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Abstract

Rising ocean temperatures affect marine microbial ecosystems directly, since metabolic rates (e.g. photosynthesis, respiration)

are temperature-dependent, but temperature also has indirect effects mediated through changes to the physical environment.

Empirical observations of the long-term trends in biomass and productivity measure the integrated response of these two kinds

of effects, making the independent components difficult to disentangle. We used a combination of modeling approaches to

isolate the direct effects of rising temperatures on microbial metabolism and explored the consequences for food web dynamics

and global biogeochemistry. We evaluated the effects of temperature sensitivity in two cases: first, that all metabolic processes

have the same temperature sensitivity, and alternatively, that heterotrophic processes have higher temperature sensitivity than

autotrophic processes. No other study has explored the direct effects of temperature on ecosystem provisioning (primary

productivity, biomass, export) independently of the associated changes to the physical environment that result from warming.

Microbial ecosystems at higher temperatures are characterized by increased productivity, but decreased biomass stocks as a

result of transient, high export events that remove biomass from the surface ocean. Trophic dynamics also mediate changes

to community size structure, resulting in longer food chains and increased mean body size at higher temperatures. These

ecosystem thermal responses are magnified when the temperature sensitivity of heterotrophs is higher than that of autotrophs.

These results provide important context for understanding the combined food web response to direct and indirect temperature

effects and inform the construction and interpretation of Earth systems models used in climate projections.
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Key Points:13

• Anthropogenic warming increases metabolic rates; when considered in isolation,14

it can increase global marine primary productivity.15

• However, transient increases in export lead to decreased phytoplankton and zoo-16
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• When heterotrophic processes are more sensitive to temperature than photosyn-18

thesis, these changes are magnified.19
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Abstract20

Rising ocean temperatures affect marine microbial ecosystems directly, since metabolic21

rates (e.g. photosynthesis, respiration) are temperature-dependent, but temperature also22

has indirect effects mediated through changes to the physical environment. Empirical23

observations of the long-term trends in biomass and productivity measure the integrated24

response of these two kinds of effects, making the independent components difficult to25

disentangle. We used a combination of modeling approaches to isolate the direct effects26

of rising temperatures on microbial metabolism and explored the consequences for food27

web dynamics and global biogeochemistry. We evaluated the effects of temperature sen-28

sitivity in two cases: first, that all metabolic processes have the same temperature sen-29

sitivity, and alternatively, that heterotrophic processes have higher temperature sensi-30

tivity than autotrophic processes. No other study has explored the direct effects of tem-31

perature on ecosystem provisioning (primary productivity, biomass, export) independently32

of the associated changes to the physical environment that result from warming. Micro-33

bial ecosystems at higher temperatures are characterized by increased productivity, but34

decreased biomass stocks as a result of transient, high export events that remove biomass35

from the surface ocean. Trophic dynamics also mediate changes to community size struc-36

ture, resulting in longer food chains and increased mean body size at higher tempera-37

tures. These ecosystem thermal responses are magnified when the temperature sensitiv-38

ity of heterotrophs is higher than that of autotrophs. These results provide important39

context for understanding the combined food web response to direct and indirect tem-40

perature effects and inform the construction and interpretation of Earth systems mod-41

els used in climate projections.42

1 Introduction43

Over the past century, global average sea surface temperature (SST) has increased44

by 0.7◦C (Bindoff et al., 2007). This surface warming has been accompanied by a steady45

increase in the heat content of the upper 2000 m of the water column since at least the46

1950s, with accelerating trends since 1991 (Cheng et al., 2019). Earth system model pro-47

jections predict additional increases in SST in the 21st century under all Representative48

Concentration Pathways (Bopp et al., 2013). In addition to increasing mean conditions,49

anthropogenic warming has caused unprecedented marine heatwaves in recent years, which50

are predicted to increase in intensity and frequency (Frölicher et al., 2018; Laufkötter51

et al., 2020).52

Rising ocean temperatures, and corresponding changes in water column structure53

and circulation, are expected to impact the dynamics of marine planktonic food webs.54

The relatively short time scale of large spatial scale (e.g. satellite) observations makes55

it difficult to distinguish between climate-driven trends and natural ecosystem variabil-56

ity (Henson et al., 2010; Dutkiewicz et al., 2019). However, some empirical and model-57

ing studies have indicated changes to phytoplankton biomass and primary productiv-58

ity. Global phytoplankton biomass has declined by about 1% of the global median value59

per year since the mid-twentieth century (Boyce et al., 2010) and global net primary pro-60

ductivity (NPP) has been declining since 1999, particularly in lower latitudes (Behrenfeld61

et al., 2006). Similarly, satellite observations have shown an increase in the extent of ma-62

rine low-productivity zones since at least 1998, and the rate of expansion of these olig-63

otrophic regions has been increasing in recent years (Polovina et al., 2008; Irwin & Oliver,64

2009). Although observational data are still too short-term to definitively establish cli-65

mate change-driven trends, modeling studies suggest that there are indeed ongoing sig-66

nificant changes occurring in chlorophyll a, productivity, and planktonic community struc-67

ture (Bopp et al., 2005; Dutkiewicz et al., 2015, 2019; Kwiatkowski et al., 2020; Mur-68

phy et al., 2020; Benedetti et al., 2021).69
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Temperature-driven ecosystem changes arise from the cumulative effects of vari-70

ous mechanisms, including direct effects of temperature on the intrinsic biology of ma-71

rine organisms and indirect effects from changes to the physical environment (Taucher72

& Oschlies, 2011; Dutkiewicz et al., 2013). Physical drivers of phytoplankton variabil-73

ity include temperature (Behrenfeld et al., 2006; Martinez et al., 2009), water column74

stratification and the associated reduction in nutrient availability (Falkowski et al., 1998;75

Behrenfeld et al., 2006; Martinez et al., 2009), and wind (Westerling et al., 2006). Here,76

we are interested in isolating the direct effects of temperature on planktonic food webs,77

independent of changes to the physical environment.78

Temperature has a direct effect on marine organisms because metabolic processes79

are intrinsically temperature dependent. At the species level, organisms generally have80

a temperature optimum at which their growth rate is maximized, but the optimum tem-81

perature (and the maximum growth rate achieved at that temperature) varies between82

species. When the thermal response curves of many species within a functional group83

are combined, the taxon-level maximum growth rates increase exponentially as a func-84

tion of temperature. This monotonic relationship between temperature and maximum85

growth rate is evident in data that integrate growth rates across many species of phy-86

toplankton (Eppley, 1972) or zooplankton (Rose & Caron, 2007). The temperature sen-87

sitivity of such groups of species (i.e. the rate of exponential growth of the temperature-88

metabolic rate curve) can be described using a Q10 temperature coefficient following Eppley89

(1972). Q10 is defined as the amount a biological rate (e.g., growth rate) will increase90

with a temperature increase of 10oC (discussed more fully below).91

Differences may exist in the temperature sensitivity of the growth rates of differ-92

ent planktonic taxa. For example, observational data indicate that heterotrophy may be93

more sensitive to temperature than phototrophy (López-Urrutia et al., 2006; Rose & Caron,94

2007), though the thermodynamic mechanism is not fully understood (Rose & Caron,95

2007). As a result, zooplankton growth rates exhibit greater temperature sensitivity than96

phytoplankton (Rose & Caron, 2007). Recent evidence also demonstrates that temper-97

ature sensitivity can vary between phytoplankton functional types, even within taxa with98

the same metabolic strategy (Anderson et al., 2021). In spite of this, most models that99

contribute to the Intergovernmental Panel on Climate Change (IPCC) projections have100

not accounted for differences in temperature sensitivity between taxa, despite evidence101

that such differences can have important effects on model conclusions (Laufkotter et al.,102

2015).103

Here, we explore the mechanisms by which temperature directly affects marine mi-104

crobial ecosystem provisioning (e.g. production, biomass, export) and community struc-105

ture in the absence of indirect effects that accompany warming, including stratification,106

reduced nutrient supply, and changes to circulation. Within this framework, we also eval-107

uate the effects of alternate assumptions concerning temperature sensitivity: first, that108

all metabolic rates have the same temperature sensitivity (same Q10 values), or that het-109

erotrophic metabolic processes have increased temperature sensitivity (i.e. higher Q10110

value) compared to autotrophic processes. We utilize a combination of modeling approaches111

including both global biogeochemical models and simplified heuristic box models sim-112

ulated under highly idealized warming scenarios.113

We find that, as temperature increases, faster metabolic rates drive increased ex-114

port via the biological pump. Steady-state ecosystems following a temperature increase115

were characterized by increased productivity, but lower standing biomass of phytoplank-116

ton and zooplankton, relative to present day temperature conditions. Warming also causes117

a shift in community structure, with longer food chains and increased mean body size.118

Ecosystem-level thermal responses are amplified, and more strongly favor higher trophic119

levels, when heterotrophy is assumed to have a larger temperature sensitivity than au-120

totrophy.121
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2 Methods122

This study examines the impact of increasing temperature on planktonic food webs.123

To isolate the direct effects of metabolism on temperature, we used Q10 scaling to ap-124

proximate the relationship between photosynthesis/heterotrophy and temperature. We125

tested the impacts of this parameterization in two models: The Darwin Model, a global126

scale ecosystem model that allows us to quantify the impacts of thermal scaling across127

the world’s surface oceans, and a simplified box model, which allows us to isolate spe-128

cific mechanistic drivers of phenomena observed in Darwin.129

2.1 Q10 Temperature Coefficients130

To estimate the effects of temperature on metabolic rates, we used the same pa-131

rameterization that is used in climate change simulation models, such as in the IPCC132

Coupled Model Intercomparison Project (CMIP6; Kwiatkowski et al., 2020). Similar to133

those models, we quantify the effects of temperature on ecosystem dynamics by param-134

eterizing metabolic rates as exponentially increasing functions of temperature (following135

Eppley, 1972, Fig. 1). A metabolic rate, R, at a given temperature can be calculated from136

a known rate, R0, at reference temperature, T0, and the Q10 temperature coefficient fol-137

lowing,138

R = R0Q
(T−T0)/10
10 (1)139

This equation assumes that metabolic rates increase monotonically as a function of tem-140

perature. Although this is not true of individual species, which have maximum thermal141

tolerances, here we model communities of organisms within a given functional group. There-142

fore, we have implicitly assumed that whenever a given species passes its thermal max-143

imum, it will be replaced by a different species with a higher temperature range. This144

monotonic behavior can be seen in data sets that compile maximum growth rates as a145

function of temperature across many species (e.g. Eppley, 1972; Bissinger et al., 2008).146

There is evidence that phytoplankton communities near the equator are already near-147

ing their thermal maximum and are therefore more vulnerable to increases in temper-148

ature (Thomas et al., 2012). However, we have chosen to simplify our representation of149

metabolic temperature sensitivity in favor of idealized cases. Importantly, this assump-150

tion of monotonicity is how the temperature sensitivity of metabolisms is represented151

in the IPCC reports (CMIP6; Kwiatkowski et al., 2020) (as well as earlier CMIP mod-152

els), and so it is useful to do so here so that our results may inform that significant body153

of work. We investigated two cases of relative temperature sensitivity in autotrophs and154

heterotrophs (Table 1). First, we assumed that all metabolic processes in the models have155

the same temperature sensitivity (Q10 = 1.88). Second, and alternatively, we assumed156

that heterotrophs have a higher temperature sensitivity (autotrophic Q10=1.88, heterotrophic157

Q10=2.7).158

2.2 Darwin Model159

To assess the effects of temperature on the upper ocean ecosystem, we performed160

simulations using the Darwin model (Fig. 2). The Darwin simulations incorporate a cou-161

pled physical/biogeochemical/ecosystem model based on that used in Follett et al. (2022).162

Circulation and mixing are provided by the Massachusetts Institute of Technology (MIT)163

general circulation model (MITgcm) (Marshall et al., 1997), constrained to be consis-164

tent with altimetric and hydrographic observations (Wunsch & Heimbach, 2007). This165

three-dimensional global configuration has coarse resolution (1◦ by 1◦ horizontally) and166

23 depth bins ranging from 10 m in the surface to 500 m at depth. The biogeochemi-167

cal/ecosystem component captures the cycling of C, N, P, Si, and Fe as they pass through168

inorganic and (dead and living) organic pools (Dutkiewicz et al., 2015, 2020). The spe-169
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Figure 1. Metabolic rates (e.g. photosynthesis, grazing) as a function of temperature us-

ing two different Q10 values. See Table 1 for the values used for autotrophic and heterotrophic

metabolic processes in different experiments.
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cific details of the ecosystem follow from Follett et al. (2022) and resolve 31 phytoplank-170

ton (2 picoprokaryotes, 2 picoeukaryotes, 5 coccolithophores, 5 diazotrophs, 9 diatoms,171

8 mixotrophic dinoflagellates), 16 zooplankton, and 3 heterotrophic bacteria. Phytoplank-172

ton have size resolution spanning from 0.6 µm to 140 µm ESD, zooplankton spanning173

4.5 µm to 1,636 µm, and bacteria spanning 0.4 µm to 0.9 µm. Parameters influencing174

plankton growth, grazing, and sinking are related to size (Dutkiewicz et al., 2020), with175

specific differences between the six functional groups (Dutkiewicz et al., 2020; Ander-176

son et al., 2021). Phytoplankton growth is limited by multiple nutrients (N, P, Fe, and177

Si in the case of diatoms) and light (following Geider et al., 1998). Grazing is param-178

eterized using a Holling Type II functional response (Holling, 1965) and is size-specific179

such that grazers can prey upon plankton 5 to 15 times smaller than themselves, with180

an optimal size of 10 times smaller (Hansen et al., 1997; Kiørboe, 2018; Schartau et al.,181

2010). The emergent size distribution of the simulated plankton populations is strongly182

controlled both by the rate of supply of limiting nutrients (bottom up) and by grazing183

(top down) (Dutkiewicz et al., 2020; Follett et al., 2022). The output from simulation184

of Follett et al. (2022) compared well to annual and seasonal observations of chlorophyll-185

a, nutrients, and size and biogeochemical functional group distributions of phytoplank-186

ton (Ward, 2015; Buitenhuis et al., 2013). See further discussion in the appendix of Follett187

et al. (2022).188

The only difference between the simulation of Follett et al. (2022) and here is in189

the treatment of thermal responses of the biological rates. In Follett et al. (2022) phy-190

toplankton growth Q10 was based on different functional groups as found in compilation191

of laboratory experiments in Anderson et al. (2021). Here, instead, we set all phytoplank-192

ton growth response to a Q10 of 1.88 (following Eppley, 1972), and a Q10 of grazing to193

either 1.88 or 2.7 following Table 1.194

To quantify the effects of temperature on ecosystem structure, we ran a series of195

experiments of 10 year duration, beginning with the same initial conditions (World Ocean196

Atlas for nutrients, and previous model output for all organic matter). The ecosystem197

quickly (within approximately 3 years) reaches a quasi-steady state. Here we show re-198

sults from the 10th year of the simulations. In the series of experiments, the physical cir-199

culation and mixing remained identical, but the temperatures that the biological rates200

experience were altered: in each simulation the temperature was raised at each location,201

depth, and each time by a specific amount (∆T=1,3,5 oC, see Table 1). These exper-202

iments are thus highly idealized and designed specifically to interrogate the impact of203

increasing temperature on biological rates alone. Though there are slight differences in204

the community composition relative to Follett et al. (2022) given the differences in Q10205

for plankton growth, the default simulation (i.e. where ∆T = 0o) compares similarly206

well to observations of chlorophyll-a, nutrients, and size distribution of phytoplankton207

and functional groups.208

2.3 Box Model209

To provide mechanistic context to the more complex, dynamical Darwin model, we210

also employed a simplified box model of the marine food web in the upper ocean (Fig.211

3). In this model, the surface ocean is represented as a well-mixed box that contains a212

single nutrient resource (N), a population of phytoplankton (P ), a population of zoo-213

plankton (Z), and a pool of detrital organic matter (D). The rate of change of nutrients214

in the surface ocean depends on the balance between upwelling from the deep ocean, rem-215

ineralization of detritus, and uptake by phytoplankton. Nutrients are supplied to sur-216

face ocean via a fixed upwelling flux, W , and by remineralization of the organic matter217

with rate r. Nutrients are removed by phytoplankton uptake, which follow Monod dy-218

namics with maximum uptake rate u and half-saturation coefficient kn,219
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Table 1. Summary of Darwin Simulations

Experiment No. ∆T (◦C) Temperature Sensitivity Case Autotroph Q10 Heterotroph Q10

1 0 Same Q10 1.88 1.88

2 1 Same Q10 1.88 1.88

3 3 Same Q10 1.88 1.88

4 5 Same Q10 1.88 1.88

5 0 Different Q10 1.88 2.7

6 1 Different Q10 1.88 2.7

7 3 Different Q10 1.88 2.7

8 5 Different Q10 1.88 2.7

dN

dt
= W + rD − uNP

kn +N
(2)220

Phytoplankton growth is determined by the balance between nutrient uptake and mor-221

tality terms. Phytoplankton mortality includes both grazing by zooplankton, which fol-222

lows Monod dynamics using a maximum grazing rate g and half-saturation coefficient223

kp, as well as a quadratic mortality term (ϕp) to represent density-dependent loss from224

outside sources,225

dP

dt
=

uNP

kn +N
− gPZ

kp + P
− ϕpP

2 (3)226

Zooplankton growth rate is determined by grazing on phytoplankton minus density-dependent227

mortality at a rate ϕz,228

dZ

dt
=

gPZ

kp + P
− ϕzZ

2 (4)229

Organic matter is added to the detrital pool through phytoplankton and zooplankton230

mortality, and removed via remineralization and export. The export rate, f , represents231

the sinking of biogenic particles out of the surface ocean,232

dD

dt
= ϕpP

2 + ϕzZ
2 − rD − fD. (5)233

The model was parameterized to be similar to the Darwin model (Table 2). Tem-234

perature dependence was added to the following biological rates: u, g, ϕp, ϕz, and r, fol-235

lowing Eq. (1). We simulated the model under the same two assumptions on Q10 be-236

tween trophic levels: first, we assumed that all rate parameters had the same temper-237

ature sensitivity (Q10 = 1.88), and second, we assumed that the heterotrophic rates (g,238

phip, phiz) had a higher temperature sensitivity (Q10 = 2.7). Similar to Darwin model,239

the results of this box model were examined under different temperature, as well as to240

consider transient effects.241
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Figure 3. Food Web Box Model. The box model represents the relationships between a nutri-

ent (N), a phytoplankton population (P ), a zooplankton population (Z), and a pool of organic

matter (D) in the surface ocean. Organic matter is exported out of the surface ocean by a sink-

ing flux and nutrients are supplied back to the surface ocean by upwelling.
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Table 2. Model symbols and their meanings

Typical Simulation
Symbol Description Units Values

Variables:
N inorganic nutrients mmol ·m−3

P phytoplankton mmol ·m−3

Z zooplankton mmol ·m−3

D detritus mmol ·m−3

Parameters:
u maximum phytoplankton growth rate d−1 2.0

kn nutrient uptake half-saturation mmol ·m−3 0.15

g maximum zooplankton growth rate d−1 1.0

kp grazing half-saturation mmol ·m−3 10

ϕp phytoplankton mortality d−1 0.01

ϕz zooplankton mortality d−1 0.1

r remineralization rate d−1 0.3

f export ratio 0.1

w upwelling flux mmol ·m−3 · d−1 0.1

3 Results242

3.1 Higher temperatures reduce surface ocean planktonic biomass and243

nutrient availability.244

First, we quantified the effects of thermal change on ecosystem provisioning. Glob-245

ally integrated total NPP increased with temperature in the Darwin model simulations246

(Fig. 4), following thermal scaling rules. However, biomass of both phytoplankton and247

zooplankton decreased with temperature (Fig. 4). The direction of the trend with re-248

spect to temperature for biomass and productivity was the same for both Q10 cases and249

for different trophic levels, but the magnitude of the thermal response was larger when250

we assumed that the Q10 for heterotrophic metabolic processes was larger than the Q10251

for autotrophic processes.252

More productive ecosystems may contain lower biomass for two reasons: the biomass253

may have either accumulated in the non-living components of the model (e.g. inorganic254

nutrients, detritus) or been removed from the surface ocean along export pathways, in-255

cluding the biological pump. To distinguish between compensatory mass redistribution256

and increased export, we used phosphorus as a mass-conserved tracer, tracking changes257

in the phosphorus content of inorganic nutrients, phytoplankton and zooplankton size258

classes, and the detrital pool as temperature increased. Other elements, notably N and259

Fe, are less useful as a diagnostic due to additional source and loss terms (e.g. aeolian260

deposition, nitrogen fixation). We observed a small increase in dissolved inorganic phos-261

phate under both temperature sensitivity cases. However, this increase was not enough262

to compensate for the decrease in phytoplankton and zooplankton biomass. Thus, to-263

tal upper ocean phosphorus content, which includes both biogenic phosphorus and dis-264

solved phosphate, decreased as temperature increased, providing evidence of a transient265

increase in export at some point along the trajectory of the simulation (Fig. 5).266
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Figure 5. The change in total P content in the surface ocean within different ecosystem

components (inorganic phosphate, phytoplankton, zooplankton, and detritus) after a 5 degree

temperature increase for both Q10 cases.
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3.2 Transient increases in export drive biomass and nutrient reductions.267

Synthesizing the evidence from the suite of Darwin simulations, we propose the fol-268

lowing mechanism for direct temperature effects on marine planktonic food webs (Box269

1). Increasing temperature drives higher productivity via accelerating metabolic rates.270

Increased productivity temporarily results in faster rates of the export of biomass out271

of the surface ocean along biological pump pathways. Increased export reduces the to-272

tal mass of P (summed across organic and inorganic pools) in the surface ocean, result-273

ing in a reduction in total biomass. Darwin simulations were conducted for 10 years, so274

the timescale of interest for this mechanism is both ecologically relevant and small com-275

pared to large-scale circulation processes.276

Temperature

Net Primary Productivity

Phytoplankton

Zooplankton

Export

Abyss

Time

Low         High

Low              High

Temperature

Key

Low NPP Highest NPP High NPP

Box 1. In the contemporary ocean (left side), phytoplankton (green) and zooplankton
(orange) contribute to export (white arrows) to the deep ocean (black). A hypothetical,
acute, and abrupt, increase in temperature causes an acceleration of all metabolic rates,
leading to an increase in primary production (light green background) and an increase in
biomass of phytoplankton and zooplankton. This increased biomass supports a transient
increase in export, which drains nutrients from the surface ocean and causes the system
to re-equilibrate at intermediate levels of primary production and lower levels of biomass.
(Illustrated by Elise Cypher.)

277

To provide additional evidence for this proposed mechanism, we turn to the sim-278

plified box model of the surface ocean. The transient behavior of the box model plays279

a key role in establishing the ecosystem thermal response (Fig. 6). The increase in ex-280

port following an instantaneous temperature perturbation is largely a transient event and281

declines as overall mass is drained from the surface ocean. NPP, which is a function of282

both temperature and phytoplankton biomass, also displays a transient peak directly fol-283

lowing the temperature increase and slow decline again as the system equilibrates. How-284

ever equilbrium NPP is still higher than at the lower temperature. Thus, the asymptotic285

behavior of the model following the temperature change is characterized by increase pro-286
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ductivity (relative to before the temperature change) and lower biomass of phytoplank-287

ton and zooplankton, but the export rate at equilibrium is not significantly increased com-288

pared to before the temperature increase. The ecosystem represented in the box model289

is also more sensitive to temperature when we assume that heterotrophic metabolic pro-290

cesses have a different temperature sensitivity than autotrophic processes (Fig. 7). The291

temperature-driven decline in equilibrium biomass for both phytoplankton and zooplank-292

ton was greater when the zooplankton Q10 was larger than the phytoplankton Q10. These293

results are consistent with the patterns observed in the Darwin simulations.294

3.3 Divergent Q10 values intensify community structure changes and trophic295

cascades.296

At an aggregate level, increased temperature results in declines in total biomass.297

However, the Darwin model includes multiple size classes and functional groups, and com-298

plex community interaction due to the presence of multiple trophic levels. And while the299

total biomass summed across all these size classes is inversely related to temperature,300

trophic dynamics within the food web result in more complicated thermal responses at301

the scale of individual plankton size classes (Fig. 8). In general, the largest size class that302

is present in the ecosystem (the highest trophic level) increased at higher temperatures.303

Increased biomass at the top of the food chain resulted in a trophic cascade, evidenced304

by an alternating pattern of increasing and decreasing biomass in plankton size classes305

moving down the food chain (Fig. 8). The trophic cascade effect is somewhat compli-306

cated by the effects of competition between plankton functional types and complex graz-307

ing relationships that blur the lines between trophic levels, however, the general pattern308

can be seen across a range of different biogeochemical regimes, including regions with309

different trophic structure. This is illustrated most clearly by comparing individual size310

class changes in the Southern and Indian oceans (Fig. 8). Food chains in the Indian ocean311

are typically longer in the Darwin simulations, with an additional trophic level compared312

to food chains in the Southern ocean. Consequently, many of the individual plankton313

size classes show opposite thermal responses.314

The net result of all the individual changes to plankton size classes is an increase315

in the mean body size of the entire plankton community (Fig. 9) and, relatedly, in the316

biomass-weighted food chain length (Fig. 10) at higher temperatures. These increases317

were amplified by divergent Q10 values for autotrophic and heterotrophic processes. The318

preference for larger size classes likely arises from a combination of multiple mechanisms,319

including increased productivity and remineralization rates at higher temperatures that320

support longer food chains and an increase in carnivores (which tend to be larger-bodied)321

relative to herbivores and autotrophs. In the box model, we also observed a positive re-322

lationship between temperature and the ratio of zooplankton to phytoplankton, lend-323

ing additional evidence that carnivores at the top of the food chain gain the most ad-324

vantage from increased productivity.325

4 Discussion326

The oceans’ ecosystems are responding to multiple changes that accompany an-327

thropogenic climate change, including warming, reduced sea-ice, alterations to supply328

of nutrients, changes to light environment, and ocean acidification. Here we specifically329

target ecosystem-level changes caused by the direct effect of warming on metabolic rates.330

Rising ocean temperatures are expected to accelerate the metabolic rates of marine or-331

ganisms. However, we show that even this relatively simple positive relationship between332

temperature and metabolic rate does not translate to easily predictable thermal responses333

at the ecosystem level due to the complicating effects of feedbacks within the food web334

and interactions with the physical environment. Increased productivity driven by warm-335
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Figure 6. Time series of the box model showing transient behavior in (a) NPP, (b) export, (c)

phytoplankton biomass, and (d) zooplankton biomass as the model converges to a new equilib-

rium following an instantaneous temperature increase of 5 degrees at t = 25.
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Figure 7. Relative change in the equilibrium (a) phytoplankton and (b) zooplankton biomass

as a function of the change in temperature in the box model for both Q10 cases
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Figure 9. Global distribution of the plankton community mean body size under the base

(a,b) and +5 degree (c,d) experiments for both Q10 cases and the percent difference (e,f) between

the two temperature simulations.
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Figure 10. Global distribution of the mean food chain length under the base (a,b) and +5

degree (c,d) experiments for both Q10 cases and the percent difference (e,f) between the two tem-

perature simulations.
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ing results in additional export of material out of the surface ocean, resulting in ecosys-336

tems that are more productive, but contain less biomass, as the temperature increases.337

Warming also broadly drives increases in mean body size in the plankton commu-338

nity. Interestingly, this trend is in the opposite direction of the classical thermal response339

of size spectra in oceanography, in which warming drives decreases in body size, that has340

been proposed as a universal biological response to warming (Gardner et al., 2011; Yvon-341

Durocher et al., 2011). Water column stratification and reduced nutrient supply are of-342

ten suggested as proximate causes of this decline in mean body size (Morán et al., 2010).343

Here, we have ignored those factors in favor of focusing on the direct effects of temper-344

ature on metabolism. The fact that our analysis found an increase in mean body size345

suggests the relationship between temperature and plankton size spectra is complex, in-346

tegrating multiple (possibly contradictory) mechanisms of change.347

Transient dynamics were an important component of the results in this study. In348

the time-series simulation of the box model, productivity responded non-monotonically349

to an instantaneous temperature increase: NPP initially increased in response to the higher350

temperature, but then slowly declined as matter was removed from the system along ex-351

port pathways. A similar pattern has been observed in decadal-scale changes in global352

NPP, which increased significantly between 1998 and 2000 and then gradually declined353

during the first decade of the 21st century (Behrenfeld et al., 2006). While there is not354

sufficient evidence to say whether the mechanism described in this paper is responsible355

for these patterns, the agreement between findings underscores the importance of feed-356

backs within the system, which can produce complex transient responses to simple changes357

in the drivers of the system.358

Another source of complexity is the temperature sensitivities themselves. In both359

the Darwin and the box-model simulations, ecosystems had greater sensitivity to tem-360

perature if the Q10 values differed across different metabolic processes. Here, we com-361

pared the case in which all the Q10 values in the model are equal against the case in which362

the Q10 for heterotrophic metabolic processes is higher than that of autotrophic processes.363

These assumptions were based on empirical evidence that show increased temperature364

sensitivity in the growth rates of heterotrophs (Rose & Caron, 2007). However, our knowl-365

edge of the variability in real world Q10 is incomplete. Temperature sensitivity certainly366

varies across phytoplankton taxa (Anderson et al., 2021) and between phytoplankton and367

zooplankton (Eppley, 1972; Rose & Caron, 2007), but the variability in temperature sen-368

sitivity for other important ecosystem rates, including remineralization, and the regional369

variability across biogeochemical regimes remains largely undescribed.370

Our results suggest that variability in temperature sensitivity affects the ecosystem-371

level thermal response of planktonic food webs. A better description of the variance in372

Q10 coefficients between different taxa and biogeochemical regimes will expand our un-373

derstanding of how marine ecosystems will response to warming and should be a prior-374

ity in future research. It is important to note that these temperature sensitivities are likely375

not fixed. Organisms adapt to their environment and evolution in response to warming376

temperatures may function to modulate the ecosystem response (Padfield et al., 2016).377

Increased thermal diversity has been shown to dampen ecosystem thermal sensitivity be-378

cause communities are better able to track temperature fluctuations in the environment379

(Chen, 2022). A “flattening” of the Q10 curves via adaptation could reduce the temper-380

ature sensitivity of ecosystems and lead to smaller thermal responses.381

Our study has particular relevance to Earth system models (ESMs), including those382

used in the IPCC CMIP ensembles. These models include Q10 parameterizations of tem-383

perature sensitivity for biological rates, and as such the mechanisms we describe in this384

study will be at play in their future change scenarios. These mechanisms such as temperature-385

alone driven decrease in biomass and increase in NPP will occur in their projections, but386

have not been isolated before. Other effects such as alterations in nutrient supplies and387
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light environment will occur in the ESM as well. The combination of all these stressors388

will lead to different outcomes in different regions (see e.g. Dutkiewicz et al., 2013). But389

no previous study has focused on the ecosystem-wide dyanmics as found in this study.390

Darwin’s sensitivity to assumptions concerning Q10 values may therefore also pro-391

vide insight into the differences in results from various Earth system models (ESMs). There392

is a high degree of variability among the ESMs participating in CMIP6, with disagree-393

ment in the sign of the ecosystem response over the twenty-first century in many loca-394

tions (Kwiatkowski et al., 2020). Some of this uncertainty likely arises from differences395

in the implementation of temperature sensitivity, varying from using the same sensitiv-396

ity for all plankton types (e.g. GFDL-COBALT; Stock et al., 2020), to using different397

Q10 values for phyto- and zooplankton (e.g. IPSL-PISCES; Aumont et al., 2015), to im-398

plementing phytoplankton temperature dependent but zooplankton independent (e.g.399

UK-ESM-MEDUSA; Yool et al., 2013). The lack of consistency could at least partially400

be due to mechanisms described here. As stated earlier, these mechanisms are already401

at work in the CMIP6 models, albeit alongside other sources of ecosystem change. Our402

results could be the source of some of this uncertainty.403

We have taken a diagnostic approach in our modeling method and worked to iso-404

late one mechanism of temperature-driven ecosystem change that arises from the direct405

effects of temperature on metabolism. However, it is important to acknowledge that this406

mechanism exists in the context of a suite of direct and indirect effects that tempera-407

ture has on marine food webs. These effects include changes to water column structure408

and stratification, changes to circulation at multiple scales, and ocean acidification (Falkowski409

et al., 1998; Behrenfeld et al., 2006; Martinez et al., 2009; Dutkiewicz et al., 2013, 2015,410

2019). Multiple, simultaneous mechanisms of ecosystem change will alter nutrient avail-411

ability, biomass, and community structure in complex ways. Ecosystem-level thermal re-412

sponses are therefore an emergent behavior of a complex network of temperature-driven413

changes to both physics and biology in the ocean. A complete understanding of ecosys-414

tem thermal sensitivity is an iterative and ongoing process of building up layers of un-415

derstanding of individual mechanisms of change and how they interact. The purpose of416

this study was specifically to examine the thermal response of metabolism, an effect that417

is present in previous models, but not fully examined.418

5 Data Availability419

The generic ecosystem code required to run the Darwin model is available through420

https://github.com/darwinproject/darwin3. The specific simulation output used in this421

study is available at https://dataverse.harvard.edu/dataverse/darwin (DOI will be as-422

signed upon acceptance of the manuscript). The box model simulations are fully repro-423

ducible from the equations and parameter values included in the paper.424
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