to low and high viscosity range, which exclude typical eruptive temperatures.

Without training data at such conditions, the ANN cannot reliably predict viscosities for this important temperature range.

To overcome this limitation, we use the ANN to create a synthetic viscosity data in the high and low viscosity regime and fit

these points using a physically motivated, temperature-dependent viscosity model. An Excel file to calculate viscosities using

these parameters and the MYEGA equation is supplied in the Supporting Information.
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Key Points:5

• We train an Artificial Neural Network that calculates temperature- and composition-6

dependent viscosity of volcanic melts7

• The Neural Network reproduces and predicts experimental viscosity significantly8

better than previous global models9

• A synthetic data approach based on the Neural Network is combined with a phys-10

ical model to predict viscosity at eruptive temperatures11
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Abstract
Viscosity is of great importance in governing the dynamics of volcanoes, including their 
eruptive style. The viscosity of a volcanic melt is dominated by temperature and chem-
ical composition, both oxides and water content. The changes in melt structure result-
ing from the interactions between the various chemical components are complex, and the 
construction of a physical viscosity model that depends on composition has not yet been 
achieved. We therefore train an Artificial Neural Networks (ANN) on a  large database
of measured compositions, including water, and viscosities that spans virtually the en-
tire chemical space of terrestrial magmas, as well as some technical and extraterrestrial 
silicate melts. The ANN uses composition, temperature, a structural parameter reflect-
ing melt polymerisation and the alkaline ratio as input parameters. It successfully re-
produces and predicts measurements in the database with significantly higher accuracy
than previous global models for volcanic melt viscosities. A calculator based on our ANN 
model is available at https://share.streamlit.io/domlang/visc calc/main/final 
script.py. Viscosity measurements are restricted to low and high viscosity range, which 
exclude typical eruptive temperatures. Without training data at such conditions, the ANN 
cannot reliably predict viscosities for this important temperature range. To overcome
this limitation, we use the ANN to create a synthetic viscosity data in the high and low 
viscosity regime and fit these points using a  physically motivated, temperature-dependent 
viscosity model. An Excel file to calculate viscosities using these parameters and the MYEGA 
equation is supplied in the Supporting Information.

Plain Language Summary

Magma viscosity is a key parameter that controls the style of a volcanic eruption, 
whether it will be effusive or e xplosive. For this reason, any volcanic hazard mitigation
plan requires detailed knowledge of this property. Melt viscosity can vary by up to 15
orders of magnitude (a factor of a quadrillion) with temperature and composition. Un-
fortunately, it is not possible to perform measurements over this range continuously in
the laboratory, but only in two distinct temperature regimes, termed high and low vis-
cosity ranges. In order to obtain a model to predict how composition and temperature 
control viscosity, we use machine learning and train an artificial neural network on a  large 
viscosity database. This allows us to calculate high- and low-temperature viscosity data
that we call synthetic. Since most magmas are erupted at temperatures between the high 
and low-temperature ranges, we combine the synthetic data and a physically motivated 
equation to describe the dependence of viscosity on temperature. This model can com-
pute viscosities in the region without measurements, including typical eruption temper-
atures of volcanoes. Our model serves the scientific community studying volcanic erup-
tion mechanisms and its future prediction on a data driven basis.

1 Introduction

The shear viscosity (η) of volcanic melts is of great importance for the transport 
dynamics of magmas and the eruptive styles of volcanoes (Cassidy et al., 2018; Colucci
& Papale, 2021; Di Genova et al., 2017a; Dingwell, 1996; Gonnermann & Manga, 2007; 
Papale, 1999), making η an important quantity for physical volcanology. Melt viscos-
ity depends dominantly on chemical composition (x) and temperature (T ). Previous work 
has often used a T -dependent expression to fit data from η  measurements to a  specific 
anhydrous composition. Common examples are the VFT (Fulcher, 1925; Tammann &
Hesse, 1926; Vogel, 1921) and MYEGA (Mauro et al., 2009) models. With a critical in-
fluence of water on eruption dynamics (Gonnermann &  Manga, 2013) and i ts strong con-
trol on viscosity, the dependence of η on H2O is often considered separately in models.
Such models are typically built by empirical modifications of the fitting parameters to 
include H2O dependence (e.g., Dingwell et al., 1998; Giordano et al., 2009; Langham-61
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mer et al., 2021; Misiti et al., 2011; Robert et al., 2015; Vetere et al., 2006; Whitting-62

ton, Hellwig, et al., 2009).63
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Figure 1. Total alkaline and silica content (Le Bas et al., 1986) for all data set in the

database. Blue symbols indicate training/validation data sets and red symbols the test sets.

Anhydrous data sets are shown by circles and hydrous by crosses. Values and references for the

training/validation sets are given in Table 1 and for the test sets in Table 2.

In contrast to the individual melt fits, global models predict viscosity based on x,64

T (Giordano et al., 2008; Hui & Zhang, 2007) and pressure P (Duan, 2014). These three65

global models are based on empirical descriptions and are fitted on large data sets. The66

complex and non-linear relation between chemical components, melt structure and vis-67

cosity prevents the use of a model approach based on physical principles. But advances68

in machine learning algorithms, specifically artificial neural networks (ANN), provide an69

alternative route to describe the composition–viscosity relation. Using a large database,70

ANNs can find highly non-linear mappings between input and and output without prior71

knowledge of the mathematical form of this connection (Aggarwal, 2018). Recently, Tandia72

et al. (2019) have shown the capabilities of ANN to accurately fit and predict melt η for73

a database of technical glasses. Based on this success, Cassar (2021) produced an ANN74

architecture with a plethora of input parameters to predict η of silicate melts, the ANN75

by Le Losq et al. (2021) predicts several physical outputs but is limited to compositions76

in the K2O-Na2O-Al2O3-SiO2 system. These studies use grey box approaches for the vis-77

cosity calculation, by predicting input parameters of certain viscosity equations (e.g., VFT78

or MYEGA) which are then used to compute η. This approach permits a physical in-79

terpretation of the predictions, within the constraints of the model.80
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However, with a scarcity of η data, this approach cannot be used for volcanic melts. 
The problem of sparse data is even more pronounced when considering the effect of wa-
ter on η (Duan, 2014; Hui & Zhang, 2007; Giordano et al., 2008). Therefore, we do not 
follow the previous ANN studies with a grey box approach, but use a black box to utilise
as many data as possible; this approach maps the input (composition x and T , where
we treat H2O on equal footing with the oxide components) directly to viscosity. We train
an ANN using a database of viscosities for volcanologically relevant melts which we col-
lected from the literature. We use 3482 data points from 153 data sets (not counting the 
variable H2O content) for melts covering virtually the entire compositional space of mag-
mas on Earth and some analogues of extraterrestrial melts (Figure 1). We show that the 
ANN is not only capable of fitting given data, but also of predicting η  with high accu-
racy for the viscosity ranges in which measurements are performed.

To generate models that inter- and extrapolate in a physically sound way, which 
cannot be guaranteed using the black box approach, we combine the ANN with a “syn-
thetic data” approach: For a composition of interest, we generate sets of η–T values from
an ANN in two distinct η intervals in which viscosity measurements can be performed
either by concentric cylinder or micropenetration/parallel plate viscometry (low viscos-
ity, Lη, range: 10−3 Pa s < η < 105 Pa s and high viscosity, Hη, range: 108 Pa s <
η < 1013 Pa s). These isochemical η values are then fit using the MYEGA equation (Mauro 
et al., 2009) for T dependence. Our approach combines the accuracy of the neural net-
work trained on a large data set of η values and the physical basis of the MYEGA equa-
tion. An application/calculator of our model is available at https://share.streamlit
.io/domlang/visc calc/main/final script.py (code and model can be found at https://
github.com/DomLang/Visc Calc).

2 Artificial Neural Networks

Artificial neural networks broadly refer to algorithms for pattern recognition, and
here we make use of a simple architecture called a dense feed-forward multilayer percep-
tron (Aggarwal, 2018). It consists of three layer types: input, hidden and output (Fig-
ure 2). The layers contain so-called neurons, each storing a single numerical value. Each 
neuron of a layer is connected to every neuron in the following layer, hence dense, and
every connection has a weight associated with it. The neuron values are propagated along 
these connections, and the weights are optimised during the learning process, analogous
to variable parameters when fitting an equation to d ata. The neurons of the input layer 
store the input data (Section 3.1) which are propagated through all neurons of the hid-
den layers until the output (η) is calculated. The output is compared to the correspond-
ing measurement using a loss function (Abadi et al., 2015), for which we use the mean 
squared error (MSE). The loss function is minimised, going backwards through the net-
work tuning the weights. Furthermore, non-linearity is added using so-called activation 
functions (Aggarwal, 2018) which can be applied to the values of each neuron before they 
are propagated further through the network. This way the hidden layers become a non-
linear mapping between input and output.121
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η

Figure 2. Sketch of a feed-forward multilayer perceptron. Circles are neurons storing single

values. Each line connecting the neurons has a weight (regression parameter) and activation func-

tion associated with it. The black dots indicate that the number of neurons can hypothetically

be arbitrary. The number of hidden layers can vary; here, we illustrate two layers used for our

artificial neural network.

3 Database122

We compile a database of 3482 tuples (T, x, η) for relevant melts from the litera-123

ture. Of these, 2538 are data from measurements of only anhydrous samples, while 193124

data sets with the remaining 942 data contain H2O. The data span a large chemical do-125

main in the total alkaline – silica (TAS) diagram (Figure 1). The database is separated126

into a training/validation (Table 1) and a test set (Table 2) with 3194 and 288 data points,127

respectively. The training/validation set contains 144 rock types which yield a total of128

320 compositions, counting each H2O content as a unique composition. Of these, 142 are129

anhydrous and 178 hydrous. The test set contains 15 rock types and again taking into130

account differing H2O contents, 29 unique measured compositions. Of these, 14 are an-131

hydrous and 15 hydrous data sets. The test sets are chosen such that they probe a rea-132

sonable chemical domain to check the reliability of the predictions made by the ANN.133
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Figure 4. Viscosity (log η) values from the data sets used here as a function of inverse tem-

perature (10000/T ). Data shown in blue are used in the training/validation process (Table 1),

red crosses mark the test set (Table 2).

Silica content and the empirical parameter termed structure modifier content (SM,134

in mol%) (Giordano & Dingwell, 2003a) for one choice of the training and validation sets135

(Section 3.2) and for the test set are shown in Figure 3. The distributions for training136

and validation sets are very similar which indicates that the validation set tests the in-137

terpolation, not extrapolation, capabilities of a trained ANN. The SiO2 content of data138

ranges from ∼ 37 wt% (∼ 40 mol%) to ∼ 80 wt% (∼ 85 mol%) and the H2O content139

from 0 wt% to ∼ 6 wt% (∼ 16 mol%). Measured η for Lη range from ∼ 10−1 to ∼ 105 Pa s140

and for Hη from ∼ 108 to ∼ 1014 Pa s. T spans approximately 1180 to 2020 K and 590141

to 1270 K in the Lη and Hη range, respectively (Figure 4).142
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Table 1. Data sets used in the training and validation process, listed with decreasing SiO2 

content. Oxide compositions and H2O are given in wt%. The H2O content is given as the range 
found in the respective reference. TA = Na2O + K2O states the total alkali content (wt%). The 
first column gives the reference f rom which the data are taken, the last column indicates the sam-

ple name used in the respective publication. Detailed oxide compositions of the melts listed here 
are given in Table S1 in the Supporting Information as an Excel file.

Reference SiO2 TA H2O Name in source Reference SiO2 TA H2O Name in source

(Hofmeister et al., 2014) 80.25 3.82 Moldavite (Giordano et al., 2006) 60.71 4.42 MST
(Giordano et al., 2006) 79.43 3.91 MDV (Giordano et al., 2000) 60.46 15.21 0.00-3.75
(Le Losq & Neuville, 2013) 78.92 7.13 NAK83.8.0 (Giordano et al., 2009) 58.90 14.57 Mercato 1500
(Di Genova et al., 2017a) 78.87 6.29 F (Giordano et al., 2009) 58.84 14.61 0.00-4.24 Mercato 1600
(Hess et al., 1995; Dingwell et al., 1996) 78.60 8.80 0.00-3.35 HPG8 (Whittington et al., 2001) 58.82 16.75 0.00-4.27 Phonolite
(Di Genova et al., 2017a) 77.86 6.39 G (Giordano et al., 2009) 58.80 14.77 Mercato 1400
(Le Losq & Neuville, 2013) 77.82 8.99 NAK83.8.2 (Liebske et al., 2003) 58.69 4.87 0.00-1.96 Andesite
(Di Genova et al., 2017a) 77.63 6.06 A (Vetere et al., 2006) 57.95 5.19 2.73 MD25
(Di Genova et al., 2017a) 77.56 7.15 C (Vetere et al., 2006) 57.95 5.19 5.60 MD12
(Di Genova et al., 2017a) 77.28 6.32 B (Robert et al., 2019) 57.32 15.27 Jd100
(Di Genova et al., 2017a) 77.25 7.58 H (Robert et al., 2019) 57.12 17.92 Jd625
(Di Genova et al., 2017a) 76.83 7.22 D (Sehlke & Whittington, 2015) 57.1 0.60 NVP
(Le Losq & Neuville, 2013) 76.81 10.00 NAK83.8.4 (Liebske et al., 2003) 56.65 4.79 Unzen-A
(Stabile et al., 2016) 76.62 9.71 Ebu-N-red (Liebske et al., 2003) 56.65 4.79 Unzen-3
(Romine & Whittington, 2015) 76.53 8.50 0.00-0.34 NCA (Liebske et al., 2003) 56.65 4.79 Unzen-2
(Stabile et al., 2016) 76.40 7.28 Ebu-N (Liebske et al., 2003) 56.65 4.79 Unzen-4
(Di Genova et al., 2017a) 76.24 6.82 I (Liebske et al., 2003) 56.65 4.79 Unzen-5
(Le Losq & Neuville, 2013) 76.10 10.75 NAK83.8.6 (Langhammer et al., 2021) 56.55 9.08 0.00-1.59 Lat-DSC
(Goto et al., 2005) 76.03 7.02 0.00-0.58 (Robert et al., 2019) 55.98 17.26 Jd75
(Stabile et al., 2016) 75.92 10.19 Ebu-B-red (Robert et al., 2019) 55.86 19.79 Jd375
(Hess et al., 1995) 75.60 8.50 5Mg (Robert et al., 2019) 54.85 18.81 Jd50
(Stabile et al., 2016) 75.39 11.28 Ebu-C (Robert et al., 2019) 54.51 21.64 Jd0
(Di Genova et al., 2017a) 75.33 8.21 E (Robert et al., 2013) 54.42 4.82 0.00-3.76 sba
(Stabile et al., 2016) 75.30 10.49 Ebu-B (Giordano et al., 2009) 53.90 13.01 Pompei TR
(Stabile et al., 2016) 75.15 11.79 Ebu-C-red (Giordano et al., 2006) 53.53 5.09 MRP
(Le Losq & Neuville, 2013) 75.11 11.70 NAK83.8.8 (Romano et al., 2003) 53.52 12.57 0.00-3.32 V 1631 W
(Hess et al., 1995) 74.60 13.60 5K (Vetere et al., 2007) 53.47 8.38 0.00-4.75 Vul
(Friedman et al., 1963) 74.16 8.50 0.00-1.25 (Sehlke & Whittington, 2015) 53.3 0.35 IcP-HCT
(Hess et al., 1995) 74.10 13.40 5Na (Romano et al., 2003) 53.14 13.05 3.07 V 1631 G
(Hess et al., 1995) 74.10 8.40 5Ca (Robert et al., 2019) 53.12 20.64 Jd25
(Di Genova et al., 2017a) 73.75 6.72 J (Robert, 2014) 53.08 4.76 0.00-2.92 fu18
(Whittington et al., 2004) 73.61 8.86 0.00-3.41 DK89 (Hofmeister et al., 2016) 53.08 4.76 Bas-and
(Stabile et al., 2016) 73.40 20.77 NFS-red (Sehlke & Whittington, 2016) 53.02 3.23 CHW
(Hofmeister et al., 2014) 72.99 14.64 vase (Sehlke & Whittington, 2016) 52.19 1.82 KREEPe
(Hofmeister et al., 2014) 72.91 15.71 1960 (Robert et al., 2015) 51.46 3.99 0.00-3.02 sb
(Hofmeister et al., 2014) 72.59 16.85 1895 (Sehlke & Whittington, 2016) 51.28 1.92 SHG
(Whittington, Bouhifd, & Richet, 2009) 72.31 9.49 HP96 (Giordano & Dingwell, 2003a) 51.20 11.65 Ves W tot
(Hofmeister et al., 2014) 72.19 3.62 Indoch (Sehlke & Whittington, 2016) 50.65 0.35 KREEP
(Hess et al., 1995) 72.10 16.70 10Na (Whittington et al., 2000) 50.56 10.05 0.00-2.27 Tephrite
(Di Genova et al., 2017a) 71.22 6.17 L (Hofmeister et al., 2016) 50.40 2.79 P-MPRB
(Hess et al., 1995) 71.20 18.20 10K (Hofmeister et al., 2016) 50.40 2.79 MORB
(Hess et al., 1995) 71.20 8.20 10Mg (Misiti et al., 2009; Giordano et al., 2006) 50.17 4.63 0.00-4.16 SPZ, STB
(Hess et al., 1995) 70.60 8.20 10Ca (Sehlke & Whittington, 2016) 50.06 3.51 Mu-Fe
(Langhammer et al., 2021) 70.50 9.90 0.00-3.55 Rhy14-DSC (Sehlke & Whittington, 2016) 49.95 0.87 Lme
(Di Genova et al., 2013) 69.21 10.87 0.00-3.55 PS-GM (Al-Mukadam et al., 2020) 49.90 0.00 Di
(Stabile et al., 2016) 69.14 24.61 NFS (Sehlke & Whittington, 2016) 49.65 0.57 KOM
(Giordano et al., 2006) 68.80 10.19 CL OF (Robert et al., 2015) 49.40 3.70 0.00-2.7 fu06
(Le Losq & Neuville, 2013) 68.71 11.81 NAK75.12.0 (Giordano & Dingwell, 2003a) 49.20 9.20 Ves G tot
(Hofmeister et al., 2016) 68.41 7.02 Rhyo-dac (Giordano et al., 2006) 49.07 4.83 STR
(Le Losq & Neuville, 2013) 68.28 12.49 NAK75.12.2 (Langhammer et al., 2021) 48.95 5.57 0.00-2.4 Bas1-DSC
(Le Losq & Neuville, 2013) 67.48 13.61 NAK75.12.5 (Giordano et al., 2009) 48.74 10.83 Pollena GM
(Le Losq & Neuville, 2013) 66.96 14.53 NAK75.12.7 (Giordano et al., 2009) 48.05 11.00 Pollena TR
(Le Losq & Neuville, 2013) 66.85 14.28 NAK75.12.6 (Morrison et al., 2019) 47.99 1.35 NOR
(Stabile et al., 2016) 66.26 27.28 KFS (Giordano et al., 2009) 47.84 8.57 0.00-4.45 1906GM
(Giordano & Dingwell, 2003a) 66.00 6.00 0.00-1.98 UNZ (Hofmeister et al., 2016) 47.45 4.01 OIB1
(Le Losq & Neuville, 2013) 65.75 15.80 NAK75.12.10 (Giordano & Dingwell, 2003b) 47.03 5.69 0.00-2.31 ETN
(Alidibirov et al., 1997) 65.28 5.63 (Sehlke & Whittington, 2016) 46.96 0.58 EUC
(Le Losq & Neuville, 2013) 64.90 16.40 NAK75.12.12 (Morrison et al., 2019) 46.91 1.78 ANOR
(Whittington et al., 2001) 64.45 10.07 0.00-4.92 Trachyte (Sehlke & Whittington, 2016) 46.60 2.24 NAK
(Stabile et al., 2016) 64.44 27.56 KFS-red (Morrison et al., 2019) 45.99 4.05 JSC-1a
(Hess et al., 1995) 64.30 26.20 20K (Giordano et al., 2006) 45.76 3.72 SLP
(Hofmeister et al., 2016) 64.04 6.05 Dac-and (Morrison et al., 2020) 44.76 7.19 NYI-1948
(Giordano et al., 2004) 63.88 12.49 0.00-3.86 MNV (Whittington et al., 2000) 43.57 8.55 0.00-2.06 NIQ
(Hess et al., 1995) 63.20 7.50 20Mg (Sehlke & Whittington, 2016) 42.16 0.52 LM
(Whittington, Hellwig, et al., 2009) 63.12 6.25 0.00-5.04 BRD (Robert et al., 2019) 40.51 21.63 Ne100
(Hess et al., 1995) 62.90 7.40 20Ca (Robert et al., 2019) 40.33 25.55 Ne625
(Richet et al., 1996) 62.40 4.45 0.00-3.46 Andesite (Morrison et al., 2020) 39.61 10.61 NYI-1977
(Hess et al., 1995) 62.40 26.90 20Na (Robert et al., 2019) 39.41 24.03 Ne75
(Romano et al., 2003) 61.26 12.62 0.00-3.78 AMS B1 (Robert et al., 2019) 39.34 27.09 Ne375
(Neuville et al., 1993) 61.17 5.24 Andesite (Sehlke & Whittington, 2016) 39.13 11.05 NYI
(Hellwig, 2006) 61.05 5.81 0.00-4.94 Dacite (Robert et al., 2019) 37.87 26.18 Ne50
(Giordano et al., 2004) 60.74 11.60 0.00-3.41 IGC (Robert et al., 2019) 37.28 27.51 Ne25
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Table 2. Data sets used for testing the ANN, listed with decreasing SiO2 content. Oxide com-

positions and H2O are given in wt%. H2O is given as the range found in the respective reference. 
TA = Na2O + K2O states the total alkali content (wt%). The first column gives the reference 
from which the data are taken, the last column indicates the sample name used in the respective 
publication. Detailed oxide compositions of the melts listed here are given in Table S2 in the 
Supporting Information as an Excel file.

Reference SiO2 TA H2O Name in source

(Hofmeister et al., 2014) 79.63 8.59 Haplogranite
(Webb, 2021) 67.02 11.81 h16b
(Webb, 2021) 63.28 11.46 h22b
(Hofmeister et al., 2016) 62.16 5.84 Dacite
(Webb, 2021) 61.81 9.24 h5a
(Misiti et al., 2006) 59.90 12.55 0.18-5.81 AMS
(Langhammer et al., 2021) 57.72 11.62 0.00-4.78 Tra3-DSC
(Misiti et al., 2011) 56.08 8.88 0.00-3.28 FR
(Webb, 2021) 55.27 6.50 h34
(Sehlke & Whittington, 2015) 55.06 0.12 Enstatite Basalt
(Sehlke & Whittington, 2015) 55.02 6.47 NVP-Na
(Webb, 2021) 54.35 4.48 h10
(Hofmeister et al., 2016) 53.02 3.23 Dolerite
(Al-Mukadam et al., 2020) 49.90 0.00 Di, DSC derived viscosities
(Webb, 2021) 42.74 8.71 NIQ

3.1 General Data Preparation143

In the training/validation set (Table 1) we initially consider anhydrous and hydrous144

data sets separately. They are each shuffled and then split into a training and valida-145

tion set, according to ratios and procedures given in more detail in Section 3.2. The an-146

hydrous and hydrous sets are then combined to finally yield training and validation sets147

containing both anhydrous and hydrous compositions. Since the number of hydrous data148

points is relatively small, this procedure ensures that there are sufficient hydrous data149

in the training set.150

The input parameters and corresponding viscosity measurements of the training151

set are used for the regression during the learning process. After each learning cycle, the152

validation set is used to predict log η. As these data have not been used to train the neu-153

ral network, the validation set evaluates the ANN’s ability to generalise, i.e., predict η.154

The loss function calculated from the validation set (validation loss) is also used to avoid155

overfitting. Overfitting is typically characterised as an increasing or constant validation156

loss, while the training loss keeps decreasing. This indicates that the ANN’s ability to157

predict unknown values from input data remains constant or worsens despite an improv-158

ing fit. The improvement in the fit is explained by the ANN learning the data by heart.159

This phenomenon can be mitigated using regularisation methods, such as dropout (Srivastava160

et al., 2014) which we use here (Section 3.2).161

As input parameters, we use mole fractions of SiO2, TiO2, Al2O3, FeO, Fe2O3, MnO,162

MgO, CaO, Na2O, K2O, P2O5, H2O, temperature T in K, the SM parameter (Giordano163

& Dingwell, 2003a) and the alkali ratio K2O/(K2O+Na2O). Contrary to the global vis-164

cosity models by Hui and Zhang (2007) and Giordano et al. (2008) that consider the iron165

content in the melt as FeO only, we differentiate between FeO and Fe2O3. This distinc-166

tion is important as Fe2O3 acts as a network former, leading to an increase in melt vis-167
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cosity, while FeO acts as a network modifier, and has the opposite effect on viscosity (Dingwell168

& Virgo, 1987; Liebske et al., 2003; Bouhifd et al., 2004; Vetere et al., 2008; Chevrel et169

al., 2013; Kolzenburg et al., 2018; Stabile et al., 2021). For samples with only the total170

iron content FeOtot reported, we distribute it evenly between FeO and Fe2O3 with a fac-171

tor of 1.11 to account for the higher molar weight of Fe2O3 (Langhammer et al., 2021).172

SM reflects the effect of structural polymerisation on η, and the alkali ratio is known to173

significantly affect the viscosity of SiO2-rich systems (Di Genova et al., 2017a; Le Losq174

& Neuville, 2013; Stabile et al., 2016). Cr2O3 is only used during the conversion from175

wt% to mole fractions. It is omitted during the training as the vast majority of compo-176

sitions contain < 0.02 wt%.177

To improve convergence and stability of the training process we scale the input data178

as follows (Montavon et al., 2012): (i) mole fractions of composition lie in the interval179

[0,1], (ii) T is normalised by dividing all values by the largest T within the data set (2023180

K for Ne375, Table 1). (iii) We modify the definition of SM using mole fractions, also181

leading to values in the interval [0,1]. (iv) Finally for every value of each input param-182

eter xi the z-score (Cassar, 2021) is calculated as input according to183

zi,j =
xi,j − µi√

σ2
i

(1)

µi =
1

N
ΣN

j=1xi,j (2)

σ2
i =

1

N
ΣN

j=1(xi,j − µi)
2 . (3)

Here xi,j and zi,j denote the j-th value of the i-th input parameter (e.g., SiO2 content),184

x denoting the old and z the z-score used as input for the ANN. µi is the average and185

σ2
i is the variance of the input. The scaling achieves an average of 0 and variance of 1186

for the new input zi. Values for µ and σ2 can be found in Table S3 in the Supporting187

Information.188

3.2 Training Procedure189

Critical parameters for training an ANN (hyperparameters) are the number of hid-190

den layers and neurons per layer which, through the associated weights, define the num-191

ber of adjustable parameters, the learning rate which defines the step size during train-192

ing, and the dropout value. The dropout randomly sets outputs of a layer to zero at a193

probability given by the dropout value. This simulates various different ANN’s during194

a training session and reduces overfitting (Srivastava et al., 2014). As a measure for the195

quality of the ANN we use the root-mean-square-error (RMSE), commonly used in other196

publications. To search the space of hyperparameters, we use Bayesian optimisation as197

a stochastic algorithm (Aggarwal, 2018; Snoek et al., 2012) to find architectures with low198

validation errors. In this step, we perform the shuffling described above and combine 90%199

of the anhydrous and hydrous data sets each to the training set and the remaining 10%200

to the validation set.201

In the Bayesian optimisation, we fix several hyperparameters: (i) We use two hid-202

den layers. Several tests have shown little improvement when using three layers, and in-203

creasing the number of layers further increases the complexity which is not desired in204

our case given the scarcity of data. (ii) We apply the Adam optimiser (Kingma & Ba,205

2014) as an algorithm, including the amsgrad flag (Reddi et al., 2019). (iii) For activa-206

tion in all hidden layers we use the leaky ReLU function defined as207

f(x) = αx for 0 > x, (4)208

f(x) = x for 0 ≤ x . (5)209
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We use the default value of α = 0.3 (Abadi et al., 2015). In the in- and output layers210

identity is used as activation. (iv) As batch size we use the complete training set (full211

batch).212

For other hyperparameters we vary the range: (i) The number of neurons in the213

hidden layers explored are 1 − 256 per layer, with final values of 256 for the first and214

208 for the second layer. (ii) For the learning rate we use 0.057317962127906, after ex-215

ploring 0.00001−0.5. (iii) From a range of 0.0−0.5, the chosen dropout value is 0.16569639948335368.216

Using the ANN hyperparameters chosen by the Bayesian optimisation, we apply217

a 20-fold cross-validation process. All anhydrous and hydrous data sets in the training/218

validation database (Table 1) are shuffled separately and split into 20 sets each; one of219

each is combined to create 20 sets that contain anhydrous and hydrous data (superset).220

The ANN is trained 20 times, using 19 of the supersets for training and one as valida-221

tion. The validation superset is exchanged until each superset was used for validation222

once. These architectures are used to predict all η values of the test set, and we present223

and discuss results for the ANN with the lowest RMSE.224

Neural networks are built using TensorFlow (Abadi et al., 2015) and the Bayesian225

optimisation is performed with the KerasTuner (O’Malley et al., 2019), using Python226

as programming language. Data is managed and prepared using the Pandas and NumPy227

packages.228

4 Training Results and Evaluation229

The SiO2 distribution for the training and validation set belonging to the network230

that displays the lowest RMSE when predicting the test set are very similar (Figure 3).231

Their RMSE values are 0.09 and 0.12, respectively (Figure 5). Therefore we expect the232

ANN to be trained to interpolate rather than extrapolate. This in turn leads us to rec-233

ommend the use of this model only within the, albeit extensive, chemical bounds given234

by the training/validation data set (Figure 1). The models of Hui and Zhang (2007) and235

Giordano et al. (2008) applied to the training/validation sets in our database produce236

RMSE values of 1.36 and 1.18 respectively (Figure S1 in the Supporting Information).237
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Figure 5. Calculated versus measured viscosities of the training (top) and validation sets

(bottom) for the ANN yielding the lowest RMSE when applied to the test sets. The black solid

line indicates the one to one correspondence, and dashed lines ±1 log-unit deviation from iden-

tity. RMSE values are 0.09 for the training and 0.12 for the validation set.
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Figure 6. Comparison of measured and calculated viscosities for the artifical neural network

(ANN, red crosses, RMSE = 0.45), the model by Giordano et al. (2008) (GRD08, blue diamonds,

RMSE = 1.23) and Hui and Zhang (2007) (HZ07, green squares, RMSE = 0.89) for melts in the

test sets. The one to one correspondence is shown by the solid black line, dashed lines indicate a

±1 log-unit deviation from identity.

For the test sets we compare measured η to predictions of our ANN and the global238

models of Hui and Zhang (2007) and Giordano et al. (2008) in Figure 6. The ANN pre-239

dictions show the lowest RMSE with 0.45, compared to 0.89 and 1.23 for the models by240

Hui and Zhang (2007) and Giordano et al. (2008), respectively.241

Both literature models show significantly larger deviations than the ANN predic-242

tion for specific data sets. The model by Hui and Zhang (2007) overestimate viscosity243

measurements for the enstatite and a Na2O-rich basalt (NVP-Na) by Sehlke and Whit-244

tington (2015) and for the diopside (Di) determined from calorimetry experiments by245

Al-Mukadam et al. (2020). The model by Giordano et al. (2008) underestimate viscosi-246

ties for these samples as well as for a haplogranite (Hofmeister et al., 2014). The two com-247

positions by Sehlke and Whittington (2015) – models for basalts on Mercury – show a248

high content in CaO and MgO as does the diopside by Al-Mukadam et al. (2020) (Ta-249

ble S2 in the Supporting Information), outside typical terrestrial compositions. It may250

therefore not be surprising that the models by Hui and Zhang (2007) and Giordano et251

al. (2008) fail to reliably predict their η, while the training/validation set of our ANN252

contains two similar compositions from Sehlke and Whittington (2015) and further plan-253

etary tholeiitic melts (Sehlke & Whittington, 2016).254

The high η for the fully polymerised haplogranite by Hofmeister et al. (2014) is not255

reproduced well by the model of Giordano et al. (2008) which also shows a poor fit for256

a similar model haplogranite (HPG8) by Hess et al. (1995).257
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Figure 7. Viscosity (log η) as a function of inverse temperature (1000/T ) for some anhydrous

compositions in the training/validation database (panels a and b) and the test set (panel c).

Measurements are shown by filled circles, viscosity values predicted from the ANN by crosses,

where bold crosses indicate the η range for the synthetic data approach. Solid (dashed) lines

show MYEGA fits to the experimental (synthetic) data. Data references can be found in Tables 1

and 2. The horizontal lines indicate 1012 Pa s.

5 Synthetic Models258

Eruptive temperatures of most magmas lie between the Hη and Lη range. At these259

temperatures, volcanic melts tend to crystallise faster then the timescale of the viscos-260

ity measurement. Therefore an interpolation – or extrapolation if data only exist at Hη261

– between these ranges is required to determine η. This is done by fitting η data using262

models, such as the MYEGA and VFT equations (Figure 7), sometimes modified to in-263

clude a H2O dependence. Contrary to MYEGA fits to experimental data, viscosities di-264

rectly determined from the ANN in the range 105 Pa s < η < 108 Pa s show strong265

deviations from expected behaviour for some melt compositions (Figure 7). This is not266

surprising given the fact that the ANN is not trained in this η range due to the exper-267

imental gap discussed in the Introduction.268
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5.1 Creating a Synthetic Model269

Mimicking the fitting of experimental data, we create a set of synthetic data from270

the ANN in the Hη and Lη ranges and fit the physically motivated MYEGA equation271

(Mauro et al., 2009)272

log η = A+ (12−A)
Tg

T
exp

[(
m

12−A
− 1

)(
Tg

T
− 1

)]
, (6)273

to them. The viscosity at infinite T , A := log η∞, melt fragility m and glass transition274

temperature Tg (for log η = 12) are fitting parameters. We fix A = −2.9, following275

our previous work and discussion (Langhammer et al., 2021), creating a two-parameter276

model equation for a specific composition that can be used to calculate η over a wide277

T range.278
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Figure 8. Distribution of viscosities in the training/validation database in the Hη and Lη

regions, binned with log η = 0.5 intervals. Data sets in both regions are split into composi-

tions with SiO2 < 60 wt% (blue) and SiO2 ≥ 60 wt% (red). Purple indicates the overlap of

distributions. The vertical dashed lines indicate the log η ranges over which we create synthetic

data, i.e., [9.5, 11.5] at Hη for all compositions, and at Lη [0, 2] or [2, 4.5] for melts containing

SiO2 < 60 wt% and SiO2 ≥ 60 wt%, respectively.

Determining the Hη and Lη intervals for which synthetic data are created is an im-279

portant step in the process, as this choice strongly influences the model parametrisation.280

We examine the distributions of log η for the whole database (Figure 8) to choose ap-281

propriate intervals for the Hη and Lη ranges. In the Hη region, the data density is the282

highest at log η between 10 and 11, and we create synthetic data in 1-log around the max-283

imum, i.e., in the interval [9.5, 11.5] with a step size of log η = 0.5. Data coverage in284

the Lη region varies with SiO2 content, and we split the data sets at 60 wt% SiO2. With285

broad maxima for log η between 0.5 and 1.5 (SiO2 ≤ 60 wt%) and log η between 2.5286

and 3.5 (SiO2 > 60 wt%), we create synthetic data in the log η intervals [0, 2] and [2, 4.5],287
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respectively, again in steps of log η = 0.5. Such a split is not necessary in the Hη range288

due to very similar distribution of data (Figure 8).289

Technically, we use the ANN in conjunction with the bisection method to calcu-290

late T for the previously discussed log η values to a precision of 10−5. The log η−T de-291

pendence is fit using the MYEGA model (equation 6 with A = −2.9). A web applica-292

tion which follows this scheme and calculates the MYEGA parameters and a viscosity293

value for a desired T can be found at https://share.streamlit.io/domlang/visc calc/294

main/final script.py. It is important to mention, that if the composition which is en-295

tered into the app only reports FeOtotal one must split it according to FeO = FeOtotal/2296

and Fe2O3 = FeOtotal
1.11
2 . On the other hand, if the compositions reports the total iron297

as Fe2O3total it must be split according to FeO = Fe2O3total

(2·1.11) and Fe2O3 = Fe2O3total/2.298

Fitting parameters m and Tg can be used for further calculations. An Excel table to cal-299

culate η values from the fit parameters m and Tg for various temperatures is supplied300

in the Supporting Information.301

Figure 9. Comparison of fits to synthetic data to measurements for the compositions also

used in Figure 7 (training/validation sets in panel a, test sets in panel b). Crosses are the syn-

thetic data and lines are MYEGA fits (Mauro et al., 2009) to them. Circles are the respective

measurements. Data references can be found in Tables 1 and 2.

5.2 Testing Synthetic Models302

A comparison between the MYEGA fit to ANN viscosities (synthetic model) and303

direct experimental measurements for the compositions in the training/validation set (Fig-304

ure 9a) already used in Figure 7 and discussed in Section 4 shows that the experimen-305

tal measurements agree well with the ANN predictions where they overlap, both in the306
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Lη and Hη ranges. The synthetic fit describes the experimental T  dependence of η  mea-
surements reasonably well, with the exception of Mercato 1600 (Giordano et al., 2009) 
that shows a more Arrhenian behavior in experiments. This discrepancy stems from the 
fact that, with an SiO2 content of 58.84 wt%, the synthetic model is based on ANN vis-
cosities in the log η interval [0, 2], while experiments cover log η in a range 2−4.6. How-
ever, the direct ANN predictions reproduce measured η for Mercato 1600 quite well (Fig-
ure 7b).

A similar behaviour can be seen for samples from the test set in Figure 9b. The 
viscosity for three of the four compositions is described well, but values for the Dacite
by Hofmeister et al. (2016) are predicted lower than the measurements by 0.9−0.7 log-
units (decreasing with T ) in the Hη range, while η of two Fe-free synthetic dacites in the 
training/validation set (Hellwig, 2006; Whittington, Hellwig, et al., 2009) is reproduced 
well. Evaluating the same compositions with the global model by Giordano et al. (2008) 
reveals that it has a similar problem predicting η for the Dacite by Hofmeister et al. (2016) 
although to a slightly smaller extent (0.7−0.5 log-units). As our model reproduces the 
experimentally measured η for the Dac-and by Hofmeister et al. (2016) with a similar 
iron content well, the reason for this specific discrepancy remains unclear.

The RMSE value for η in the training/validation set is 0.20 (Figure 10), slightly 
worse than those from the ANN directly (0.09 and 0.12 for training and validation, re-
spectively). For the test set the values are 0.45 for the ANN predictions and 0.52 for the 
synthetic model, respectively. In comparison to RMSE values of 1.36 and 1.18 for the 
entire database by the global models of Hui and Zhang (2007) and Giordano et al. (2008), 
respectively, the synthetic model provides quite accurate results, and has a physical ba-
sis with the MYEGA equation.

The parameters for the MYEGA model (equation 6) do not differ s ignificantly for 
Tg from the individual isochemical fits (Figures 11 and S2 in the Supporting Informa-
tion) and the direct ANN inversion. For a reasonable comparison, only samples which 
include measurements in the Hη and Lη range from the training/validation set are in-
cluded in Figures 11 and S2 in the Supporting Information. RMSE values of 18.3 K and 
7.16 K for the direct ANN inversion and the synthetic model, respectively, reflect the nar-
row distribution in Figures 11 and S3 in the Supporting Information, and an average dif-
ference of δTg = −0.5 K between the direct MYEGA fit and the synthetic model (Fig-
ure S2 in the Supporting Information) show that the synthetic model approach used here 
does not introduce any bias.

Values of melt fragility m derived from synthetic data tend to be slightly overes-
timated (Figure S3 in the Supporting Information), with the average deviation from di-
rect MYEGA fits of δ m =  1 .04. A  quasi-linear trend of increasing m  with structural 
parameter SM discussed in Langhammer et al. (2021) is reproduced well.
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Figure 10. Comparison of viscosity values predicted by the synthetic models to measurements

of the training/validation (top) and test (bottom) sets. The solid line shows the one to one cor-

respondence, with the dashed lines ±1 log-unit deviations from identity. The respective RMSE

values are 0.2 (top) and 0.52 (bottom).
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Figure 11. Comparison of calculated Tg values for compositions from the training/validation

database. Tg on the x-axis are from isochemical MYEGA fits of the experimental data, on the

y-axis Tg calculated from the ANN directly (squares), from the synthetic data approach (crosses)

and from the model of Giordano et al. (2008) (GRD, diamonds) are shown. Only samples with

measurements in both the Lη and Hη ranges in Table 1 are used. RMSE values are 18.3 K for

the ANN, 7.16 K for the fit to synthetic data, and 57.53 K for the GRD model.

6 Conclusion345

In this work we have trained an artificial neural network (ANN) on a database con-346

taining 3194 temperature-dependent viscosity (η) measurements for volcanic melts span-347

ning a large chemical domain, including extraterrestrial model systems. The neural net-348

work takes melt composition, H2O content, temperature T , the chemical parameters SM,349

reflecting melt polymerisation, and the alkaline ratio K2O/(Na2O+K2O) as input to350

predict η. We show that the trained neural network describes the data in the database351

very well, significantly better than commonly used global models (Hui & Zhang, 2007;352

Giordano et al., 2008). In this context it is worth emphasising that – contrary to such353

models – the ANN relies on data only, and makes no assumption on the functional de-354

pendence of viscosity. As such, interactions between different compositional components355

are taken into account implicitly. This suggests that despite the relatively scarce viscos-356

ity data for volcanic melts the success of ANN previously demonstrated for technical glasses357

(Cassar, 2021; Tandia et al., 2019) can be transferred to volcanology. To facilitate an easy358

use of our trained ANN, we make an online viscosity calculator available at https://359

share.streamlit.io/domlang/visc calc/main/final script.py.360

The lack of training data in an η range 105−108 Pa s for T characteristic for vol-361

canic eruptions results in unphysical behaviour of η. We therefore combine the reliable362

ANN predictions of η in the ranges where training data is available at high and low vis-363

cosity with a fit using the MYEGA equation to achieve a physically sound interpolation364

for geologically relevant conditions. The relevant parameters can be calculated using the365

application mentioned in the previous paragraph. An Excel file to calculate viscosites366
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using these parameters and the MYEGA equation (Mauro et al., 2009) is supplied in the367

Supporting Information.368

Creating more accurate and versatile neural networks for melt viscosity, and other369

properties in general, is only limited by the quality and quantity of data. The time-consuming370

task of guessing a model equation and assuming critical parameters for melt character-371

istics is partly eliminated, while physical behaviour of the melt is implicitly included in372

the modelling process. With more data and further analysis, these implicit physical re-373

lations may reveal themselves and lead to a better understanding on composition-structure-374

property relations. Our results hopefully encourage other researchers to further explore375

machine learning algorithms in the context of natural silicate melts and volcanology. Fi-376

nally, our model supports studies for numerical modelling of eruption scenarios and thus377

forecasting volcanic eruptions on a probabilistic basis.378
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1. Captions for Datasets S1 (ds01) and S2 (ds02)

Introduction The Excel files contain information on the compositions used for training,

validation and testing of the artificial neural networks. Figure S1 depicts the performance

of literature models (Giordano et al., 2008; Hui & Zhang, 2007) on the training/validation

dataset we compiled (Tables 1 and S1), Figures S2 and S3 show the behaviour of fit

parameters Tg and m derived from our synthetic data approach compared to a direct fit.

Table S3 contains the scaling parameters used in the input of the artificial neural network

(Secton 3.1).



X - 2 :

Data Set S1. The excel file ds01 includes two sheets. The sheet ”wt%” contains the

compositions of data used for training and validation in wt% of oxides and the base

composition name from the respective reference. The sheet ”mole frac input” contains

the relevant input compositions in mole fractions (excluding Cr2O3 as it is not used to

train the ANN) and the input parameters SM and K2O/(Na2O + K2O).

Data Set S2. The excel file ds02 includes two sheets. The sheet ”wt%” contains the

compositions of data used as test set in wt% of oxides and the base composition name

from the respective reference. The sheet ”mole frac input” contains the relevant input

compositions in mole fractions (excluding Cr2O3 as it is not used to train the ANN) and

the input parameters SM and K2O/(Na2O + K2O).
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Figure S1. Comparison of calculated and measured viscosities for the models by Giordano

et al. (2008) (top, GRD08) and Hui and Zhang (2007) (HZ07, bottom), when applied to the

training and validation set (Table 1). The solid black line indicates the identity while the dashed

lines give a deviation of ±1 log units.
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Figure S2. Comparison of Tg derived from direct fits to data and predictions using the

synthetic data approach. Only data that include measurements in the Lη and Hη regime from

the training/validation set are used. The top panel (a) shows Tg values from direct MYEGA

fits (blue) and the synthetic model (red) plotted against SM. The bottom panel (b) depicts the

difference δTg = Tg,MYEGA − Tg,synth.
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Figure S3. Comparison of m derived from direct fits to data and predictions using the

synthetic data approach. Only data that include measurements in the Lη and Hη regime from

the training/validation set are used. The top panel (a) shows m values from direct MYEGA

fits (blue) and the synthetic model (red) plotted against SM. The bottom panel (b) depicts the

difference δm = mMYEGA −msynth.

Table S3. Parameters µ and σ2 for scaling of input data used for training/validation of the

ANN.

Parameters T SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Cr2O3 Fe2O3 H2O SM K/(Na+K)
µ 0.602848 0.646069 0.006122 0.105031 0.015038 0.000715 0.05675 0.06878 0.048986 0.028348 0.000494 6.37E-05 0.008792 0.014477 0.218617 0.324061
σ2 0.031535 0.013967 7.55E-05 0.001869 0.000335 7.07E-07 0.004981 0.003721 0.001487 0.00103 1.63E-06 9.68E-08 0.000148 0.000994 0.010378 0.047454




