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Abstract

Sinking particles are important in delivering carbon to the deep ocean where it may be stored out of contact with the atmosphere.

Particle sinking velocity strongly influences the amount of carbon reaching the deep ocean, and is thought to be strongly affected

by particle size. Here we carried out an extensive literature review (62 datasets) into the size-sinking velocity relationship, and

find the relationship is much weaker for studies examining particles in situ (median R2 = 0.03) compared with ex situ studies

(median R2 = 0.35). This may be because particles examined in the laboratory have more uniform properties than those studied

in situ, and represent only a subset of particles from the natural environment. Our findings suggest a simple relationship between

size and sinking velocity may be insufficient when calculating sinking particulate fluxes in the ocean; considering different particle

types individually will enable more accurate calculations of particulate fluxes.
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Key Points:

• An extensive literature review on particles’ sinking velocity and associated
particle characteristics was carried out.

• Ex-situ studies typically find size to be a strong predictor of sinking veloc-
ity; strong correlations are rarely observed in situ however.

• Results suggest importance of additional factors in predicting particle sink-
ing velocities and fluxes from size-scaling relationships.

Abstract

Sinking particles are important in delivering carbon to the deep ocean where
it may be stored out of contact with the atmosphere. Particle sinking veloc-
ity strongly influences the amount of carbon reaching the deep ocean, and is
thought to be strongly affected by particle size. Here we carried out an exten-
sive literature review (62 datasets) into the size-sinking velocity relationship,
and find the relationship is much weaker for studies examining particles in situ
(median R2 = 0.03) compared with ex situ studies (median R2 = 0.35). This
may be because particles examined in the laboratory have more uniform proper-
ties than those studied in situ, and represent only a subset of particles from the
natural environment. Our findings suggest a simple relationship between size
and sinking velocity may be insufficient when calculating sinking particulate
fluxes in the ocean; considering different particle types individually will enable
more accurate calculations of particulate fluxes.

1 Introduction

In the ocean, the production, transfer to depth, and remineralization of organic
particles provide a major pathway for the export of carbon from the ocean’s
surface to the ocean interior (Laurenceau-Cornec et al., 2015; Sanders et al.,
2016). Collectively termed the Biological Carbon Pump (BCP), these processes
act to maintain atmospheric CO2 approximately 200 ppm lower than they would
otherwise be (Maier-Reimer et al., 1996; Parekh et al., 2006). Although several
processes contribute to the BCP, the gravitational settling of organic particles
are thought to result in ~1000 Pg of ocean carbon storage (Boyd et al., 2019),
contributing the majority of carbon sequestered by the BCP (Boyd et al., 2019;
Buesseler et al., 2020).
As particulate organic carbon (POC) sinks, proportions of this downward flux
are reworked by metazoans, such as zooplankton, and eventually remineralised
back into CO2, predominantly through microbial respiration (Giering et al.,
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2014). As a result of this particle remineralisation and reworking, sinking POC
fluxes are observed to be attenuated with depth. The rate of flux attenuation
(and hence the proportion of sinking carbon reaching the deep ocean) is deter-
mined by the balance between particle sinking velocities and remineralisation
rates (Bach et al., 2019; Marsay et al., 2015). Since particle sinking velocities
determine the length of time in which a particle is exposed to metazoan and
microbial remineralisation, sinking velocity is a crucial determinant in the de-
gree of attenuation of POC fluxes and BCP efficiency (Laurenceau-Cornec et
al., 2015) (Fig. 1).
In recent years, the use of in situ optical methods has emerged as an impor-
tant tool in the study of the BCP (Giering, Cavan, et al., 2020). Increasingly
able to be deployed autonomously (Lombard et al., 2019; Picheral et al., 2022),
these methods can provide far greater spatiotemporal resolution and coverage
than traditional ship-based sampling methods (Giering, Cavan, et al., 2020;
Lombard et al., 2019). Using the particle concentrations obtained by in situ
imaging methods, particle fluxes within a given size class can be calculated if
sinking velocities of particles within the size class can also be estimated (Guidi
et al., 2008; McDonnell & Buesseler, 2010). A robust understanding of the fac-
tors that govern particle sinking rate is crucial in the implementation of these
cutting-edge methods, for estimating particulate fluxes and studying the BCP.
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Figure 1: Schematic illustrating factors posed to influence particle sinking
velocity, their relation to size (red) or density (green) as described in Stokes’s law,
and the effect of fast and slow sinking particles on particulate flux attenuation
rates and particles fluxes reaching depth. Particles begin sinking from below
the mixed layer and are attenuated as they sink. Illustrative flux attenuation
curved are shown for fast sinking (left) and slow sinking (right) particles. Fast
sinking particles experience slower rates of flux attenuation due to decreased
duration of exposure to remineralisation whilst they sink.

To date, particle size has been identified by theory and some empirical studies
to be a major determinant of particle sinking velocity (Alldredge & Gotschalk,
1988; Iversen et al., 2010; Laurenceau-Cornec et al., 2015). Considering size as
a key predictor of sinking velocity assumes relative constancy of other particle
properties such as particle composition, porosity and biomineral content. In
recent years, however, empirical studies have called into question this assump-
tion (Iversen & Ploug, 2010; Laurenceau-Cornec et al., 2020; Ploug et al., 2008)
and the degree to which size alone constrains sinking velocity (Diercks & Asper,
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1997; Iversen & Lampitt, 2020).

Here we review the extent to which empirical evidence supports the hypothesis
of size as the main determinant of sinking velocity, and assess the reasons for
differences between studies. We recommend avenues for further study that will
facilitate improved understanding and modelling of particle sinking velocities
and of the BCP.

1. 1.1 A widely held view: size does matter

In recent decades, derivations such as Stokes’s law have been widely used to
estimate particle sinking velocity (Laurenceau-Cornec et al., 2020; Miklasz &
Denny, 2010):

𝑤 = (𝜌𝑝 − 𝜌𝑓) 𝑔𝑑2

18𝜇 (2)

where w is the sinking velocity of a sphere (m s−1), �s and �f are the sphere and
fluid densities (kg m−3), g is the acceleration due to gravity (9.81 m s−2), d
is the sphere diameter (m) ,and � is the fluid dynamic viscosity in kg m−1s−1.
Through balancing the drag and gravitational forces acting on a sinking par-
ticle at terminal velocity, these derivations pose size to be a key determinant
of sinking velocity. This idea has been represented in various size-dependent
parameterizations of particle sinking velocity in biogeochemical models (de La
Rocha & Passow, 2007; Kriest & Oschlies, 2008; Laurenceau-Cornec et al., 2015;
Tjiputra et al., 2020), and in landmark papers using size spectra to compute par-
ticulate fluxes (Guidi et al., 2008; Jouandet et al., 2011; McDonnell & Buesseler,
2010).

When deriving mass fluxes from particle size spectra, total mass flux may be
calculated through combining measured number size spectra with estimates of
sinking velocity (w) and mass (m) of individual particles. Since both w and m
can be expressed as power law functions (of the form (y = axb), their product
is expressed in the same form:

𝑤𝑚 = 𝐴𝑑𝐵 (3)

where d is particle diameter, and A and B are constants. Hence if A and B are
known, size spectra can be used to calculate total mass fluxes. A and B may
be estimated through a minimisation procedure (Guidi et al., 2008; Iversen et
al., 2010; Nowald et al., 2015) if alternative measurements of particulate fluxes
can be made, and assuming that mass and particle size as a function of depth
are constant for all depths (Iversen et al., 2010). Alternatively, when additional
flux measurements have not been made (such as on autonomous deployments),
global estimates of A and B from prior studies can be used (Iversen et al., 2010;
Ramondenc et al., 2016). This latter approach assumes that particle mass and
sinking velocity as functions of size are universally constant; an assumption
which has been called into question by Iversen et al. (2010). Applying global
estimates of A and B may lead to flux estimates a factor of 10 out from measured
in situ values, on account of variations in particle composition (Iversen et al.,
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2010). Variability in the composition of particles (Iversen et al., 2010), as well
as source, density, and age of particles (Ploug et al., 2008) have all been posed
to influence size-dependent scaling relationships of sinking velocity.

2 Empirical evidence on the size-sinking velocity relationship

To identify the most commonly studied particle characteristics, we carried out
a literature search into studies measuring particle sinking velocity and associ-
ated particle characteristics. Restricting results to within Earth and Planetary
Sciences, we searched for abstracts, titles, and keywords containing the words
“Particle” and “Sinking” and “Velocity”, as well as a given particle characteristic
(“Size”, “Ballast”, “Morphology”, “Composition”, “Type”, “Shape”, “Compact-
ness”, “Fractal” [Dimension]). Size returned the greatest number of studies
(79), followed by parameters relating to chemical and taxonomic composition
(Composition: 37; Type: 22; Ballast: 18). Searches relating to other morpho-
logical properties typically returned the fewest results (“Shape”: 17; “Fractal”
[Dimension]: 5; “Compactness”: 1; “Permeability”: 1; “Morphology”: 1).

2. Using the four most commonly studied particle attributes from our lit-
erature search (size, particle type, ballast, and shape) we examined the
degree of correlation between sinking velocity and each of the above at-
tributes (Fig. 2). A full description of methods is provided in the Methods
section. Briefly, to assess the degree of variation in sinking velocity ex-
plained by a particle size in each study, a power law function was fitted
to the data, and R2 (proportion of variance in sinking velocity explained
by size) of this power law function recorded. For particle type, ballast,
and shape, R2 were recorded from linear regressions for continuous parti-
cle characteristics, or from analyses of variance (ANOVAs) for categorical
data.

Despite particle size having received the most interest, our review suggests
the dependency of sinking velocity on size is not well constrained (Fig. 2).
Size explains between 0-88% in the variation in particle sinking velocity (as
determined by the coefficient of determination ‘R2’) with a median value
of 31%. The strongest correlation between size and sinking velocity was
observed for intact salp faecal pellets from the Southern Ocean (Iversen et
al., 2017). However, in more than a quarter (16 of 62 datasets), particle
size was observed to be a poor predictor of sinking velocity, explaining less
than 10% of variation in particle sinking velocity (Fig. 2).
Particle size did not appear to be a stronger predictor of sinking velocity
than particle type or particle ballast content (Wilcoxon rank tests, p >
0.8). The median percentage of variance in sinking velocity explained
by particle type and ballast content were 26% and 30% respectively. It is
noteworthy however that only four ex situ datasets examined the influence
of particle type or ballast content. Likewise for particle shape, only one ex
situ and one in situ study directly measured a particle shape characteristic
(aspect ratio) and sinking velocity, with neither of these studies finding
sinking velocity to be explained by particle shape alone.
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For the datasets focussing on particle size as a predictor, we found strong
differences between measuremends made in situ and ex situ. R2 values
were significantly higher for ex situ studies than in situ studies (Wilcoxon
rank test, p < 0.01), suggesting that the strength of the size-sinking ve-
locity relationship may be influenced by experimental type. While weak
correlations between size and sinking velocity were observed in both situ
and ex situ datasets, strong dependencies of sinking velocity on particle
size were only observed ex situ. For in situ datsets (n = 12), size ex-
plained less than 30% of variability in sinking velocity in all but two stud-
ies which respectively examined flocs from meltwater discharge plumes
and resuspended near-bottom sediment. For in situ particles, the median
percentage of variance in sinking velocity explained by particle size was
3%, contrasting with 35% for particles measured ex situ. Overall these
findings suggest that the strong relationships observed ex situ between in-
dividual particle characteristics and sinking velocity may not always hold
true in situ. As such, the methodological biases outlined below should be
taken into consideration before extrapolating relationships observed in ex
situ studies to natural marine particles in situ.

5. Figure 2: Boxplot comparing proportion of variance in sinking velocity ex-
plained by particle characteristics. Coefficients of determination (R2) from
linear models and analyses of variance (ANOVAs) performed between par-
ticle characteristics (size, type, ballast content, shape) and sinking veloci-
ties directly measured in previous studies (see text, Supplementary Table
S1). Colours of boxplots indicate whether sinking velocity measurements
were made in situ (blue) or ex situ (red). Colours of individual points
illustrate whether particles were generated ex situ (red colours, cultured
or incubated ex situ prior to measurement) or in situ (blue colours, nat-
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ural particles observed in situ or measured immediately ex situ without
prior incubation). In a small number of cases, natural particles were col-
lected and sinking velocity measured without incubation- these particles
are therefore represented as blue points on red boxplots. Shapes indicate
method used to measure sinking velocity.

2.1 Ex situ vs in situ: methodological compromises

Most studies into factors constraining sinking velocity involve incubating
particles ex situ prior to or during measurements, as this allows the study
of a greater number of particle characteristics. By examining particles in
a laboratory, detailed measurements of a wide number of particle charac-
teristics can be made, such as fractal dimension, chemical and taxonomic
composition, removing the need for estimates of these parameters (Francis
& Passow, 2020; Mantovanelli & Ridd, 2006). In addition, studies where
particles are generated ex situ also allow for manipulation of particles to
test for targeted interactions and effects on sinking velocities (Giering, Ca-
van et al. 2020).
However, particle dynamics observed ex situ in laboratory studies may not
be representative of relationships in the natural environment. Firstly, the
highly fragile nature of marine aggregates mean that they are suscepti-
ble to damage, alteration, and disaggregation during sampling for ex situ
incubations (Giering, Cavan, et al., 2020; Iversen & Lampitt, 2020; Ka-
jihara, 1971). Secondly, particles cultured ex situ are often formed from
homogenous particle pools, such as phytoplankton cultures, whilst in the
natural environment a heterogenous pool of particles of varied age, com-
position, density, structure, and porosity exists (Iversen & Lampitt, 2020).
As a result, the strong size-sinking velocity relationships observed within
homogenous particle pools ex situ (Iversen et al., 2010; Iversen & Ploug,
2010, 2013) is unlikely to be representative of the real ocean. According
to a modelling study of Cael et al. (2021), uncertainties in the scaling of
the size-sinking velocity relationship have also been observed to be greater
for in situ than ex situ studies. While this result could be attributed to
a larger sample size for particles measured ex situ, this result could also
suggest a more homogenous relationship between size and sinking velocity
in ex situ studies (Cael, pers. comms). Hence overall, ex situ studies sacri-
fice some particle realism for the ability to measure and examine particle
dynamics in detail (Fig. 3).
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Figure 3: Relative advantages of in situ and ex situ methods (blue and red
respectively) in terms of ability to measure particle characteristics and particle
realism, when investigating the relationship between particle sinking velocity
and particle characteristics. Position of each method relates to an assigned
“Particle Realism score” and “Measurement Capability score” as described in 4.3
Methodological Comparisons; explanations of assertions used for scoring these
methods available in Supplementary Table S2.

In situ methods hold the major advantage of observing particles in their natural
environment. Any measurements made are therefore acquired without the need
for handling particles, decreasing (but not eliminating (Briggs et al., 2011; Ce-
tinić et al., 2012)) the potential alteration and disturbance to particle properties
(Giering, Cavan, et al., 2020; Iversen & Lampitt, 2020), and thus maximising the
realism of any interactions between sinking velocity and particle characteristics.
However, a major drawback of in situ optical devices is that these methods lack
the capability to measure provide direct information on a number of particle
characteristics, such as particle density and stoichiometry (Giering, Hosking, et
al., 2020). These methods must hence rely on additional data or assumptions to
estimate particle sinking velocities and calculate particulate fluxes. Given these
uncertainties, the expensive nature of in situ camera systems, and a lack of stan-
dardization in analysis routines for in situ imge datasets (Giering, Hosking, et
al., 2020), in situ studies into particle sinking velocities remain sparse compared
with more traditional ex situ methods. In summary, in situ studies thus lack the
capacity to study some particle characteristics which may be measured ex situ,
but maximise realism when studying particle characteristics and properties.
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3 Implications for utilizing novel in situ methods

The lack of agreement in the strength of size-sinking velocity relationships be-
tween in situ and ex situ studies has immediate implications for the application
of size spectra in generating particulate fluxes. If size is held to be a strong pre-
dictor of sinking velocity as a single factor, as suggested by some ex situ studies,
relative constancy of additional factors may be assumed. In this case, applying
a consistent scaling relationship using previously published global value forms a
useful method to calculate particulate fluxes. Such methods have been used pre-
viously on cruises and autonomous platforms (Guidi et al., 2008, 2009; Picheral
et al., 2022; Ramondenc et al., 2016) and have the advantage of high spatial
and vertical resolution.
However, here we have found the strong particle size-sinking velocity relation-
ships often observed ex situ rarely apply to in situ particles, suggesting vari-
ability in other particle characteristics in situ may reduce the applicability of
size as a sole predictor of sinking velocity. Such heterogeneity of particles in
situ would violate the assumption of constancy in other particle characteristics
upon which the use of global size-scaling relationships depend. To overcome this
uncertainty, one solution can come from improving optical camera system and
methods used for in situ studies. Methods that can distinguish between par-
ticle types will allow for differential size-sinking scaling between particle types
(Iversen & Lampitt, 2020), with machine learning likely to expedite this process
(Giering, Cavan, et al., 2020). When considering individual particle types, par-
ticles often exhibit clear size-sinking velocity relationships, such as we have have
noted here from previous works using salp faecal pellets (Iversen et al., 2017)
and pure phytoplankton cultures (Iversen & Ploug, 2010, 2013). Recognising
individual size-scaling relationships for varying particle types will enable more
accurate sinking velocity and flux estimates for particle groups, allowing a choice
of values used in size-scaling relationships. As a result, being able to distinguish
between size-scaling relationships for particle types will increase accuracy of
flux measurements in a varied ecological and biogeochemical settlings. Focusing
scientific effort on developing these methods will not only facilitate improved
mechanistic understanding of particle sinking and the BCP, but also promote
increased spatio-temporal resolution of methods through the use of autonomous
platforms.

4 Methods

4.1 Data compilation

We compiled observations of particle sinking velocity and associated particle
characteristics from 62 datasets from 38 studies (see Supplementary Table S1) .
These data had previously been compiled by Cael et al. (2021) and Laurenceau-
Cornec et al. (2015, 2020); all original datasets were validated and, if needed,
redigitized using Plot Digitizer (https://automeris.io/WebPlotDigitizer/).
Studies not relating to marine particles were excluded from this analysis. In the
small number of cases where size particle size and sinking velocity data had been
fitted to a power law function in original studies (n = 10), published R2 values
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in the literature were used. Data were assigned to “in situ” and “ex situ” groups
for measurement type, based on the method used to measure sinking velocity in
each study. The particle types examined in each study were assigned to one of
nine particle types (e.g., natural aggregates, mixed diatom culture; for full list
Fig. 2, Supplementary Table S1), with method used to measure particle sinking
velocities also described through one of nine groups (e.g., Scuba photography,
Vertical flow system; for full list see legend of Fig. 2, Supplementary Table S1).

4.2 Sinking velocity/Particle characteristic analyses

To assess the variability in sinking velocity explained by a particle size in each
study, a power law function (in form w = AdB, where w is the sinking velocity,
d the diameter, and A and B are scaling coefficients) was fitted to the data. A
power law was chosen over a linear regression since sinking velocity is thought
to scale with particle diameter according to a power law function according to
Stokes’s Law and empirically modified version incorporating porosity (Guidi et
al., 2008; Laurenceau-Cornec et al., 2020; Xiang et al., 2022).

For particle type, ballast, and shape, R2 were recorded either from performing
linear regressions or analyses of variance (ANOVAs), depending on whether the
particle characteristic was described in terms of continuous or categorical data.
For example, in some studies particle type was analysed as a categorical variable
with discrete groups such as S. costatum or E. huxleyi aggregates, and sinking
velocity was compared between these groups by means of an ANOVA. In another
study, particle type was expressed as a percentage of aggregate composition of
one diatom morphotype. In this case, a linear regression was performed between
percentage of total composition and particle sinking velocity. Lastly, having
failed both Levene’s and Shapiro Wilk tests, a Wilcoxon rank sum test with
continuity correction was performed to assess whether R2 coefficients differed
significantly between in situ and ex situ studies.

4.3 Methodological comparison

To represent the advantages and disadvantages of in situ and ex situ methods for
sinking velocity measurement, methods were ranked in terms of their ability to
measure particle characteristics, and in terms of particle realism. Although these
assertions are subjective rankings, a scoring system was devised to standardise
rankings and criteria by which methods were judged. For measurement capabil-
ity score, particle characteristics (Size, Ballast, Taxonomic composition/Particle
type, Chemical composition, Shape, Dry weight, Porosity, Fractal dimension,
Density, and Sinking velocity) were assigned a score from 0 to 4, describing the
comprehensiveness with which a particle characteristic could be studied with a
given method (0 lowest, 4 highest; see Supplementary Table S2). Measurement
capability scores of individual characteristics were summed to give an overall
score. Where a range of measurement score was given for a particle characteris-
tic, the mean value was used when summing scores to calculate (e.g. 2-3 scored
as 2.5).
For the particle realism score, each method was assigned a score from 0 to
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4, based on the extent to which the particles measured had been influenced by
sampling and measurement procedures, i.e. the extent to which particle commu-
nities measured could be expected to reflect natural marine particle communities
in situ. A brief explanation for assigned scores and evidence supporting these
assertions are outlined in Supplementary Table S2).
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Introduction  

These supporting information in the form of xlsx files set out the raw and processed data 

used in this study, and identifiers to all raw data analysed in this study. Data processing 

involved fitting a power law function to size and sinking velocity datasets, and fitting 

either linear regressions or Analyses of Variance (ANOVAs) to particle type, ballast 

content, and shape datasets. No known imperfections or anomalies have been identified 

in the data. 
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Table S1. Outputs from all analyses (power law fits, linear regressions, ANOVAs) for all 

studies analysed here, along with additional metadata for each study. Studies are 

identified by a paper number which is referred to identify datasets in Data Set S1. The 

“All parameters” sheet contains outputs for all analyses; separate sheets for individual 

parameters are also included to separate out analyses by particle characteristic, for 

convenience. Following the naming convention: “Williams & Giering_TableS1” 

 

Table S2. Contains the Measurement Capability Scores and Particle Realism Scores 

assigned to methods of measuring sinking velocity, presented in Figure 3. Also included 

are explanations of the scoring system and of assertions used to assign each method a 

score. Following the naming convention: “Williams & Giering_TableS2” 

 

Data Set S1. Contains all raw data used in this study. This data will additionally be made 

publicly available following revisions and prior to resubmission. “Study number” column 

is an index to match datasets to studies; these studies and their corresponding index 

number are outlined in Table S1. A README sheet is included to explain the indexing 

system. “Williams & Giering_DS01” 

 

 


