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Abstract

In this study, we forecast hourly relativistic (>2 MeV) electron fluxes at geostationary orbit for the next 72 hours using a

deep learning model. For this we consider three deep learning methods, such as multilayer perceptron (MLP), LSTM, and

sequence-to-sequence based on LSTM. The input data of the model are solar wind parameters (temperature, density and

speed), interplanetary magnetic field (|B| and Bz), geomagnetic indices (Kp and Dst), and electron fluxes themselves. All input

data are hourly averaged ones for the preceding 72 consecutive hours. We use electron flux data from GOES-15 and -16, and

perform cross-calibration to match the two data. Total period of the data is from 2011 January to 2021 March (GOES-15

data for 2011-2017 and GOES-16 data for 2018-2021). We divide the data into training set (January-August), validation set

(September), and test set (October-December) to consider the solar cycle effect. Our main results are as follows. First, the

MLP model, which is the best, successfully predicts hourly electron fluxes for the next 72 hours. Second, root-mean-square

error (RMSE) of our model is from 0.18 (for 1h prediction) to 0.68 (for 72h prediction), and prediction efficiency (PE) is from

0.97 to 0.53, which are much better than those of the previous studies. Third, our model well predicts both diurnal variation

and sudden increases of electron fluxes associated with fast solar winds and interplanetary magnetic fields. Our study implies

that the deep learning model can be applied to forecasting long-term sequential space weather events.
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Key Points:7

• A deep learning model based on multilayer perceptron is presented to forecast hourly8

relativistic (>2 MeV) electron fluxes at geostationary orbit for the next 72 hours.9

• The performance of our model is much better than that of previous studies in view10

of metrics such as prediction efficiency, root mean square error, and correlation11

coefficient.12

• Our model successfully predicts the change of electron fluxes such as diurnal vari-13

ation and sudden increase.14
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Abstract15

In this study, we forecast hourly relativistic (> 2 MeV) electron fluxes at geostation-16

ary orbit for the next 72 hours using a deep learning model. For this we consider three17

deep learning methods, such as multilayer perceptron (MLP), LSTM, and sequence-to-18

sequence based on LSTM. The input data of the model are solar wind parameters (tem-19

perature, density and speed), interplanetary magnetic field (|B| and Bz), geomagnetic20

indices (Kp and Dst), and electron fluxes themselves. All input data are hourly averaged21

ones for the preceding 72 consecutive hours. We use electron flux data from GOES-1522

and -16, and perform cross-calibration to match the two data. Total period of the data23

is from 2011 January to 2021 March (GOES-15 data for 2011-2017 and GOES-16 data24

for 2018-2021). We divide the data into training set (January-August), validation set (Septem-25

ber), and test set (October-December) to consider the solar cycle effect. Our main re-26

sults are as follows. First, the MLP model, which is the best, successfully predicts hourly27

electron fluxes for the next 72 hours. Second, root-mean-square error (RMSE) of our model28

is from 0.18 (for 1h prediction) to 0.68 (for 72h prediction), and prediction efficiency (PE)29

is from 0.97 to 0.53, which are much better than those of the previous studies. Third,30

our model well predicts both diurnal variation and sudden increases of electron fluxes31

associated with fast solar winds and interplanetary magnetic fields. Our study implies32

that the deep learning model can be applied to forecasting long-term sequential space33

weather events.34

Plain Language Summary35

Relativistic electron fluxes (>2 MeV) can damage satellites, resulting in loss of func-36

tion. Thus, forecasting electron fluxes is a necessary task to minimize the loss. We de-37

velop a deep learning model to perform time-series forecasting of hourly relativistic elec-38

tron fluxes 3 days ahead. For this, we use solar wind parameters, interplanetary mag-39

netic field, geomagnetic indices, and electron fluxes from GOES-15 and 16. Our model40

shows outstanding performances for time series forecasting of electron fluxes in view of41

metrics. In addition, our model successfully predicts the change of electron fluxes such42

as diurnal variation and sudden increase.43
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1 Introduction44

There have been a lot of spacecraft in geostationary orbit (GEO) for various ob-45

jectives such as communications, navigation and meteorology. They are constantly ex-46

posed to the dangers by high-energy electrons called ”killer electrons”. They can cause47

deep dielectric charging by burying themselves in dielectric materials. If the accumulated48

charge becomes high enough, a powerful discharge can occur. It may cause physical dam-49

age to the satellites, resulting in temporary or permanent loss of function (Baker, 2000;50

Horne et al., 2013; Baker et al., 2018). For this reason, the prediction of electron fluxes51

in GEO is essential to minimize the loss.52

There have been many studies to predict electron fluxes using various methods. Baker53

et al. (1990) used the method of linear prediction filter (LPF) analysis to characterize54

and predict the general relation between solar wind or geomagnetic indices and electron55

properties. The relativistic electron forecast model operated by Space Weather Predic-56

tion Center (SWPC) is based on this method. Physics based models (Li et al., 2001; Li,57

2004; Turner & Li, 2008; Lyatsky & Khazanov, 2008), empirical models and statistical58

models (Ukhorskiy et al., 2004; Miyoshi & Kataoka, 2008; H. L. Wei et al., 2011; Den-59

ton et al., 2015; Boynton et al., 2016) have been also suggested. In addition, neural net-60

work based models have been proposed since the early 1990s for forecasting electron fluxes.61

(Koons & Gorney, 1991; Fukata et al., 2002; Ling et al., 2010; Shin et al., 2016).62

Deep learning, one of the neural network methods, is a method to solve complex63

non-linear problems. For forecasting electron fluxes, there have been a few attempts to64

apply deep learning methods. L. Wei et al. (2018) used a long short term memory (LSTM)65

method (Hochreiter & Schmidhuber, 1997) to predict daily > 2 MeV electron integral66

flux 1 day ahead at geostationary orbit. Zhang et al. (2020) made a multilayer percep-67

tron model with two hidden layers and scaling transformation layer to predict average68

daily relativistic electron fluxes. They combined the model with the quantile regression69

method to predict in probabilistic approach. The prediction efficiency of their studies70

shows from about 0.8 to 0.9, which implies that the deep learning method shows good71

performance in predicting electron fluxes.72

Most of the previous studies aim to predict the electron flux at a certain time in73

the future. On the other hand, in this study, we develop hourly forecast models with the74

next 72 hours time-series data by deep learning. For this we apply three methods, such75
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as multilayer perceptron (MLP), LSTM, and sequence-to-sequence based on LSTM (Sutskever76

et al., 2014). This paper is organized as follows. We introduce detailed explanations of77

our data and models in Section 2 and 3, respectively. We evaluate our best model with78

metrics and show the results in Section 4. Finally, we summarize our study in section79

5.80

2 Data81

For this study, we use 5-minute averaged > 2 MeV electron flux data observed from82

Geostationary Operational Environmental Satellite (GOES) 15 and 16. GOES-15 was83

operated from 2011 to 2020 March, and GOES-16 has been in service since 2018. Be-84

cause the data are observed by different satellites, we need to calibrate these two kinds85

of data. For the data cross-calibration, we average the data over an hour, and then take86

a logarithm of them. We find a 4th-order fitting function using the data in the overlap-87

ping periods (2018-2020 March), and fit GOES-15 data to GOES-16 data. Figure 1 shows88

the distribution between the data from two satellites before and after calibration. Af-89

ter calibration, the data distribution becomes close to the one-to-one line (the red dashed90

line). In other words, it has higher consistency than before. We use the calibrated GOES-91

15 data from 2011 to 2017, and GOES-16 data from 2018 to 2021 March in this study.92

Figure 1. Data distribution between GOES-15 and GOES-16 data (2018-2020 March). (a)

shows data distribution before cross-calibration, and (b) shows after cross-calibration. The red

dashed line is a one-to-one line (y = x).

–4–
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We use solar wind data (density, speed, and temperature), interplanetary magnetic93

field (|B| and Bz), Dst index, and Kp index as input data of our model. These data are94

obtained from OMNIWeb service of the Space Physics Data Facility at the Goddard Space95

Flight Center (https://omniweb.gsfc.nasa.gov/) as 1 hour resolution. For the Kp index,96

the daily sum of data are used instead of hourly data (Ling et al., 2010) since they give97

better results. We also use electron fluxes themselves as input data.98

The variation of electron fluxes shows both short-term (diurnal and solar-rotational)99

and long-term (annual and solar cycle) periodicity (Baker et al., 1993). We consider the100

solar cycle effect as the most important cause of change of the electron fluxes, so we di-101

vide the total data which cover one solar cycle into as follows: every January-August data102

for the training set, every September for the validation set, and every October-December103

for the test set.104

3 Method105

We make three deep learning models for this work. The models we develop are MLP106

model, LSTM model, and sequence-to-sequence model based on LSTM. Among them,107

the MLP model shows the best results in view of metrics such as prediction efficiency108

and root mean square, so we introduce this model hereafter.109

Multi layer perceptron is a basic model structure of deep learning, which consists110

of an input layer, several hidden layers, and an output layer. MLP is also called “feed-111

forward neural network”, which means the signal from the input layer flows in the for-112

ward direction to the output layer. The error between the predicted values and the tar-113

get values goes back to the beginning of the network, and the weights of each node are114

updated to minimize this error. This mechanism is called “back propagation” (Rumelhart115

et al., 1986). The error is calculated by a loss function (or cost function). By repeating116

feed-forwarding and back propagation, the model is trained.117

Figure 2 shows the architecture of our model. Inputs are the data introduced in118

section 2 from t-71 to t, and outputs are the electron fluxes from t+1 to t+72, where t119

is prediction time. Our model consists of 4 dense layers (or fully connected layers), which120

are connected to all nodes of the next layers. In Figure 2, the number in parentheses means121

the number of nodes in each layer. The electron flux data and the other data are entered122

separately to two dense layers. By doing this, we expect the model to learn that the tar-123
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Figure 2. Architecture of our model. The electron flux data and the other data such as so-

lar wind parameters and geomagnetic indices are separately entered as input. Each of the input

passes through two dense layers, and is then combined. The electron fluxes are predicted from

the concatenated layer.

get is the same kind of data as the separately entered data, and easily to capture the pat-124

tern of electron fluxes. Each of the input passes through two dense layers, and is then125

concatenated at the end of the network. From the combined layer, the model finally pre-126

dicts the target electron fluxes. Each of the dense layer is followed by an activation func-127

tion named ‘Scaled Exponential Linear Unit (SELU)’ (Klambauer et al., 2017). The SELU128

activation induces self-normalizing properties like variance stabilization, which in turn129

avoids exploding and vanishing gradients that interrupt the learning of the model. It is130

given by131

selu(x) = λ

 x if x > 0

αex − α if x ≤ 0
, (1)132

where α ≈ 1.6733 and λ ≈ 1.0507 (Klambauer et al., 2017). After trying to ap-133

ply several activation functions, we find that the SELU is the most suitable for our model.134

As a loss function, we define weighted mean squared error (WMSE), which is given by135

WMSE = ω
∑N

i=1(fi − yi)2136

ω = k∑6

i=1
i

(k = 1, 2, ..., 6), (2)137
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where fi, yi, and ω denote the i-th predicted value, target value, and weight, re-138

spectively. k is a value depending on the time range of the output value. For example,139

for the data from t+1 to t+6, k = 6, and for the data from t+67 to t+72, k = 1. Since140

we think it is most important to predict values in the near future, we expect that the141

closer to the prediction time, the better the prediction if we give a bigger weight. As an142

optimizer for the model, we use ‘Adaptive Moment Estimation (Adam)’ (Kingma & Ba,143

2014) optimizer with the learning rate of 5× 10−5.144

4 Results and Discussions145

Our model predicts > 2 MeV electron fluxes for the next 72 hours with the input146

data of the previous 72 hours. Figure 3 shows two examples of results by our model. The147

red dashed line is prediction time (t). The left values of the prediction time are the data148

of input time sequences (t-71 ∼ t), and the right values are ones of output time sequences149

(t+1 ∼ t+72). The blue lines and yellow lines are the observed electron fluxes and the150

predicted ones by our model, respectively. The electron fluxes in GEO show diurnal vari-151

ance that is observed high near local noon and low near local midnight due to the mag-152

netospheric magnetic field (Onsager et al., 2002). As seen in Figure 3(a), which shows153

when the electron fluxes are almost steady, the model seems to have learned the peri-154

odicity well. Figure 3(b) shows when the electron fluxes suddenly increase. Although the155

prediction values slightly different from the target values at the beginning of prediction,156

we can see that the model successfully predicts the increasing phase.157

Why the model is so good at predicting changes in electron fluxes seems to be due158

to that the input data we use are closely related to the electron flux data (Vassiliadis et159

al., 2002; Li, 2004; Reeves et al., 2011; Hartley et al., 2014; Zhang et al., 2020; Katsavrias160

et al., 2021). For verifying that the input data really help the model to predict well, we161

make a baseline model which has only electron flux data as input. In Figure 4, we show162

a result of the baseline model (Figure 4(a)) and our model (Figure 4(b)) at the same time.163

The baseline model has learned the diurnal periodicity of electron fluxes, but its predic-164

tion almost maintains the input values like the persistence model. On the other hand,165

our model, which has additional input data, successfully predicts rapid changes in elec-166

tron fluxes. By comparing these two models, it can be seen that the input data for the167

model are used appropriately to predict the changes in electron fluxes, which is consis-168

tent with the understanding obtained from previous studies.169
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Figure 3. Two examples of the result of our model. Based on the red dashed line (prediction

time), the left is the input time sequences and the right is the output time sequences. The gray

lines are observed electron flux values, and the yellow lines are predicted ones by our model.

To evaluate our model quantitatively, we calculate prediction efficiency (PE) and170

root-mean-square error (RMSE), which are given by171

PE = 1−
∑

(yi − fi)2∑
(yi − ȳ)2

(3)172

and173

RMSE =

√√√√ 1

N

N∑
i=1

(yi − fi)2, (4)174

where fi, yi and ȳ are the i-th predicted value, target value, and the average of the tar-175

get values, respectively. PE indicates better performance as it is closer to 1, and RMSE176

shows as it is closer to 0. The results are obtained using only the test set data mentioned177

in Section 2. Figure 5 shows values of PE and RMSE of our model for each time step.178

It is noted that we calculate the scores with log-scaled electron flux values. As seen in179

Figure 5, the results for 1 hour prediction show almost perfect scores. Naturally, the scores180

–8–
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Figure 4. (a) is a result of a baseline model with single input (electron flux data), and (b) is

a result of our model. The gray lines are observed electron flux values, and the yellow lines are

predicted ones by the models.

get worse as the prediction time goes, but the score for the 72-hour prediction shows still181

good performance.182

Table 1 shows the prediction efficiency of our model compared with other hourly183

forecasting models: previous ones (Shin et al., 2016; Qian et al., 2020) and a persistence184

model. The persistence model is a model in which the input data of the last time be-185

come the predicted values. Our model shows 0.97 and 0.78 in 1-hour ahead and 24-hour186

ahead prediction, respectively, which are the highest PE among those models. On the187

other hand, there have been also several models that predict the daily average data (Lyatsky188

& Khazanov, 2008; Ling et al., 2010; L. Wei et al., 2018; Zhang et al., 2020), but we can-189

not directly compare our model with these studies because of different time resolution.190

–9–
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Figure 5. (a) shows prediction efficiency of our model for each time step, (b) shows RMSE.

The values displayed in the graph are values for 1, 24, 48 and 72 hour prediction, respectively.

Figure 6 shows scatter plots of prediction values and real values of electron fluxes191

for 24 hours, 48 hours, and 72 hours ahead of prediction. The red line indicates a lin-192

ear fitting line of the data, and the black dotted line is a one-to-one line. As the predic-193

tion date increases, the fitting line moves away from the one-to-one line, but it can be194

seen that all of them show a high correlation. As the electron fluxes increase, the model195

tends to underestimate, which appears to be due to the insufficient number of high-value196

data. In the upper left corner of each graph, we present the correlation coefficient (CC)197

between the observed values and the predicted values from the model, which is given by198

CC =

∑
(yi − ȳ)(fi − f̄)√∑
(yi − ȳ)2(fi − f̄)2

. (5)199

–10–
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Table 1. Comparison of prediction efficiency with other hourly forecasting models

Prediction time

Model 1 hour 24 hours Input data

Our model 0.97 0.78 GOES-15, 16

Persistence model 0.97 0.66 GOES-15, 16

Shin et al. (2016)
0.96 0.70 GOES-15

0.93 0.68 GOES-13

Qian et al. (2020) - 0.73 GOES-10

Our model has high CC values for all time forecasts, and in particular, the CC value of200

the 24 hours ahead prediction is quite high. In summary, in view of the metrics we ob-201

tained such as PE, RMSE, and CC, our model shows remarkable performance in pre-202

dicting the relativistic electron fluxes.203

Figure 6. Scatter plots of prediction values (x-axis) and real values (y-axis) of electron fluxes

for 24 hours, 48 hours, and 72 hours ahead prediction from left to right. The black dotted line

is a one-to-one line, and the red line is a linear fitting line of the data. Correlation coefficient is

0.89, 0.81, and 0.73 for 24h, 48h, and 72h prediction, respectively.
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5 Conclusion204

In this study, we have developed a deep learning model for time series forecasting205

of electron fluxes at GEO. For this, we use solar wind data (speed, density, and temper-206

ature), IMF data (|B| and Bz), geomagnetic indices (Kp and Dst), and electron flux data207

as input data. The electron fluxes are obtained from GOES-15 and GOES-16 satellites208

to consider the entire solar cycle period data, which cover from 2011 to 2021. We per-209

form the cross-calibration of the two satellites’ data. We have considered 3 deep learn-210

ing methods, such as MLP, LSTM, and sequence-to-sequence. The best model is the MLP211

model, which has total 5 dense layers including output layer. The main results of the study212

are as follows. First, the model successfully predicts hourly electron fluxes over the next213

72 hours, allowing us to see the changes in detail. Second, in view of the metrics such214

as PE, RMSE, and CC, the model shows better performance than the previous studies215

and the persistent model. Third, unlike a baseline model, which has only electron flux216

data as input, our model can predict sudden changes of electron fluxes associated with217

fast solar winds and interplanetary magnetic fields as well as their diurnal variations. It218

is noted that the model is able to predict a relatively long time (three day) with a high219

time resolution (one hour), which is contrasted with the conventional studies that pre-220

dict the electron flux at a certain time and/or a short time period. The successful re-221

sults of this study implies that the deep learning method can be applied to time series222

forecasting of various space weather events.223
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