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Abstract

When organic peat soils are sufficiently dry, they become flammable. In Southeast Asian peatlands, widespread deforestation

and associated drainage create dry conditions that, when coupled with El Niño-driven drought, result in catastrophic fire events

that release large amounts of carbon and deadly smoke to the atmosphere. While the effects of anthropogenic degradation

on peat moisture and fire risk have been extensively demonstrated, climate change impacts to peat flammability are poorly

understood. These impacts are likely to be mediated primarily through changes in soil moisture. Here, we used neural networks

(trained on data from the NASA SMAP satellite) to model soil moisture as a function of climate, degradation, and location.

The neural networks were forced with regional climate model projections for 1985-2005 and 2040-2060 climate under RCP8.5

forcing to predict changes in soil moisture. We find that reduced precipitation and increased evaporative demand will lead to

median soil moisture decreases about half as strong as those observed during recent El Niño droughts. Such reductions may be

expected to accelerate peat emissions. Our results also suggest that soil moisture in degraded areas with less tree cover may

be more sensitive to climate change than in other land use types, motivating urgent peatland restoration. Climate change may

play an important role in future soil moisture regimes and by extension, future peat fire in Southeast Asian peatlands.
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Abstract 21 

When organic peat soils are sufficiently dry, they become flammable. In Southeast Asian 22 

peatlands, widespread deforestation and associated drainage create dry conditions that, when 23 

coupled with El Niño-driven drought, result in catastrophic fire events that release large 24 

amounts of carbon and deadly smoke to the atmosphere. While the effects of anthropogenic 25 

degradation on peat moisture and fire risk have been extensively demonstrated, climate 26 

change impacts to peat flammability are poorly understood. These impacts are likely to be 27 

mediated primarily through changes in soil moisture. Here, we used neural networks (trained 28 

on data from the NASA SMAP satellite) to model soil moisture as a function of climate, 29 

degradation, and location. The neural networks were forced with regional climate model 30 

projections for 1985-2005 and 2040-2060 climate under RCP8.5 forcing to predict changes in 31 

soil moisture. We find that reduced precipitation and increased evaporative demand will lead 32 

to median soil moisture decreases about half as strong as those observed during recent El Niño 33 

droughts. Such reductions may be expected to accelerate peat emissions. Our results also 34 

suggest that soil moisture in degraded areas with less tree cover may be more sensitive to 35 

climate change than in other land use types, motivating urgent peatland restoration. Climate 36 

change may play an important role in future soil moisture regimes and by extension, future 37 

peat fire in Southeast Asian peatlands. 38 

 39 

1 Introduction 40 

Peatlands in Insular Southeast Asia contain globally significant carbon stores, estimated at 67 41 

GtC (Page et al 2011, Warren et al 2017). This carbon is maintained through high water tables 42 

that prevent peat oxidation or ignition (Hirano et al 2009, Dommain et al 2010). However, in 43 

the last half a century, degradation has threatened these carbon stores, as only ~6% of peat 44 
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forests remain in pristine condition (Miettinen et al 2016) and widespread drainage has 45 

occurred (Dadap et al 2021). The resulting drier peat is vulnerable to oxidation (Hooijer et al 46 

2012, Jauhiainen et al 2012), leading to emissions as large as 155 ± 30 Mt C yr-1 in 2015 (Hoyt et 47 

al 2020), about 70% of annual fossil fuel emissions in Malaysia and Indonesia (Miettinen et al 48 

2017).  49 

 50 

Climate also affects peatland carbon loss. During drought years, large-scale burning of 51 

peatlands (Van Der Werf et al 2008, Field et al 2016, Taufik et al 2017) also leads to globally 52 

significant carbon emissions because dry peat is more flammable. For example, fires associated 53 

with the 1997 El Niño Southern Oscillation led to an estimated 0.81-2.56 GtC emitted, 13-40% 54 

of global mean annual fossil fuel emissions at the time (Page et al 2002). Although fire has been 55 

a phenomenon in Southeast Asian peatlands for at least 30,000 years (Goldammer et al 1989, 56 

Anshari et al 2001), the frequency and scale of these fires has increased dramatically in recent 57 

decades (Page and Hooijer 2016). In the second half of the 20th century, periodic droughts only 58 

led to large increases in fire during periods when degradation rates were high (Field et al 2009). 59 

This evidence suggests that the combined effects of degradation and climate on the soil 60 

moisture and groundwater levels in peatlands mediate peat fire (Taufik et al 2017, Dadap et al 61 

2019). Specifically, degradation can worsen the sensitivity of tropical peatland emissions to 62 

meteorological drought (Siegert et al 2001), further motivating restoration and conservation 63 

efforts (Jaenicke et al 2010, Leifeld and Menichetti 2018, Goldstein et al 2020).  64 

 65 

Given that fire emissions in Southeast Asian peatlands have historically been largest during 66 

drought conditions attributable to El Niño Southern Oscillation and the Indian Ocean Dipole 67 

(Van Der Werf et al 2008), future emissions may also be influenced by long-term trends 68 

associated with climate change (Li et al 2007). Regional climate simulations have shown that 69 

average rainfall will likely decrease in Southeast Asia in future decades (Li et al 2007, Tangang et 70 

al 2020), especially during the dry season (Kang et al 2019). Additionally, changes in solar 71 

radiation, atmospheric humidity, and temperature may also affect the peat water balance. 72 

Understanding how future climate will affect peat vulnerability is necessary to inform 73 

management, restoration, and conservations efforts. However, the sensitivity of peatland 74 

moisture to climate change is likely highly variable across the region. Several factors influence 75 

how different hydroclimatological conditions affect peat moisture including the initial 76 

distribution of water table depth, water uptake differences between vegetation types (Hirano 77 

et al 2015, Manoli et al 2018), canal properties including their depth, width, and spatial pattern,  78 

(Page et al 2009, Dadap et al 2021, Cobb et al 2020), microtopography, hydraulic properties of 79 

the peat and its macropores (Mezbahuddin et al 2015, Baird et al 2017, Cobb et al 2017), and 80 

more (Sinclair et al 2020). Because the distribution of these factors across the region is poorly 81 

understood and highly uncertain, it is not feasible to parameterize physical hydrologic models 82 

(or using land surface simulations from existing regional climate models) to understand how 83 

climate change affects peat moisture across this region. 84 

 85 

Here, we instead used observations and a statistical modeling approach to estimate how 86 

climate change will influence peat hydrological conditions in the coming decades. In particular, 87 

we considered surface soil moisture, which has previously been shown to be closely related to 88 
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peat fire risk (Dadap et al 2019) and for which observations are widely available across 89 

Southeast Asian peatlands using data from the Soil Moisture Active Passive (SMAP) satellite 90 

(Entekhabi et al 2010, McColl et al 2017). In tropical peatlands, surface soil moisture is closely 91 

connected to water table depth (Hirano et al 2014, Dadap et al 2019), the most commonly used 92 

metric of peat moisture levels for fire risk studies (e.g., Wösten et al 2008, Hooijer et al 2012). 93 

Using machine learning, we built a statistical model to predict soil moisture variations across 94 

the region as a function of several climate factors. The statistical model was then used to 95 

analyze the impact of climate change on soil moisture across the region, including its spatial 96 

distribution and variation with land use type. 97 

 98 

 99 

2 Methods 100 

2.1 Approach 101 

This study focused on peatlands in Insular Southeast Asia, an area spanning ~157,000 km2 on 102 

Sumatra, Borneo, and Peninsular Malaysia. All analyses were limited to pixels covered by at 103 

least 50% peatlands, as determined from 30 m land cover maps (Miettinen et al 2016), and 104 

were performed on the 9 km EASE-Grid resolution of the SMAP data (Brodzik et al 2012). 105 

 106 

Our general approach in this study was to train statistical models (neural networks) to learn 107 

relationships between climate, degradation, location, and soil moisture in Southeast Asian 108 

peatlands under present climate. The neural networks were then used with projections of 109 

future climate to predict future soil moisture. This approach is illustrated in Fig. 1. Such a 110 

climate sensitivity approach has been used previously to understand features of hydrologic 111 

projections (Short Gianotti et al 2020).   112 

 113 

The neural networks were trained using remotely sensed soil moisture from SMAP over the 114 

2015-2020 period. Because of the relatively short training period (dictated by the limited 115 

observational record), the neural networks’ ability to capture interannual variations were 116 

explicitly cross-validated to ensure they could predict both spatial and temporal variations of 117 

soil moisture. To determine how soil moisture statistics were affected by climate change, the 118 

neural networks were then run with a set of regional climate predictions dynamically 119 

downscaled from three global climate predictions for a reference (1985-2005) and future time 120 

period (2040-2060). To reduce the effect of biases in the global circulation models downscaled 121 

by a regional climate model (RCM), all climate inputs were bias-corrected to match the statistics 122 

of an observation-driven dataset, here the European Centre for Medium-Range Weather 123 

Forecasts ERA5 reanalysis product (Hersbach et al 2019). 124 

 125 

Here, we directly predict simplified soil moisture statistics to avoid the need for explicit 126 

simulation of soil moisture timeseries in the future. These variables were: 1) mean dry season 127 

soil moisture (smdry season) and 2) percent low soil moisture (pctlow sm), defined here as the 128 

percent of time in a given year that the soil moisture is below 0.2 cm3/cm3. For mean soil 129 

moisture, we focus on the dry season only because that is more closely tied to fire risk. Previous 130 

work using both laboratory measurements (Frandsen 1997) and SMAP soil moisture (Dadap et 131 

al 2019, Figure 3) showed that peat ignition probability (at laboratory scale) and burned area 132 
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(at remote sensing scales) sharply increase when soil moisture is below a threshold value of 133 

about 0.2 cm3/cm3. Thus, the pctlow sm statistic represents the fraction of a given year when the 134 

peat is at high fire risk and captures the non-linear response of fire to soil moisture. 135 

 136 

 137 

 138 
Figure 1. Overview schematic of the soil moisture modeling approach. Squares denote input data while 139 

ovals denote neural network predictions. The model is first trained on ERA5 climate and SMAP soil 140 

moisture data. Predictions are then calculated for reference (1985-2005) and future (2040-2060) time 141 

periods using climate data from a regional climate model forced by three global circulation models. Input 142 

climate data are bias-corrected to ERA5 reanalysis data using quantile mapping. 143 

 144 

 145 

Soil moisture data from SMAP are available every 2-3 days at 9 km resolution during 2015-146 

present. An example SMAP soil moisture timeseries is shown in Supplementary Figure 1. We 147 

used soil moisture retrieved from the Multi-Temporal Dual Channel Algorithm (MT-DCA) 148 

(Konings et al 2016, 2017, Feldman et al 2021). Because the MT-DCA retrievals rely on a 149 

dielectric mixing model that was developed for mineral soils (Mironov et al 2004), an empirical 150 

correction was applied to account for the high organic matter content of the peat (Bircher et al 151 

2016). Measurements with potentially high error associated with radio frequency interference, 152 

urban areas, and precipitation were excluded from the dataset. Microtopography and the 153 
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presence of organic material on the peat may add error to the soil moisture retrievals, as the 154 

presence of litter can affect L-band soil moisture retrievals even in less densely vegetation sites 155 

(Kurum et al 2012). Thick vegetation can also block remote sensing measurement of soil 156 

moisture where present. Furthermore, little in situ validation of SMAP data has been performed 157 

in this region. Nevertheless, triple collocation-based (statistical) error analysis of SMAP soil 158 

moisture in the region previously showed that retrieval precision is likely on par with the SMAP 159 

mission target error of 0.04 cm3/cm3 (Dadap et al 2019).  160 

 161 

 162 

2.2 Neural network-based estimation of soil moisture  163 

 164 

2.2.1 Input features 165 

Input features were chosen to capture the possible effects of climate, degradation, and location 166 

on soil moisture (Supplementary Table 1). Climate variables included precipitation and potential 167 

evapotranspiration (PET) to represent water supply and evaporative demand; PET was 168 

calculated from radiation and temperature using the Priestly-Taylor method. These were 169 

represented in the neural networks with mean dry season PET, mean dry season precipitation, 170 

mean annual precipitation and precipitation entropy. Precipitation entropy (calculated as the 171 

Shannon entropy of monthly precipitation) was included because it is a descriptor of rainfall 172 

seasonality (Feng et al 2013), or the degree to which rainfall is distributed between the wet and 173 

dry seasons. A smaller entropy value indicates larger seasonal differences in precipitation. 174 

Although PET might deviate from actual evapotranspiration, only PET was included here since 175 

the RCM and reanalysis data may not capture the differences in water use strategies (and thus, 176 

the actual/potential ET ratio) in different land use types. 177 

 178 

Because the study area is dominated by coastal areas and topographic complexity, a high 179 

resolution simulation is necessary for more accurate prediction of climate variables (Im and 180 

Eltahir 2018). Here, we used 25 km regional climate data from the Coordinated Regional 181 

Climate Downscaling Experiment - Common Regional Experiment (CORDEX-CORE) as inputs to 182 

the neural networks for the reference (1990-2005) and future periods (2030-2070) (Im et al 183 

2021, Giorgi et al 2021). These data are driven by three global circulation models under 184 

Representative Concentration Pathway 8.5 forcing (Meinshausen et al 2011), then downscaled 185 

using the Regional Climate Model version 4.7.0 (RegCM4.7.0) developed at the Abdus Salam 186 

International Centre for Theoretical Physics. This results in three different RCM realizations 187 

corresponding to the three GCMs. See Supplementary Text 1 for more information on the 188 

climate data. 189 

 190 

Peatland degradation features used in the neural network model included the percent of 191 

different land use types, tree cover fraction, drainage canal density, fire area, and fire count. 192 

These factors are likely to change significantly in the future, but it is difficult to predict how they 193 

will change due to shifting economic incentives and regulations (Humpenöder et al 2020, 194 

Schoneveld et al 2019, Suwarno et al 2018). We therefore only considered changes in climate 195 

variables in this study, but incorporated these additional land use and fire inputs to account for 196 

their effect on the soil moisture-climate relationship. Location descriptors including latitude, 197 
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longitude, region, and distance from the edge of the peat dome were also used as predictors to 198 

account for possible spatial autocorrelated factors affecting soil moisture, such as land use 199 

history, peat physical properties, and land management practices. See Supplementary Text 1 200 

and Supplementary Table 1 for more information on the input features and neural network 201 

structure. 202 

 203 

2.2.2 Application of neural networks for future prediction 204 

We compared predictions of smdry season and pctlow sm between the reference (1985-2005) and 205 

future periods (2040-2060). In each case, degradation and location input features were held 206 

constant while climate features changed based on bias-corrected RCM predictions. Bias 207 

correction of the climate data was necessary because there are biases between the RCM 208 

simulations and the pseudo-observational ERA5 data. These differences in distributions would 209 

otherwise result in projections of soil moisture incorrectly attributed to changing climate that 210 

are instead due to differences between ERA5 and the RCM. We used quantile mapping to 211 

correct these biases (Reichle et al., 2004; Miao et al., 2016). Specifically, we matched reference 212 

period RCM data to ERA5 data from the same time period, and then applied the same 213 

correction to future period RCM data. A separate quantile mapping was applied to each of the 214 

three RCM realizations (corresponding to each global circulation model). Both RCM and ERA5 215 

data used for bias-correction were downscaled to 9 km resolution from their original 25 and 30 216 

km grids, respectively, using nearest neighbor resampling. 217 

 218 

 219 

3 Results and Discussion 220 

3.1 Soil moisture models assessment 221 

Cross validation for both soil moisture variables, smdry season and pctlow sm, demonstrated that the 222 

neural network models could predict out-of-sample data accurately (Table 1, Supplementary 223 

Figure 2). The smdry season model achieved a cross-validation (CV) mean R2 = 0.83, RMSE = 0.08 224 

cm3/cm3, and a bias of 0.001 cm3/cm3 on randomly sampled test data. Similarly, the pctlow sm 225 

model achieved a cross-validation mean R2 = 0.73, RMSE = 16%, and a bias of 0.8% on random 226 

test data. When the two networks were cross-validated using a full year's worth of held-out 227 

data, R2 decreased only a slight amount (ΔR2≈0.1 in both cases), suggesting the networks were 228 

able to predict soil moisture behavior on unseen years of data, including simulated future years.  229 

 230 

Model Random CV 
Train R2 

Random CV 
Test R2 

Temporal CV 
Train R2 

Temporal CV 
Test R2 

smdry season 0.95 ± 0.01 0.83 ± 0.02 0.90 ± 0.08 0.73 ± 0.12 

pctlow sm 0.92 ± 0.02 0.73 ± 0.03 0.91 ± 0.03 0.64 ± 0.13 

Table 1: Cross-validation (“CV”) results +/- standard deviation across folds. Temporal CV was performed 231 
by holding out one year of data at a time for the test set, and training on the other years. For example, 232 

the data would be trained on 2015-2019 data and evaluated on unseen 2020 data. This was then 233 
repeated for all six years of data. Random CV involved random selection of data from all years (across all 234 

pixel-times) when performing five-fold cross validation. 235 
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 236 

3.2 RCM predicts drier future atmospheric conditions 237 

RCM projections show overall drying in the study region, as dry season precipitation is 238 

projected to decrease across 89% of the area (Figure 2a), while PET is projected to increase 239 

across 98% (Figure 2b). The median change in dry season precipitation is -0.79 mm/day and the 240 

median PET change is +0.38 mm/day between the reference (1985-2005) and future (2040-241 

2060) periods (Supplementary Figure 3a). Geographically, there are larger decreases in dry 242 

season precipitation in southern Sumatra and larger increases in dry season PET in the southern 243 

parts of the study region (Figure 2). Because evapotranspiration (ET) is the dominant water flux 244 

out of peatlands (e.g., Hirano et al 2015, Cobb and Harvey 2019), increased PET is expected to 245 

lead to decreases in soil moisture. 246 

 247 

Annual precipitation is projected to decrease by ~0.5 to 2 mm/day in the study region (Figure 248 

2c, Supplementary Figure 3b). Precipitation seasonality, as captured by precipitation entropy, 249 

exhibited a mixed change in signal by latitude in Sumatra: generally decreasing south of the 250 

equator and increasing north of it (Figure 2d, Supplementary Figure 3b). Decreasing entropy 251 

suggests higher seasonality, which may cause drier smdry season, as precipitation may be less 252 

evenly distributed between the dry and wet seasons. These results are consistent with those of 253 

Kang et al (2019), who found that Aug-Oct precipitation (corresponding to the dry season 254 

across most of the study area) generally decreased while Nov-Jan precipitation generally 255 

increased. While our model did not account for possible changes in the timing of the dry 256 

season, only relatively minor changes are projected in the timing of the monsoon in this region 257 

(Ashfaq et al 2020). Overall distributions of climate features shifted under future climate 258 

(Supplementary Figure 3), but these shifts generally did not extend far beyond the ranges 259 

observed under future climate. This builds confidence that the neural networks trained using 260 

present climate-soil moisture relationships can accurately assess the impact of future climate 261 

scenarios.  262 

 263 
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 264 
Figure 2. Mean change in climate variables between reference (1985-2005) and future (2040-2060) 265 

periods for a) dry season precipitation, b) dry season PET, c) annual precipitation and d) precipitation 266 
entropy. Red indicates drier Dry season conditions; note the colorbar is reversed in b). Non-peat areas 267 

are shown in gray. These four variables make up the input climate features in the neural networks. 268 

 269 

 270 

3.3 Climate changes cause substantially drier soils and more prevalent high fire risk regimes 271 

Both soil moisture variables exhibited drier conditions under 2040-2060 climate projections 272 

compared to 1985-2005 climate, consistent with the changes in climate forcing. Median smdry 273 

season was projected to decrease during the future period by 0.023 cm3/cm3 (Figure 3a, c). For 274 

context, this decrease is nearly half the magnitude of the 0.056 cm3/cm3 decrease in median 275 

dry season soil moisture observed by SMAP during the 2015 and 2019 El Niño years relative to 276 

non-El Niño years between 2015 and 2020.  Recent El Niño years have been associated with a 277 

non-linear increase in fire activity (Yin et al 2016), suggesting that the magnitude of climate-278 

change induced soil moisture drying, absent other changes, could significantly increase fire risk 279 

in the region. However, the impacts of climate change relative to recent El Niño years differ 280 

geographically. For example, the predicted soil drying due to climate change is generally greater 281 

than impacts observed during recent El Niño droughts north of the equator, while the opposite 282 

is true south of the equator in the study region (Figure 4a, b). 283 

 284 
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 285 
Figure 3. Changes in soil moisture variables between reference (1985-2005) and future (2040-2060) time 286 
periods. a) Probability distributions for smdry season smoothed by a kernel density estimator. C) Cumulative 287 

distributions for pctlow sm. For a) and b), thin lines denote individual GCM climate projections while the 288 
thick line denotes mean distribution across GCMs. c) and d) Histograms showing per-pixel change in smdry 289 

season and pctlow sm due to climate change. 290 
 291 
 292 

 293 
Figure 4. Comparison of future climate impacts with present day El Niño. a) Difference in predicted 294 

Δsmdry season due to climate change vs Δsmdry season observed during recent El Niño years (2015 & 2019). b) 295 
Same as in a) but for Δpctlow sm. Non-peat areas are shown in gray. 296 

 297 
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The pctlowsm variable, a more direct measure of fire risk than smdry season, increases over almost 298 

the entire region. Our neural network projected a median increase in pctlow sm of 3% (from 299 

12.5% to 15.5%) (Figure 3b, d), suggesting that extremely dry conditions associated with high 300 

fire risk will be more prevalent in the future. To estimate how large the pctlow sm -associated 301 

impact on burned area might be, we consider a single average burned area associated with dry 302 

soil moisture (below 0.2 cm3/cm3) and another average burned area for wet soil moisture 303 

conditions (as calculated from the curve in Fig. 3a of Dadap et al 2019). The increase of the 3% 304 

in pctlow sm would then correspond to a 10% increase in burned area due to future climate 305 

change. This calculation, though highly simplified, illustrates the outsized increase in fire risk 306 

associated with even small increases in pctlow sm driven by climate change. 307 

 308 

Drought conditions during recent El Niño years have been attributed primarily to precipitation 309 

drought (e.g., Field et al 2016), but our model suggests that future changes in smdry season are 310 

also affected by increased evaporative demand (i.e., increasing PET). This is evident from the 311 

higher feature importance of PET compared to precipitation inputs for both neural networks 312 

(Supplementary Figure 4). Consistent with this finding, running the model with future (2040-313 

2060) PET but with reference (1985-2005) precipitation resulted in a decrease in median smdry 314 

season that was 0.008 cm3/cm3, or 36% of the change when precipitation drivers were included. 315 

Thus, our results suggest that increased evaporative demand will play a significant role in 316 

driving soil moisture changes under climate changes. Land-atmosphere feedbacks may further 317 

exacerbate soil drought and atmospheric aridity under future climate (Zhou et al 2019). 318 

 319 

 320 

3.4 Degraded areas exhibit higher sensitivity to future climate change 321 

To better understand where soil moisture changes will occur, we separated model predictions 322 

by land use (here determined by the majority land use type in each pixel). During the reference 323 

period (1985-2005), pristine forest was predicted to have the wettest median smdry season, while 324 

open undeveloped was the driest (Figure 4a). Nevertheless, reference period distributions of 325 

smdry season were generally found to have little variation across land uses (Figure 4a). This was 326 

somewhat surprising, as land use is often used as a proxy for hydrologic disturbance (e.g., 327 

Miettinen et al 2017, Taufik et al 2020). However, our model predictions were mostly 328 

consistent with a meta-analysis of in situ soil moisture measurements, which show similar soil 329 

moisture magnitudes across land use types and large variation within land uses (Supplementary 330 

Figure 5, Supplementary Table 2). Such high variability of soil moisture within land use types is 331 

likely due to differences in precipitation regimes, peat physical properties, drainage density, 332 

and more. 333 

 334 
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 335 
Fig 5. Soil moisture distributions grouped by land use type for a) smdry season and b) pctlow sm during 336 

reference (1985-2005) and future (2040-2060) periods. Box denotes inter-quartile range and median. 337 
Change in median c) smdry season and d) pctlow sm from reference to future periods. 338 

 339 

 340 

Degraded land use types (including degraded forest, open undeveloped, smallholder plantation, 341 

and industrial plantation) exhibit larger magnitudes of drying than pristine forest (Figure 5c, d). 342 

In particular, open undeveloped areas are predicted to experience the largest changes, while 343 

pristine forests are predicted to experience the smallest changes. Open undeveloped areas 344 

generally have the lowest starting soil moistures, suggesting that the driest areas will dry 345 

further than wetter areas. The differences in soil moisture changes by land use type could be 346 

caused by i) climate changing more in certain land use types and/or ii) certain land use types 347 

are inherently more sensitive to changes in climate. However, the former does not appear to be 348 

a major factor, because the magnitude of soil moisture changes does not correlate with climate 349 

changes when grouped by land use type (Figure 6), except for increases in PET with decreases 350 

in smdry season. This suggests that land use could affect the sensitivity of soil moisture response to 351 

climate change. 352 

 353 
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 354 
Figure 6. Magnitude of percent change in soil moisture variables (smdry season and pctlow sm) compared to 355 
percent change in climate variables (dry season PET and dry season precipitation). Changes in soil 356 
moisture do not appear to vary with changes in climate. Note the signs for smdry season and for dry season 357 
PET denote negative change. 358 

 359 

 360 

Our results further suggest that tree cover affects soil moisture sensitivity to climate change. 361 

We regressed Δsmdry season and Δpctlow sm with the input metrics that capture peatland 362 

degradation (tree cover, canal density, and fire), and found significant relationships for both 363 

variables only with tree cover (Supplementary Figure 6). These relationships suggest that areas 364 

with less tree cover are more sensitive to climate changes (i.e., will experience more drying) 365 

than areas with more tree cover. This increased sensitivity with less tree cover can be explained 366 

by a number of possible mechanisms. First, tree cover reduces the solar radiation reaching the 367 

ground surface. In areas with less or shorter vegetation, this effect is minimized, and 368 

atmospheric conditions are more likely to determine changes in soil evaporation (Ohkubo et al 369 

2021, Fan et al 2019). Deforested areas are also more likely to contain degraded soils with 370 

increased hydrophobicity (Perdana et al 2018, Bechtold et al 2018). This in turn could decrease 371 

rainfall infiltration, increase soil evaporation, and decrease the capillary connection with the 372 

water table and the surface soil, making degraded areas more sensitive to climate changes. 373 

Furthermore, reduced hydraulic diversity (Anderegg et al 2018), shallower roots, or less 374 

stomatal regulation (Manoli et al 2018) are characteristic of agricultural areas that have lower 375 

tree cover fraction. 376 

 377 

It should also be noted that SMAP soil moisture measurement could be affected by differences 378 

in peat microtopography by land use type, complicating comparisons of soil moisture between 379 

land use types. For example, the duff and litter layers that form the hummock and hollow 380 
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topography endemic to pristine peatlands are often replaced by a denser, flatter surface when 381 

graded or converted to agricultural use (Lim et al 2012). These differences could in turn affect 382 

the profile of soil moisture measurement relative to the groundwater table. For example, 383 

Sakabe et al 2018 found high variability in surface soil moisture within pristine forests based on 384 

the location of measurement: hummocks averaged 0.06 cm3/cm3 while hollows averaged 0.54 385 

cm3/cm3, but the drier value would not necessarily imply higher fire risk. Such small-scale 386 

spatial variability would be averaged to a single measurement by SMAP, which integrates 387 

measurements over 9 km pixels. However, this variability would not exist in land use types 388 

where the ground surface is generally flatter. Thus, in situ validation studies are needed to 389 

better understand how to interpret differences in SMAP retrievals between land use types and 390 

their implications for fire risk and carbon emissions. Nonetheless, comparisons within land use 391 

types would not be affected by this potential issue, and the predicted drying trends observed in 392 

all land use types underscores the consistent prediction of drying due to climate change.  393 

 394 

 395 

4 Conclusions 396 

Our model projections suggest that future drier climatic conditions across Southeast Asia will 397 

lead to lower mean soil moisture and more frequent periods with dangerously dry peat 398 

conditions that would lead to increased fire risk. The median predicted decreases in soil 399 

moisture are nearly half the magnitude of those experienced during high-fire drought years 400 

associated with El Niño under current climate, portending more prevalent fire risk due to 401 

climate change. In contrast to recent droughts, future drier soil conditions also appear to be 402 

driven by increased evaporative demand in addition to reduced precipitation. More degraded 403 

peatlands with lower tree cover may be especially sensitive to climate change, motivating the 404 

importance of restoration in not only reducing current carbon emissions and fire risk, but also 405 

towards lessening the impacts from future climate change. Degradation is understood to be a 406 

critical determinant of peatland hydrology, but our results suggest that climate change will also 407 

play an important role in determining future soil moisture regimes. 408 

 409 

5 Data Availability 410 

The code used to train and analyze the model can be obtained from 411 

https://github.com/ndadap/future-sm-peatlands. 412 

 413 
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Supplementary Text I: Neural network model information 21 
 22 
Input feature information 23 
Predictor features for the neural networks include data on climate, degradation, and location. 24 
Descriptions of the climate features are included in Section 2.2.1 of the main text. As noted in that 25 
section, degradation features used in the neural network model included percent of different land use 26 
types, tree cover fraction, drainage canal density, fire area, and fire count. Land use categories used 27 
included pristine forest, degraded forests, open/undeveloped areas, and smallholder and industrial 28 
plantations, following categorization by (Miettinen et al 2017). Land use data was derived from 2015 29 
maps by (Miettinen et al 2016), who visually interpreted Landsat images at 30 m. Analysis was limited to 30 
9x9 km pixels with at least 50% land use of one type. Tree cover fraction data was from the Global 31 
Forest Cover Change 2015 dataset (Townshend 2016). Tree cover fraction captures the extent of 32 
deforestation, and can affect soil moisture by altering a number of variables such as transpiration, 33 
shading, interception, etc. Drainage canal density, a measure of drainage canals length per unit area, 34 
was obtained from 2017 maps (Dadap et al 2021). Fire area and fire count were from 2012-2015 and 35 
calculated from the Visible Infrared Imaging Radiometer Suite (VIIRS) active fire product (Schroeder et al 36 
2014). Fire count includes the same spatial areas as the fire area variable, but also accounts for repeated 37 
fires. Fires are both a cause and effect of peatland degradation, since they can burn layers of peat and 38 
also clear aboveground vegetation. Together, these data constituted the degradation features 39 
(Supplementary Table 1). 40 
 41 
Location information including latitude, longitude, region, and distance from the edge of the peat 42 
boundary were also included as predictors. Use of latitude and longitude in deep learning models is a 43 
common practice (e.g., Wang et al 2015, Yang et al 2018, Shatnawi and Abu Qdais 2019, etc) that 44 
enables accounting for possible spatial autocorrelation in unaccounted-for factors affecting soil 45 
moisture, such as land use history, peat physical properties, and land management practices (e.g., 46 
maintenance of water level, mechanical compaction, etc). The use of region as an input feature serves a 47 
similar purpose and refers to four geographic areas: Northwest (Peninsular Malaysia and Sumatra north 48 
of the equator), Northeast (northern Borneo), Southwest (southern Sumatra), and Southeast (southern 49 
Borneo). Distance from peat edge refers to the distance from the center of a given pixel to the edge of 50 
the peatlands defined in Miettinen et al (2016). It is a proxy for distance from the nearest river/stream 51 
and depth of peat (Hoyt et al 2020).  52 
 53 
Dry season definition 54 
There are two dominant climate regimes in the study area (Aldrian and Dwi Susanto 2003). Southern 55 
Sumatra, Central Kalimantan, and Northwest Borneo experience one dry season from June-October. 56 
North Sumatra, Peninsular Malaysia, West Kalimantan, and Northeast Borneo experience two dry 57 
seasons in February and June-August. To account for such geographic differences, the dry season was 58 
defined independently for each pixel based on the monthly precipitation climatology obtained from 59 
1979-2020 ERA5 reference reanalysis data. Here, the dry season was defined to include any months with 60 
monthly average precipitation within the lower third of the annual range, following (Myneni et al 2007). 61 
Dry season months were not required to be contiguous.  62 
 63 
Neural network structure 64 
To train and validate the neural network, a random hyperparameter search was performed to optimize 65 
the learning rate, number of layers, number of neurons per layer, and dropout rate of each network. For 66 
the smdry season neural network, the learning rate = 0.001, number of layers = 8, and number of neurons 67 
per layer = 55. For the pctlow sm neural network, the learning rate = 0.001, number of layers = 19, number 68 
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of neurons per layer = 45. The dropout was 0 for both neural networks. The models were then trained 69 
for 300 epochs which was sufficient to approach convergence for model accuracy. 70 
 71 
To test the ability of the trained neural network to predict smdry season and pctlow sm on future years 72 
without soil moisture observations, cross-validation was performed by holding out one year of data at a 73 
time for the test set, and training on the other years. For example, the data would be trained on 2015-74 
2019 data and evaluated on unseen 2020 data. This was then repeated for all six years of data. To train 75 
the models such that data from all years were incorporated into training, we separately performed 76 
random five-fold cross validation across all pixel-times. For both variables of interest, the best 77 
performing model from the five-fold cross validation was selected.  78 
 79 
Climate Data 80 
The downscaled global circulation models used were the Norwegian Earth System Model (NorESM1-M, 81 
Bentsen et al 2013), the Max Planck Institute for Meteorology Earth System Model-Mixed Resolution 82 
(MPI-ESM-ER, Stevens et al 2013), and the Met Office Hadley Centre Earth System model (HadGEM2-ES, 83 
Jones et al 2011), which are representative of low, medium, and high climate sensitivity to greenhouse 84 
gas forcing, respectively, and have been shown to perform well in the study domain (Giorgi et al 2021). 85 
PET was calculated from temperature and net radiation using the Priestley-Taylor method.  86 
 87 
Feature importance 88 
Feature importance was calculated by randomly shuffling one feature at a time and calculating the 89 
change in root-mean-squared-error (RMSE) of the neural network’s predictions. Larger increases in root 90 
mean squared error when shuffling a given feature implies higher importance of that feature. 91 
 92 
  93 
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 94 
 95 

Supplementary Figure 1. Example SMAP soil moisture time series from Central Kalimantan. Low 96 

soil moisture threshold of 0.2 cm3/ cm3 is shown as dashed line. 97 

  98 
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Variable Category Source Native resolution 

Annual precipitation Climate ERA5, RCM 25 km, 30 km 

Dry season 
precipitation 

Climate ERA5, RCM 25 km, 30 km 

Dry season PET Climate ERA5, RCM 25 km, 30 km 

Precipitation entropy Climate ERA5, RCM 25 km, 30 km 

Tree cover fraction Degradation Global Forest Cover Change 2015 
(GFCC30TCv003) 

30 m 

Drainage canal 
density 

Degradation Dadap et al 2021 5 m 

Fire area Degradation VIIRS Active Fire 375 m 

Fire count Degradation VIIRS Active Fire 375 m 

Land use type Degradation Miettinen et al 2016 30 m 

Distance from peat 
edge 

Location Calculated from peatland map, 
Miettinen et al 2016 

N/A 

Latitude Location EASE Grid 2.0 N/A 

Longitude Location EASE Grid 2.0 N/A 

Region Location Determined from Lat/Lon N/A 

Supplementary Table 1. Predictor features 99 

 100 

  101 
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 102 

103 
Supplementary Figure 2. Scatterplot showing model performance for a) smdry season and b) 104 

pctlowsm. These were computed using hold-one-year-out cross-validation. 105 

 106 
  107 
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  108 
 109 

Supplementary Figure 3. Change in distributions of input climate features. Contours depict 110 

probability density and cross denotes median. a) Dry season precipitation and PET. b) Annual 111 

precipitation and precipitation entropy. Higher precipitation entropy implies lower seasonality. 112 
 113 

  114 
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 115 

  116 
Supplementary Figure 4. Feature importance for a) smdry season and b) pctlow sm. These were 117 

calculated by comparing the relative increases in cross-validation error when randomly 118 

shuffling a given predictor feature. Higher resulting error corresponds to higher importance. 119 

Values are normalized to sum to one. 120 
121 
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 122 
Supplementary Figure 5: In situ surface soil measurements from literature (Supplementary 123 

Table 2). Where applicable, range of values is denoted by whiskers. 124 

 125 

  126 
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Supplementary Table 2. In situ soil moisture (SM) measurements from literature, during the 127 

dry season. 128 

 129 
Paper Land Use Low 

SM 
High 
SM 

Mean 
SM 

Where Time 
Avg 

Depth 
(cm) 

Setting 

Hirano et al 
2007 

Degraded 
Forest 

0.22 0.3 0.25 Block C, ex-
Mega Rice 
Project area 

Monthly 0-20 Tree vegetation, lots of 
leaf litter, drainage 
canal present 

Jauhiainen et 
al 2014 

Open 
Undeveloped 

0.16 0.17 0.165 ex-Mega Rice 
Project area 

Yes 0-10 Clear felled, large 
drainage canals, surface 
compacted 

Jauhiainen et 
al 2014 

Smallholder 
Plantation 

0.16 0.17 0.165 ex-Mega Rice 
Project area 

Yes 0-10 Usually drained to 30-
50 cm, raised, fallow, 
surface compacted 

Hergoualc’h 
et al 2017 

Smallholder 
Plantation 

  
0.56 Central 

Kalimantan 
Yes 0-10 Oil palm 

Hergoualc’h 
et al 2017 

Pristine 
Forest 

  
0.56 Tanjung 

Puting, Central 
Kalimantan 

Yes 0-10 National park 

Matysek et al 
2018 

Industrial 
Plantation 

0.12 0.25 0.2 South Selangor Monthly 5-8 
 

Könönen et al 
2018 

Pristine 
Forest 

  
0.81 Sabangau, 

Central  
Kalimantan 

Yes 0-5 Selective logging and 
small ditches prior to 
1997 

Könönen et al 
2018 

Degraded 
Forest 

  
0.63 Sabangau, 

Central 
Kalimantan 

Yes 0-5 Reforested drained site 
3-4 m deep canal 

Könönen et al 
2018 

Open 
Undeveloped 

  
0.19 Sabangau, 

Central 
Kalimantan 

Yes 0-5 Drained site 3-4 m deep 
canal 

Könönen et al 
2018 

Smallholder 
Plantation 

  
0.34 Sabangau, 

Central 
Kalimantan 

Yes 0-5 
 

Sakabe et al 
2018 

Pristine 
Forest 

0.06 0.54 0.31 Palangkaraya, 
Central 
Kalimantan 

Yes 0-20 Hummock is low 
number, hollow is high 
number. Hollow covers 
65-80 % of area 

Wong et al 
2018 

Pristine 
Forest 

0.1 0.5 0.4 Maludam 
National Park, 
Sarawak 

Monthly 0-30 
 

Manning et al 
2019 

Industrial 
Plantation 

  
0.32 Sarawak Yes 0-10 Highly variable values 

depending on location 
(0.14-0.64 cm3/cm3) 

Marwanto et 
al 2019 

Industrial 
Plantation 

0.5 0.75 0.61 Riau No 0-10 
 

Swails et al 
2019 

Smallholder 
Plantation 

  
0.65 Tanjung 

Puting, Central 
Kalimantan 

 
0-5 

 

Swails et al 
2019 

Pristine 
Forest 

  
0.82 Tanjung 

Puting, Central 
Kalimantan 

 
0-5 

 

Tang et al 
2020 

Pristine 
Forest 

0.05 0.5 0.33 Maludam 
National Park, 
Sarawak 

Yes 0-30 SM probes averaged 
over flat and hummock 
terrain 

 130 
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 132 
 133 

Supplementary Figure 6: Relationship between change in a) dry season soil moisture (smdry 134 

season) and b) percent low soil moisture (pctlow sm) with tree cover fraction. Equations show best 135 

fit linear regression line with p<<0.01 for the regression slope for both variables. Background 136 

shows binned density of the two variables. Data is clipped on the y-axis to show the 2nd-98th 137 

percentile range of the soil moisture variables. 138 
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