Mapping the Brightness of Ganymede's Ultraviolet Aurora using Hubble Space Telescope Observations

Joachim Saur¹, A Marzok¹, S Schlegel¹, Joachim Saur¹, L Roth², D Grodent³, D F Strobel⁴, and K D Retherford⁵

¹University of Cologne ²KTH Royal Institute of Technology ³University of Liège ⁴Johns Hopkins University ⁵Southwest Research Institute

November 22, 2022

Abstract

* Brightness map of Ganymede's ultraviolet auroral emission has been constructed based on a large set of HST observations * Auroral ovals are structured in upstream and downstream 'crescents' * Brightness on sub-Jovian and anti-Jovian side is strongly reduced by a factor of 3-4 compared to upstream and downstream side *

Mapping the Brightness of Ganymede's Ultraviolet Aurora using Hubble Space Telescope Observations

A. Marzok¹, S. Schlegel¹, J. Saur^{1*}, L. Roth², D. Grodent³, D.F. Strobel⁴, K.D. Retherford^{5,6}

> ¹University of Cologne, Germany ²KTH Royal Institute of Technology, Sweden ³University of Liège, Belgium ⁴Johns Hopkins University, USA ⁵Southwest Research Institute, USA ⁶University of Conservation of Conservations of Conserva ⁶University of Texas at San Antonio, USA

Key Points: 11

1

2

3

10

16

*

12	•	Brightness map of Ganymede's ultraviolet auroral emission has been constructed
13		based on a large set of HST observations
14	•	Auroral ovals are structured in upstream and downstream 'crescents'
15	•	Brightness on sub-Jovian and anti-Jovian side is strongly reduced by a factor of

- Brightness on sub-Jovian and anti-Jovian side is strongly reduced by a factor of
 - 3 4 compared to upstream and downstream side

Corresponding author: Joachim Saur, jsaur@uni-koeln.de

17 Abstract

We analyze Hubble Space Telescope (HST) observations of Ganymede made with the 18 Space Telescope Imaging Spectrograph (STIS) between 1998 and 2017 to generate a bright-19 ness map of Ganymede's oxygen emission at 1356 Å. Our Mercator projected map demon-20 strates that the brightness along Ganymede's northern and southern auroral ovals strongly 21 varies with longitude. To quantify this variation around Ganymede, we investigate the 22 brightness averaged over 36°-wide longitude corridors centered around the sub-Jovian 23 (0° W), leading (90° W), anti-Jovian (180° W), and trailing (270° W) central longitudes. 24 In the northern hemisphere, the brightness of the auroral oval is 3.7 ± 0.4 times lower 25 in the sub-Jovian and anti-Jovian corridors compared to the trailing and leading corri-26 dors. The southern oval is overall brighter than the northern oval, and only 2.5 ± 0.2 27 times fainter on the sub- and anti-Jovian corridors compared to the trailing and lead-28 ing corridors. This demonstrates that Ganymede's auroral ovals are strongly structured 29 in auroral crescents on the leading side (plasma upstream side) and on the trailing side 30 (plasma downstream side). We also find that the brightness is not symmetric with re-31 spect to the 270° meridian, but shifted by $\sim 20^{\circ}$ towards the Jovian-facing hemisphere. 32 Our map will be useful for subsequent studies to understand the processes that gen-33 erate the aurora in Ganymede's non-rotationally driven, sub-Alfvénic magnetosphere. 34

³⁵ Plain Language Summary

Northern lights often illuminate the night sky in a shimmering green or red tone 36 at high geographic latitudes. This emission, scientifically referred to as *aurora*, is a re-37 sult of electrically charged particles that move along Earth's magnetic field lines and 38 interact with its atmosphere to produce auroral emission. Apart from the Earth, mul-39 tiple other planets in our solar system also exhibit auroral emission. By character-40 izing the brightness and structure of these lights, we are therefore able to deduce insights 41 about a planet's atmosphere, magnetic field and the physical processes occurring along 42 the field lines from a far. In this work, we used observations from the Hubble Space Tele-43 scope to analyze the auroral emission of Jupiter's largest moon Ganymede. We combined 44 multiple images of Ganymede to create the first complete map that displays the auro-45 ral brightness. Our map revealed that the emission on Ganymede's auroral ovals varies 46 strongly in brightness with divisions into two distinct bright and faint regions. They re-47 semble two auroral crescents in the north and south respectively, and demonstrate the 48 uniqueness of Ganymede's aurora in comparison with the auroral ovals of other planets 49 in the solar system. 50

51 **1** Introduction

Being the only known moon in our solar system with an internal dynamo magnetic 52 field (Kivelson et al., 1996, 2002), Jupiter's largest satellite Ganymede exhibits auro-53 ral emission structured by its magnetic field. The first hint of polar auroral emission at 54 Ganymede was found by Hall et al. (1998) who used the Goddard High Resolution Spec-55 trograph on the Hubble Space Telescope (HST) to observe Ganymede's trailing hemi-56 sphere in the FUV. The retrieved peaks in the spectrum around 1304 Å and 1356 Å were 57 interpreted as emission from a tenuous oxygen atmosphere. The observed double-peak 58 profile of the 1356 Å emissions indicated that the emissions are spatially confined to the 59 moon's magnetic north and south poles, suggesting auroral emissions (Hall et al., 1998). 60 The species responsible for the emissions was determined from the detected flux ratios 61 of OI 1304 Å and OI 1356 Å to be primarily molecular oxygen via dissociative electron-62 impact excitation. Feldman et al. (2000) first imaged the auroral emission with the Space 63 Telescope Imaging Spectrograph (STIS) on the HST. The obtained images of the up-64 stream hemisphere depicted diffuse background emission with localized bright regions 65 of 300 R at latitudes of approximately $\pm 40^{\circ}$. Evaluating Galileo spacecraft data, Eviatar 66

et al. (2001) argued that the measured population of thermal electrons $n_e \approx 5 - 20$ cm⁻³ with a temperature of 20 eV are not able to create even the diffuse background emission and that existing supra-thermal electrons of 2 keV are too few with a density of only $n_e \approx 0.5-2$ cm⁻³ to be responsible for the aurora as well. Therefore an additional process is required to accelerate the electrons to sufficient energies that could produce the emission.

From collected HST observations of the downstream and upstream hemispheres, 73 McGrath et al. (2013) created a map of the location of Ganymede's auroral bands at 1356 74 75 A. Their results showed that the emission is correlated with Ganymede's plasma environment. The magnetospheric plasma of Jupiter is approximately corotating with its 76 magnetic field at a synodic rotation period of 10.5 hours. As Ganymede is orbiting Jupiter 77 in a synchronized rotation period of only 7.2 days, the bulk plasma flow therefore over-78 takes the moon on its orbit. On the orbitally trailing hemisphere, where the plasma streams 79 towards the moon, the auroral bright spots are mapped to latitudes of $40^{\circ}-55^{\circ}$. On 80 the other hemisphere, i.e., the downstream hemisphere, the brightest auroral emissions 81 are found to be much closer to the equator near latitudes of only $10^{\circ} - 30^{\circ}$ (McGrath 82 et al., 2013; Musacchio et al., 2017). In this work we use the terminology 'orbitally lead-83 ing side' which corresponds to the 'plasma downstream side' and 'orbitally trailing side' 84 which corresponds to the 'plasma upstream side' interchangeably, depending on the phys-85 ical context. These hemispheres are displayed in Figure 1 for visual orientation. 86

The aurora was further characterized by Musacchio et al. (2017), who also collectively analyzed STIS HST images from 1998, 2000, 2010 and 2011. Their findings include that the aurora changes position with the moon's changing location in Jupiter's magnetosphere. When Ganymede is inside the Jovian current sheet, the upstream emission is shifted by $+2.9^{\circ}$ towards higher latitudes and by -4.1° towards the equator on the downstream hemisphere. The authors also found that the total disk brightness is on average 1.4 times greater on the downstream side than on the upstream side. When Ganymede

Figure 1. Geometry of orbital direction, plasma flow and related terminology for the various hemispheres/sides of Ganymede. The plasma flow is faster than Ganymede's orbital velocity and therefore the trailing side is the upstream side of the plasma flow.

is located inside the current sheet compared to outside the current sheet, the brightness 94 on the downstream side increases by a factor of 1.5 and decreases by 0.8 on the upstream 95 side. By averaging the temporal effects of the various observed positions of the aurora, 96 Musacchio et al. (2017) further characterized Ganymede's internal magnetic field and 97 derived a modified position for the longitude of its dipole. The temporal effects were also 98 studied by Saur et al. (2015), who used the oscillation of the aurora to demonstrate the 99 presence of an ocean beneath Ganymede's icy crust from HST observations. The oscil-100 lation arises from Jupiter's time-varying magnetic field in the rest frame of Ganymede. 101 Further details about the hydrogen corona and oxygen atmosphere of Ganymede were 102 published recently in the works of Molyneux et al. (2018) and Alday et al. (2017). Alday 103 et al. (2017) used data from 4 STIS campaigns between 1998 and 2014 to determine the 104 abundance and variation of atomic hydrogen around Ganymede by analyzing the detected 105 Lyman- α emissions. Molyneux et al. (2018) used observations obtained with the Cos-106 mic Origins Spectrograph (COS) along with STIS data to characterize the variations in 107 the emission and the composition of Ganymede's oxygen atmosphere on the leading and 108 trailing sides from measured intensities at 1304 Å and 1356 Å. Very recently, Roth et 109 al. (2021) found evidence of water vapor in Ganymede's atmosphere and found that 110 near the subsolar point sublimated water vapor is more abundant than than molecular 111 oxygen. 112

Various numerical simulations of Ganymede's magnetic field and plasma environ-113 ment contribute to the understanding of its auroral emission. Kopp and Ip (2002) ap-114 plied resistive magnetohydrodynamic (MHD) simulations to show that the open-closed 115 field boundary (OCFB) is changing with respect to the varying magnetic environment 116 around Ganymede. The OCFB marks the separatrix between those magnetic field lines 117 of Ganymede that close on the moon and those that are connected to Ganymede on one 118 end and to Jupiter on the other (Neubauer, 1998). Due to the magnetospheric plasma 119 flow and the associated magnetic stresses, the OCFB on the upstream side is shifted to 120 higher latitudes while it is dragged towards the equator on the downstream side. Jia et 121 al. (2008) used single-fluid MHD simulations to describe the interaction of Ganymede's 122 magnetosphere with the ambient magnetic field. Their findings indicate that the major 123 process for plasma and energy to enter the magnetosphere is via magnetic reconnection 124 that occurs on the down- and upstream sides, where ambient and intrinsic field lines are 125 nearly anti- parallel. Reconnection primarily occurs at the magnetopause on the upstream 126 side and in a thin equatorial region on the downstream side which extends several Ganymede 127 radii away. The comparison between the observed location of Ganymede's peak auro-128 ral emission by McGrath et al. (2013) and MHD modeling of Ganymede's environment 129 performed by Jia et al. (2008) showed that the locations of Ganymede's auroral ovals are 130 well correlated with the OCFB of Ganymede's magnetic field lines. Duling et al. (2014) 131 also modeled Ganymede's plasma interaction with an MHD model with a new descrip-132 tion for the insulating boundary conditions on Ganymede's icy surface. The resultant 133 location of the OCFB for various upstream conditions in Duling et al. (2014) and Jia et 134 al. (2008) are very similar as discussed in Saur et al. (2015). Additionally, 3D multi-fluid 135 MHD simulations were applied (Paty & Winglee, 2004, 2006) or hybrid models (Fatemi 136 et al., 2016) were used to estimate neutral sputtering rates on the surface (Liuzzo et al., 137 2020). Further models focused on additional plasma effects of Ganymede's magnetosphere 138 such as Hall MHD (Dorelli et al., 2015). Tóth et al. (2016); Zhou et al. (2019, 2020) used 139 embedded particle-cell and MHD models to better understand reconnection at Ganymede 140 and the resultant energetic particle fluxes. For all these models, the structure and bright-141 ness of Ganymede's auroral belts, the subject of this work, are key observational con-142 straints (next to Galileo in-situ measurements) to understand the physics of Ganymede's 143 144 sub-Alfvénic mini-magnetosphere.

While a location map of the aurora was created by McGrath et al. (2013), and the time-variable aspects of Ganymede's aurora, as well as the local emission morphology was studied by Saur et al. (2015) and Musacchio et al. (2017), in this work we create a first complete global Mercator map of Ganymede's auroral brightness at OI 1356 Å. Here
we also use previously unpublished HST observations from 2017 to explicitly focus on
the emission structure at the sub- and anti-Jovian flanks. We use the emissions at OI
1356 Å because it provides the largest signal-to-noise ratio compared to OI 1304 Å (Musacchio
et al., 2017). The brightness structure is analyzed with special regard to the continuity
of both ovals. Our map will serve as a diagnostic tool for future studies of magnetospheric
and auroral processes around Ganymede.

¹⁵⁵ 2 Observations and Data Processing

In this section we describe the HST/STIS datasets which were used in our study.
 We also describe how we map auroral emission from Ganymede's disk onto a Mercator
 map.

159

2.1 Overview of the Observations

Six STIS campaigns were conducted during which Ganymede was observed in the 160 FUV range between 1150 Å and 1700 Å. All observations were carried out with the G140L 161 grating and used the Multi-Anode Micro-channel Array (MAMA) detector. Due to Ganymede's 162 synchronized rotation around Jupiter, the various hemispheres are observable when Ganymede 163 is at distinct elongations on its orbit. Table 1 lists the available programs and Figure 2 164 shows the distribution of Ganymede's elongation for the available datasets. For an im-165 pression of Ganymede's spatially varying emission morphology we display in Figure 3 166 selected observations at four different orbital positions ϕ_{orb} . They show Ganymede's lead-167 ing, trailing, sub-Jovian and anti-Jovian side. On the leading and trailing side the ovals 168 appear continuous across all visible longitudes, but on the sub-Jovian and the anti-Jovian 169 side, the emission appears interrupted near 0° and 180° longitudes, respectively. Obser-170 vations near 180° have not been presented before in the literature to the authors' knowl-171 edge. They give an impression that the auroral brightness is not continuous along all lon-172 gitudes of Ganymede, which we will quantify further in Section 3. 173

For a complete map of the auroral emissions, all datasets of the HST/STIS campaigns in table 1 were used to cover all available elongations of Ganymede's orbit. Ganymede was observed on the downstream side around 90° elongation during 30 exposures and on the upstream side near 270° during 10 exposures. Thus, of the 48 exposures, only

Figure 2. Overview of the elongation for all available exposures of each program, listed by their Program ID. Program 12244 consists out of two visits, which are displayed separately.

Table 1. Available programs where Ganymede was observed with HST/STIS. θ_{mag} is Ganymede's magnetic latitude in Jupiter's magnetosphere, λ_{obs} the sub-observer planetocentric latitude of HST and ϕ_{orb} the elongation of Ganymede around Jupiter as in Figure 2. Orbit refers to the number within a visit. Program 12244 consists of two visits with 5 orbits each taken approximately one year apart.

ID	Date	Orbit	Exposures ID	λ_{III} [°]	$\begin{array}{c} \theta_{mag} \\ [^\circ] \end{array}$	$\begin{array}{c} \lambda_{obs} \\ [^\circ] \end{array}$	ϕ_{orb} [°]	Size ["]	Albedo %
7939	30 Oct 1998	1	o53k01010	229.7	8.32	1.86	288.05	1.71	2.2 ± 0.4
			o53k01020	239.7	7.39		288.67		
		2	o53k01030	276.3	2.38		290.82		
			o53k01040	291.8	-0.16		291.77		
		3	o53k01050	331.0	-6.13		294.22		
			o53k01060	345.6	-7.77		295.13		
		4	o53k01070	26.49	-9.45		297.62		
			o53k01080	39.52	-9.0		298.44		
8224	23 Dec 2000	1	05d602010	263.8	4.31	3.09	102.99	1.75	1.9 ± 0.4
			05d602020	272.8	2.93		103.54		
		2	05d602030	308.6	-2.91		105.63		
			05d602040	323.2	-5.09		106.53		
9296	30 Nov 2003	1	08m301010	275.3	2.53	-1.38	335.36	1.33	1.8 ± 0.5
			08m301020	285.1	0.94		335.95		
		2	08m30103	322.5	-4.99		338.15		
			08m301040	337.1	-6.86		339.04		
12244	19 Nov 2010	1	objy03010	174.3	8.50	2.12	99.42	1.64	1.9 ± 0.3
			objy03020	183.9	9.09		100.19		
		2	objy03030	218.6	9.04		102.81		
			objy03040	233.9	7.96		103.99		
		3	objy03050	273.2	2.87		106.94		
			objy03060	288.5	0.375		108.06		
	20 Nov 2010	4	objy03070	327.8	-5.72		110.86		
			objy03080	343.1	-7.52		111.93		
		5	objy03090	22.45	-9.5		114.61		
			objy030a0	37.75	-9.09		115.63		
	01 Oct 2011	1	objy11010	164.8	7.69	3.6	89.51	1.78	$2.0\ \pm 0.3$
			objy11020	174.5	8.52		90.10		
		2	objy11030	210.7	9.36		92.21		
			objy11040	226.1	8.59		93.15		
		3	objyb1010	272.7	2.94		96.12		
			objyb1020	282.4	1.38		96.71		
		4	objyb1030	319.8	-4.61		98.89		
			objyb1040	335.3	-6.66		99.84		
		5	objyb1050	14.89	-9.45		102.26		
			objyb1060	28.34	-9.42		103.08		
13328	23 Jan 2014	1	ocbug1010	145.2	5.36	1.77	78.90	1.7	1.5 ± 0.4
			ocbug1020	155.5	6.69		79.54		
		2	ocbui1010	307.9	-2.79		88.89		
			ocbui1020	318.2	-4.37		88.53		
	27 Jan 2014	3	ocbug2010	10.39	-9.34		270.22	1.58	2.1 ± 0.5
			ocbug2020	20.75	-9.5		270.86		
	$25 { m Feb} \ 2014$	4	ocbuh3010	141.5	4.85		275.98	1.7	$2.0\ \pm 0.5$
			ocbuh3020	151.8	6.24	151.8	276.62		
14634	$02 \ {\rm Feb} \ 2017$	1	od8k40010	197.2	9.48	-3.22	173.38	1.45	$1.7\ \pm 0.3$
		2	od8k40020	245.6	6.75		175.92		

¹⁷⁸ 6 covered the sub- and anti-Jovian hemispheres. (Two additional exposures were distorted and unusable due to a guide-star failure.) Therefore only six of the remaining 46 exposures covered the regions around 0° and 180° elongation.

181

217

2.2 Processing Auroral Disk Images

The data analysis is performed with the flat-fielded detector counts from the .flt files (see STIS instrument handbook, Riley et al. (2017)). The major tasks to generate individual disk images of Ganymede's auroral emissions include the determination of Ganymede's position, size and orientation on the detector and eliminating any solar-reflected and background emission photons which are superimposed on the data.

Using the SPICE tool-kit along with additional information provided in the scientific header of each file, we calculated the extension of Ganymede's disk and its tilt on the detector, the system-III longitude and magnetic latitude of Ganymede inside Jupiter's magnetic field, as well as Ganymede's elongation around Jupiter to determine the hemisphere observed in each exposure.

The size of Ganymede's disk on the detector varies between 53 to nearly 80 pix-192 els depending on Ganymede's distance to Earth. Ganymede's exact position within the 193 2 arcsecond slit (corresponding to 82 pixels) needs to be determined from the observa-194 tions. Therefore we use the Lyman- α emission on the detector, which primarily con-195 sists of solar reflected light from Ganymede's surface and nearly spatially homogenous 196 emission from the geocorona. The position of Ganymede is determined through a Gaus-197 sian fit along the direction of dispersion and along the direction of the slit. Due to a 198 misalignment of the dispersion grating and the detector the y position of Ganymede $G_y(\lambda)$ 199 is not constant along the dispersion axis. By performing Gaussian fits along the spatial 200 axis inside the Lyman- α window and the spectral trace of the reflected solar light around 201 1600 - 1700 Å, we calculate two different y locations of the disk that are used to esti-202 mate $G_u(\lambda)$ by linearly interpolating between them. 203

To remove background emission in the form of dark pixels or interplanetary noise 204 we apply previously used techniques (Roth, Saur, Retherford, Strobel, et al., 2014; Roth. 205 Saur, Retherford, Feldman, & Strobel, 2014; Saur et al., 2015), in which the average de-206 tector counts at each wavelength (i.e. each pixel column) not affected by the signal from 207 Ganymede are calculated and then subtracted from each pixel at that column. The so-208 lar reflected photons are removed by creating synthetic HST datasets which contain these 209 reflected solar photons, similar to Musacchio et al. (2017). For each specific observation 210 date the measured solar spectra $f_s(\lambda)$ are retrieved from datasets of the Upper Atmo-211 sphere Research Satellite (UARS) for observations older than 2001, and from the Solar 212 Extreme Ultraviolet Experiment (SEE) installed on the Thermosphere Ionosphere Meso-213 sphere Energetic and Dynamics orbiter (TIMED) for 2001 and later. Since the retrieved 214 spectra are measured at the Sun-Earth distance d_{SE} they are rescaled to resemble the 215 photons reflected by Ganymede's disk measured back at HST $f_{s,HST}(\lambda)$ by using 216

$$f_{s,HST}(\lambda) = a \cdot f_s(\lambda) \cdot \left(\frac{d_{SE}}{d_{SG} d_{GH}}\right)^2 R_G^2 \qquad , \tag{1}$$

where d_{SG} and d_{GH} are the Sun-Ganymede distance and Ganymede-Hubble distance, respectively. From the reflected spectra, a synthetic HST image is created by superposing photon flux $f_{s,HST}(\lambda)$ from uniformly reflecting disks for each wavelength. The resulting two-dimensional synthetic image is then convolved with the point spread function obtained by the *TinyTim* software tool (Krist et al., 2011). To match the unit of the synthetic data ϕ_{refl} , the measured detector counts C_{obs} are converted to photons cm⁻² s⁻¹ by dividing with the exposure time t and the effective HST primary mirror area A_{HST} of $45,238 \text{ cm}^2$, as given by

226

$$\phi_{obs} = \frac{C_{obs}}{t} \cdot \frac{1}{A_{HST} \cdot T(\lambda)} \qquad . \tag{2}$$

 $T(\lambda)$ is the instrument dependent throughput that results in the conversion from mea-227 sured detector counts to effective photons which reach the primary mirror. ϕ_{refl} and ϕ_{obs} 228 are then transformed into the one dimensional spectral flux densities $s_{refl}(\lambda)$ and $s_{obs}(\lambda)$ 229 in photons $cm^{-2} s^{-1} Å^{-1}$ by the summation along the cross-dispersion axis of the de-230 tector. The geometric albedo a is then calculated by performing a least-square fit of s_{refl} 231 to s_{meas} inside the wavelength window of 1400 Å to 1550 Å, where all detected emis-232 sion is assumed to be due to solar reflected photons. The derived albedo values are listed 233 in Table 1 and are in agreement with those discussed in the literature for the differ-234 ent hemispheres by, e.g., Feldman et al. (2000); Saur et al. (2015); Musacchio et al. (2017); 235 Molyneux et al. (2020). 236

The effective spectral image ϕ_{eff} displaying only auroral emission, i.e. that is free from background emissions and solar reflected photons from Ganymede's surface is calculated via

$$\phi_{eff} = \phi_{obs} - \phi_{back} - \phi_{refl} \qquad . \tag{3}$$

Before cropping the image to a 82 × 82 pixel sized array around Ganymede's disk at 1356 Å and rotating it to align with the vertical axis, the image is converted into the unit Rayleigh (R) which is defined as a surface brightness with 1 R = $10^6/4 \pi$ photons cm⁻² sr⁻¹ s⁻¹, resulting in

249

240

$$R = \frac{4\pi}{10^6} \cdot \frac{\phi_{eff}}{m_s^2} \cdot \left(\frac{360 \cdot 3600}{2\pi}\right)^2 \qquad (4)$$

Here m_s is the plate scale of the FUV-MAMA detector with the G140L grating which is 0.0246 arcsec pixel⁻¹ (Riley et al., 2017), and the last term represents conversion between arcsec and radian.

2.3 Creating the Auroral Map

From the final processed and rotated images a Mercator brightness map of the au-250 rora is created by mapping the brightness value of each pixel lying on Ganymede's disk 251 to a new position on an array which displays the range of 0° - 360° west-longitude and 252 -90° to $+90^{\circ}$ planetocentric latitude of Ganymede. The map is created as a 360×720 253 pixel array, resulting in a resolution of 0.5° per pixel in both longitudinal and latitudi-254 nal directions. After determining the area each pixel covers on Ganymede, the respec-255 tive Rayleigh value is mapped to the corresponding region on the projected map as il-256 lustrated in Figure 4. The area that one pixel covers is calculated from the latitude and 257 longitude of its pixel edges. 258

To determine the longitudinal and latitudinal positions of all pixels on the disk, they 259 are first mapped on arcs of constant latitude. Because of the tilt of Ganymede as seen 260 from the HST, the arcs are not straight lines but sections of ellipses. Pixels of the same 261 latitude therefore are not necessarily in the same row. To infer the longitude of the pixel, 262 the distance d from the center, i.e. the sub-observer longitude $\varphi_{sub-obs}$, along the arc 263 is compared to the length of the whole arc l. The longitude φ can then be calculated as 264 $\varphi = \varphi_{sub-obs} + \arcsin 2d/l$. Note that positions left from the center result in negative 265 values of d, while positions right result in positive values. Since the tilt of Ganymede is 266 small, the arcs can be assumed to cover 180° in longitude. Additionally we omitted sub-267 pixel discretization that would account for the variation of latitude and longitude along 268 the pixel edges, but used the values of the pixel corners. Naturally this translates ev-269 ery disk pixel to a rectified area on the Mercator map. 270

As the auroral emission is generated inside Ganymede's oxygen atmosphere the brightness measured can be affected by the position of a pixel on the disk. Due to the spher-

ical extent of the atmosphere, photons registered by pixels near the edge of the disk 273 can originate from a larger atmospheric column than those of the central pixel below the 274 sub-observer point. To compensate for this effect, we scale the brightness measured by 275 each pixel with the atmospheric depth that lies inside the line-of-sight of that pixel as 276 observed from HST. The newly shifted values then represent the brightness as observed 277 from the zenith of each location which eliminates the distortion obtained from the view-278 point of HST. As 97 % of Ganymede's oxygen atmosphere lies below an altitude of \sim 70 279 km (Marconi, 2007; Saur et al., 2015), we use a length of 70 km for the sub-observer at-280 mospheric height H below the zenith. Each disk pixel R_{HST} is then adapted and shifted 281 to the zenith via 282

283

290

$$R_Z(x,y) = R_{HST}(x,y) \cdot \frac{H}{L(x,y)} \qquad , \tag{5}$$

where L is the atmospheric length of each pixel as viewed from HST.

After creating individual Mercator maps for each set of HST observations, all individual 46 maps were combined into one complete map. To create the final map that contains all exposures, the mean Rayleigh brightness for one pixel x_m, y_m on the map is calculated from all Rayleigh values mapped to this pixel, weighted with the respective exposure time T used for their observation as

$$\bar{R}(x_m, y_m) = \frac{\sum_{i}^{N} R_i(x_m, y_m) \cdot T_i}{\sum_{i}^{N} T_i} \qquad .$$
(6)

The averaged emission is weighted with exposure time to generate the best temporal averaged emission map in contrast to weighting with the inverse of the uncertainty squared, which would correspond to weighting with intensity. N is the number of exposures used for calculating the averaged brightness in a pixel on the mercator map. Performing this for all 360×720 pixels on the map creates the final brightness map of Ganymede's UV aurora at 1356 Å.

From the Gaussian fits that were performed to locate Ganymede's disk on the de-297 tector, an uncertainty of ± 1 pixel is estimated for the deviation of Ganymede's central 298 pixel. A deviation of one pixel could already resemble a significantly different location 299 assigned to a pixel which is near the edge of the disk. We therefore only incorporate disk 300 pixel into the map whose assigned locations lie within a defined window of uncertainty 301 to assure a certain spatial accuracy of the map. For that, the uncertainty in latitudinal 302 and longitudinal direction of each pixel is calculated for each exposure. The uncertain-303 ties Δx and Δy describe the total difference in latitude and longitude from both neigh-304 boring pixels of the mapped cell. Due to the spherical curvature, Δx and Δy are smaller 305 at the disk's center and grow larger towards the edge. We therefore chose a threshold 306 value to filter pixel for which the deviation of one cell would result in a larger spatial dis-307 crepancy. If any of the two uncertainties Δx or Δy exceeded a threshold of 15°, the cor-308 responding pixel is not included into the map. 309

For additional evaluation tools, we use the same mapping procedure to map the 310 total exposure time that went into each pixel on the Mercator map to assess the obser-311 vational coverage of different regions on the map. Similarly we create a map for the signal-312 to-noise ratio (SNR) of each pixel on the Mercator map to identify the data quality for 313 later interpretations. The SNR is calculated from the detector counts C, background emis-314 sion counts B and solar reflected photons that are converted to detector counts S. These 315 components are mapped into an individual map as previously described, but is unaffected 316 by the atmospheric length correction and exposure time weighting. Since the total num-317 ber of counts needs to be conserved, the counts are evenly re-distributed over all corre-318 sponding pixels on the map. This is contrary to the mapping of the Rayleigh values, where 319 the average brightness over all corresponding pixels is considered. The three individual 320 maps for C, B and S are then combined via 321

$$SNR = \frac{C - B - S}{\sqrt{C + B + S}} \qquad , \tag{7}$$

to create a complete SNR map.

324 **3 Results**

In this Section we present our calculated brightness map of Ganymede's auroral emission at 1356 Å. We also analyze its properties and discuss the possible mechanisms responsible for its spatial structure.

328 3.1 Main brightness map

In Figure 5 we display the main, i.e. averaged brightness map of Ganymede's au-329 rora. The map was rebinned to cells which contain 9×9 pixel of the unbinned map in 330 order to increase the SNR. The rebinned map therefore has a resolution of 40×80 pixel, 331 where one pixel spans $4.5^{\circ} \times 4.5^{\circ}$ in latitude and longitude. From simple visual inspec-332 tion of the brightness map, the auroral emission seems to be clearly dominant on the down-333 stream and upstream hemispheres, while the transition regions appear noticeably fainter. 334 The SNR map displayed in the bottom part of Figure 5 also represents this aspect to 335 some extent as the signal-to-noise ratios are clearly higher on the upstream- and down-336 stream sides, compared to the sub- and anti-Jovian longitudes around 0° and 180° , re-337 spectively. Note however that the SNR is large when the photon fluxes and/or the ex-338 posure times are large. With a total exposure of $\sim 5,000$ to 7,000 seconds for the sub-339 and anti-Jovian sides, the low SNR of ≤ 1 of individual pixels on the map indicate that 340 very few photons could be detected at these longitudes. 341

342

362

3.2 Brightness maps: Inside, above and below the current sheet

Figure 6 displays the brightness maps which were created when we separated the 343 available exposures according to the magnetic latitude of Ganymede in Jupiter's mag-344 netosphere. We choose as boundaries for the current sheet $\theta_{mag} = \pm 6^{\circ}$ magnetic lat-345 itude. 13 exposures make up the map below the current sheet, 14 above the current sheet, 346 and the remaining 19 exposures are used for the map where Ganymede is located within 347 the current sheet. The maps show that the coverage of the main brightness map in Fig-348 ure 5 is not evenly distributed for all magnetic latitudes. The longitudinal region between 349 180° and 210° is only covered by observations where Ganymede is above the current sheet. 350 The comparison illustrates the prominent emission structures on the downstream and 351 upstream sides, as well as the enhanced upstream emission on the southern oval across 352 all three maps. Increased values around the 0° sub-Jovian longitude are only present in 353 isolated pixels when Ganymede is below the current sheet and are not visible on the other 354 two maps. They could be either a non-systematic, sporadic effect or an unknown sys-355 tematic difference between northern and southern latitudes. However, the SNR map in 356 Figure 5 shows that the fluxes of these pixels are barely significant due to the low ex-357 posure times and thus no firm conclusions can be reached. 358

359 **3.3** Analysis of the brightness map

A global fit for the latitudes Θ of the ovals as a function of all longitude λ incorporting all exposures is generated in the form

 $\Theta(\lambda) = \Theta_0 + \Theta_1 \sin(\lambda + \lambda_1), \tag{8}$

where λ is the western longitude and Θ_0 , Θ_1 and λ_1 are the fitting parameter summarized in Table 2. Average latitude values for the ovals are calculated inside the same longitude windows of 40° to 150° and 240° to 340° for both southern and northern emission. The windows are slightly off centered from 90° and 270° due to the shifted minima (see Figure 7). The average latitudes on the downstream hemisphere of ±18.7°±

Eq	hemisphere	Θ_0	Θ_1	λ_1				
(8) (8)	north south	32.3° -29.4°	-16.9° 11.6°	1.5° 8.8°				
Eq	hemisphere	B_0	B_1	B_2	B_3	λ_1	λ_2	λ_3
$(9) \\ (9)$	north south	46.2 R 57.0 R	9.4 R 11.0 R	28.2 R 25.8 R	5.2 R 3.6 R	19.9° 65.7°	264.5° 237.4°	236.1° 256.9°

Table 2. Fit values for expressions (8) and (9).

4.5° as well as the mean upstream latitude of $\pm 41.5^{\circ} \pm 6.7^{\circ}$ are in accordance with the reported locations in McGrath et al. (2013).

To further compare our results with previous works, we first study the average po-370 sitions of the northern and southern ovals when Ganymede is inside the current sheet 371 and outside of it. Therefore we fit polynomials of second degree within downstream lon-372 gitudes of 40° to 150° and upstream longitudes of 240° to 340° using a centroiding scheme 373 as in Saur et al. (2015). The averaged latitudes are shifted by $-5.4^{\circ}\pm 3.2^{\circ}$ towards the 374 equator on the downstream hemisphere when Ganymede is located inside the current sheet 375 compared to outside. The retrieved shift of $\pm 5.4^{\circ}$ is in reasonable agreement with the 376 shift of $-4.1^{\circ}\pm0.7^{\circ}$ found in Musacchio et al. (2017). The detected shift by Musacchio 377 et al. (2017) towards the poles on the upstream hemisphere is reproduced in our results 378 only on the southern oval, and is not clearly observable on the northern oval location. 379

Combining all exposures, we calculate a disk averaged brightness and find values of 68.3 ± 8.9 R on the upstream and 90.5 ± 6.4 R on the downstream side. Comparing the auroral brightness from our maps when Ganymede is inside or outside of the current sheet, we calculate that the brightness on the downstream aurora increases by a factor of 1.3 ± 0.31 as Ganymede transitions into the current sheet and decreases by a factor of 0.78 ± 0.19 on the upstream side. Both values are well in agreement with the results of 1.33 ± 0.05 and 0.76 ± 0.07 by Musacchio et al. (2017).

To further characterize the emission structure of the northern and southern auroral emission, we fit the brightness within the bands displayed in Figure 7 in the form

389

$$B(\lambda) = B_0 + B_1 \sin(\lambda + \lambda_1) + B_2 \sin(2\lambda + \lambda_2) + B_3 \sin(3\lambda + \lambda_3)$$
(9)

with the fitting parameters $B_0, B_1, B_2, B_3, \lambda_1, \lambda_2$ and λ_3 provided in Table 2. The fit is 390 based on the main map (Fig. 5), where we used the brightness of bins at position $\Theta(\lambda)$ 391 from expression (8) plus its three latitudinally neighboring bins above and below. The 392 latitudinal extension corresponds to approximately 31° and the associated band is high-393 lighted on the map in Figure 7. With expression (9), we introduce a fit function with 394 7 free parameters in order to resolve various asymmetries in the brightness distributions. 395 The observed and fitted brightnesses are displayed in the top and bottom panels of Fig-396 ure 7 along with the integrated SNR of those regions in green. For both the northern 397 and southern ovals, the averaged brightness exhibits a sinusoidal shape without abrupt 398 drops or cut-offs, which can also be observed in the SNR. From the brightest peaks on 399 the down- and upstream sides, the brightness steadily decreases towards $\sim 0^{\circ}$ and $\sim 180^{\circ}$ 400 longitudes regions where they reach their lowest values. 401

In order to quantify the brightness change along the ovals we average the brightness
 ness inside windows of 36° longitude around the fitted brightest and faintest points along
 the sinusoidal fits. The widths of these windows were chosen such that enough data points

lead to a robust value and that the widths are still narrow enough such that the min-405 imum and maximum are approximated well. The uncertainties for those values is cal-406 culated from the variance of the brightness inside those 36° windows. Average bright-407 ness values within various longitudinal regions are quantitatively provided in Table 3. 408 The values are calculated as algebraic averages within a band given by the bin with the 409 maximum brightness ± 3 bin in latitudinal direction and within the longitude ranges spec-410 ified in the table. The area for each region is approximately $36^{\circ} \times 31^{\circ}$. Within the north-411 ern oval, the emission decreases from 83.8 ± 2.6 R on the downstream side and 63.5 ± 1.6 412 R on the upstream side to small values of 19.6 \pm 1.3 R and 20.3 \pm 2.8 R on the sub-413 and anti-Jovian longitudes, respectively. The emission on the flanks (i.e., Jovian and anti-414 Jovian sides) is therefore a factor of 3.27 ± 0.4 fainter than on the up- and downstream 415 sides. For the southern oval, the upstream and downstream brightness is similar with 416 an average value of 82.9 ± 1.2 R. The average faint emission around 0° and 180° is sig-417 nificantly stronger on the southern oval with an averaged brightness of 32.7 ± 1.1 R com-418 pared to the northern hemisphere. While the decrease towards the sub-Jovian hemisphere 419 is only a factor of 2.0 ± 0.1 , where the emission is still 40.9 ± 1.8 R, the brightness de-420 creases by a factor of 3.5 ± 0.2 towards the anti-Jovian longitude where the auroral bright-421 ness is only 24.5 ± 1.4 R. For the southern oval, we find an average brightness change 422 by a factor of 2.5 ± 0.2 when comparing the averages of the trailing and leading sides 423 to the flanks. Finally, combining the emission from the northern and the southern ovals within the individual longitudes given in Table 3, we find the emission on the flanks is 425 a factor of 3.0 ± 0.1 lower compared to the average oval brightness of the upstream and 426 downstream side. 427

The main map in Figure 5 shows that the maximum brightness is not exactly lo-428 cated at 90° and 270° longitudes, i.e., symmetric with respect to the Jovian and anti-429 Jovian side. On the downstream side the maximum is at 85° for the northern band and 430 at 95° for the southern band. On the upstream side the emission maxima lie at 283° for 431 the northern band and at 297° for the southern band, i.e. maximum brightness is shifted 432 towards the Jovian-facing side by 20° on average. The reason for this asymmetry could 433 lie in the slightly tilted magnetic moment of Ganymede (Kivelson et al., 2002) and/or 434 in asymmetries of the plasma interaction, e.g., due to the Hall effect (Dorelli et al., 2015; 435 Saur et al., 1999). 436

On the anti-Jovian flank, brighter regions appear to be present around longitude 190°, in both the northern and the southern regions, embedded inside the faint aurora.

Table 3. Averaged brightness within various longitudinal ranges and their ratios. Brightness is given in units of Rayleigh (R). See text for details on averaging. Downstream/upstream and sub-Jovian/anti-Jovian averages are referred to as joint brightnesses, respectively. They are provided together with the north-south averages for a basic overview.

		downstream	/ upstream	Jovian side / a	nti-Jovian side	Ratios
	Longitude Range	$68^\circ - 105^\circ$	$269^\circ - 305^\circ$	$346^{\circ} - 18^{\circ}$	$168^\circ - 205^\circ$	
Northern	Brightness within Range	$83.8\pm2.6~\mathrm{R}$	$63.5\pm1.6~\mathrm{R}$	$19.6\pm2.8~\mathrm{R}$	$20.3\pm1.3~\mathrm{R}$	
	Joint Brightness	$73.7\pm1.5~\mathrm{R}$		19.9 ±	3.7 ± 0.4	
	Longitude Range	77° – 114°	283° – 319°	$0^{\circ} - 32^{\circ}$	$187^{\circ} - 223^{\circ}$	
Southern	Brightness within Range	82.7 ± 1.6	$83.0\pm1.9~\mathrm{R}$	40.9 ± 1.8	$24.5\pm1.4~\mathrm{R}$	
	Joint Brightness	$82.9\pm1.2~\mathrm{R}$		$32.7 \pm$	2.5 ± 0.2	
North-South Average		$78.3\pm1.0~\mathrm{R}$		26.3 ±	3.0 ± 0.1	

They also appear inside the brightness curves in the top and bottom panels of Figure
7. The peaks are not correlated with a similar increase in the signal-to-noise ratio due
to low total exposure times covering this region. Therefore it is doubtful if the locally
enhanced brightness patches are physically real.

For several reasons, the largest values within our auroral brightness map are smaller 443 than previously reported values in the range of 100 R up to 300 R in locally bright ar-444 eas in Feldman et al. (2000). For one we retrieved the values from our auroral map in-445 stead of the observed disks. Since the map incorporates multiple exposures into a weighted 446 average of each pixel on the map, any individual high-count emission from a detector pixel of one exposure gets averaged by exposures which went into the same map pixel with 448 fewer detected counts. Additionally, unlike studies where the observed disks were eval-449 uated, we accounted for the atmospheric line-of-sight effect described in Section 2.3 when 450 creating the map. Thus high brightness pixels near the edges of the disk are given a lower 451 adapted-brightness on our map. Lastly the rebinning of our map to increase the SNR 452 value affects the brightness as it averages individual bright spots. Since the actual size 453 chosen to rebin has a direct impact on the brightness averaging, our size of 3×3 pixel used for rebinning exceeds the rebinning size of 2×2 used McGrath et al. (2013) on the 455 disks. 456

457

3.4 Interpretation of the auroral brightness map

There are different hypotheses on the cause of Ganymede's aurora and therefore 458 there are also different ways to interpret the derived brightness maps of Ganymede's au-459 rora in Figure 5. To point out different possible interpretations, we display the UV bright-460 ness as a function of latitude in Figure 8 for the upstream, the downstream and the sub-461 and anti-Jovian sides, respectively. For the upstream and downstream sides a similar anal-462 ysis has been performed by Musacchio et al. (2017). On the upstream and downstream 463 sides the brightness has two maxima, respectively, consistent with the existence of two 464 auroral bands in the north and south. We display these structures by separately fitting 465 Gaussians on the northern and southern hemisphere, respectively (shown as blue lines 466 in Figure 8). The brightness maxima are closer to the equator on the downstream side 467 compared to the upstream side due to the magnetic stresses of Jupiter's magnetospheric plasma on Ganymede's magnetospheric plasma. The downstream aurora is also brighter 469 on average compared to the upstream side. 470

The brightness distribution as a function of latitude on the Jupiter facing side and the anti-Jupiter side shown in Figure 8 is less clearly structured. The anti-Jupiter side has two modest maxima in the northern and southern hemispheres with slightly reduced values around the equator. The Jupiter facing side shows two modest maxima in the south and not in the north, while for the anti-Jupiter side a maximum is only visible in the south. Emission from latitudes larger than $\pm 70^{\circ}$ latitudes are difficult to assess due to the viewing geometry from Earth.

Auroral emission displayed in Figures 5 and 8 maximizes within upstream and downstream northern and southern crescents away from the equator. But auroral emission
with a smaller amplitude is still present within all other longitudes. Several possible
scenarios causing the auroral emission pattern are possible.

 One possibility is that reconnection near the open-closed field line boundary generates energized particles which propagate along the field lines and generates northern and southern auroral crescents on the upstream and downstream side, respectively. Maximum reconnection is expected to occur based on numerical simulations and theory on the upstream and downstream side (Neubauer, 1998; Duling et al., 2014; Tóth et al., 2016; Zhou et al., 2019). Consequently the reconnection intensity gets weaker towards the flanks of the sub- and anti-Jovian hemisphere, where the plasma flow is parallel to the magnetopause and the exerted ram pressure diminishes. Energetic particles will however drift perpendicular to the field
lines and might be scattered and thus additionally diffuse across the field lines to
generate auroral emission on field lines located away from the reconnection sites.
This could be a scenario explaining the non-negligible, but weak emission on the
flanks compared to the upstream and downstream side and the weak emission near
equatorial latitudes.

- 2. Alternatively, several different auroral generator mechanisms could contribute to 496 Ganymede's auroral emission. Next to reconnection on the upstream and down-497 stream side, shear flow near the open-closed field boundary could drive an elec-498 tric current system with field-aligned electric current predominately towards Ganymede's 499 ionosphere on the flanks (e.g., Jia et al., 2009). These currents might drive par-500 allel electric fields which accelerate particles subsequently creating the aurora (Eviatar 501 et al., 2001). The existence and nature of such DC parallel electric fields similar 502 to observations and theory from Earth (Knight, 1973) is however uncertain at Ganymede. 503 Within the closed-field region of Ganymede's magnetosphere, possible MHD and 504 plasma waves could be subject to wave-particle interaction and thus produce en-505 ergetic particles (e.g., Eviatar et al., 2001; Lysak & Lotko, 1996; Saur et al., 2018). 506 Additionally, on open field lines, energetic ions and electrons from Jupiter's mag-507 netosphere will contribute to Ganymede's polar cap auroral emission. Several of 508 these processes thus could jointly shape Ganymede's auroral structure. 509
- 3. The local auroral emission rate also depends on the neutral density. The primary 510 component of Ganymede's atmosphere is O_2 with a contribution from H_2O near 511 the sub-solar point (Hall et al., 1998; Marconi, 2007; Roth et al., 2021). The spa-512 tial variability and composition of the atmosphere has been modeled by, e.g., Collinson 513 et al. (2018); Leblanc et al. (2017); Carnielli et al. (2019); Plainaki et al. (2020). 514 The atmosphere's O_2 is however expected to only weakly vary across the surface 515 of Ganymede because O_2 does not freeze out on the surface (e.g., Strobel, 2005). 516 The spatial variability of the other neutral components is thus expected to con-517 tribute to the spatial variability of Ganymede's UV emission. 518

519 4 Summary

In this work we used a set of 46 exposures taken with the STIS instrument of the 520 Hubble Space Telescope from 1998 to 2017 to create a global brightness map of Ganymede's 521 auroral emission at 1356Å. Our results are consistent with the location map of McGrath 522 et al. (2013) and the brightness values derived in Musacchio et al. (2017). The map and 523 analysis of this work shows that the brightness of Ganymede's aurora varies strongly with 524 longitude. With strongest emission on the upstream and downstream sides around 90° 525 and 270° longitude, the emission around the sub- and anti-Jovian longitudes near 0° and 526 180° are on average 3.0 times fainter. While the brightness does not completely vanish, 527 thus making the aurora not strictly discontinuous, the northern and southern emission 528 can each be characterized to consist of two dominant auroral crescents rather than a con-529 tinuous oval. Compared to other celestial bodies in our solar system which exhibit au-530 roral emission like Earth, Jupiter, Saturn and Uranus (e.g., Bhardwaj & Gladstone, 2000; 531 Clarke et al., 2005; Lamy et al., 2012) the distinctively cresent-shaped contributions to 532 its auroral ovals makes Ganymede aurora unique in the solar system 533

This study presents new observational constraints on Ganymede's auroral ovals. The derived auroral maps are maps of Ganymede's magnetospheric physics, which will be helpful for future investigations of Ganymede's mini-magnetosphere and its auroral acceleration processes. For example, it will be interesting to relate the spatial distribution of the auroral emission to the in-situ magnetic field and plasma measurements by the Galileo spacecraft (e.g., Kivelson et al., 2002; Eviatar et al., 2000; Collinson et al., 2018). They will be useful for a comprehensive understanding of Ganymede and for the planing of future measurements taken by the JUICE spacecraft (Grasset et al., 2013) and for interpretation of observation by the Juno spacecraft (Bolton et al., 2017). These observations will help to provide an in depth understanding of Ganymede's magnetosphere and internal structure, but also its coupling to Jupiter (Bonfond et al., 2017) and its influence of Jupiter's magnetosphere. The sub-Alfvénic aurora of Ganymede - the only sub-Alfvénic one in the solar system - might also be a model case for sub-Alfvénic aurora on close-in exoplanets (e.g., Zarka, 2007; Saur et al., 2013, 2021).

548 5 Open Research

All data used in this study is available on the Mikulski Archive for Space Telescopes (MAST) of the Space Telescope Science Institute at http://archive.stsci.edu/hst/. The specific datasets used here are listed in Table 1 and can be accessed at: Moos (1997), McGrath (1999), Ford (2002), Saur (2010), Nichols (2013), and Grodent (2016).

553

The data for Figures 5 to 8 can be accessed at Marzok et al. (2022).

554 Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement

⁵⁵⁷ No. 884711).

558 References

- Alday, J., Roth, L., Ivchenko, N., Retherford, K. D., Becker, T. M., Molyneux,
 P., & Saur, J. (2017, November). New constraints on Ganymede's hy drogen corona: Analysis of Lyman-α emissions observed by HST/STIS
 between 1998 and 2014. Planetary and Space Science, 148, 35-44. doi:
- 10.1016/j.pss.2017.10.006
 Bhardwaj, A., & Gladstone, G. R. (2000, August). Auroral emissions of the giant planets. *Rev. Geophys.*, 38(3), 295-353.
- Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C.,
 Thorpe, R. (2017, November). The Juno Mission. Space Sci. Rev., 213(1-4), 5-37. doi: 10.1007/s11214-017-0429-6
- Bonfond, B., Grodent, D., Badman, S. V., Saur, J., Gérard, J.-C., & Radioti, A.
 (2017, August). Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics. *Icarus*, 292, 208-217. doi: 10.1016/j.icarus.2017.01.009
- ⁵⁷² Carnielli, G., Galand, M., Leblanc, F., Leclercq, L., Modolo, R., Beth, A., ... Jia,
 ⁵⁷³ X. (2019, September). First 3D test particle model of Ganymede's ionosphere.
 ⁵⁷⁴ *Icarus*, 330, 42-59. doi: 10.1016/j.icarus.2019.04.016
- ⁵⁷⁵ Clarke, J. T., Gérard, J.-C., Grodent, D., Wannawichian, S., Gustin, J., Connerney,
 ⁵⁷⁶ J., ... Kim, J. (2005, February). Morphological differences between Saturn's
 ⁵⁷⁷ ultraviolet aurorae and those of Earth and Jupiter. *Nature*, 433, 717-719.
- ⁵⁷⁸ Collinson, G., Paterson, W. R., Bard, C., Dorelli, J., Glocer, A., Sarantos, M.,
 ⁵⁷⁹ & Wilson, R. (2018, April). New Results From Galileo's First Flyby of
 ⁵⁸⁰ Ganymede: Reconnection-Driven Flows at the Low-Latitude Magnetopause
 ⁵⁸¹ Boundary, Crossing the Cusp, and Icy Ionospheric Escape. *Geophys. Res. Lett.*,
- 45, 3382-3392. doi: 10.1002/2017GL075487
- Dorelli, J. C., Glocer, A., Collinson, G., & Tóth, G. (2015, July). The role of the
 Hall effect in the global structure and dynamics of planetary magnetospheres:
 Ganymede as a case study. Journal of Geophysical Research (Space Physics),
 120, 5377-5392. doi: 10.1002/2014JA020951
- ⁵⁸⁷ Duling, S., Saur, J., & Wicht, J. (2014, June). Consistent boundary conditions at ⁵⁸⁸ nonconducting surfaces of planetary bodies: Applications in a new Ganymede

589	MHD model. Journal of Geophysical Research (Space Physics), 119, 4412-
590	4440. doi: 10.1002/2013JA019554
591	Eviatar, A., Strobel, D. F., Wolfven, B. C., Feldman, P., McGrath, M. A., &
592	Williams, D. J. (2001). Excitation of the Ganymede ultraviolet aurora.
593	Astrophys. J., 555, 1013-1019.
594	Eviatar, A., Williams, D. J., Paranicas, C., McEntire, R. W., Mauk, B. H., & Kivel-
595	son, M. G. (2000, March). Trapped Energetic electrons in the magnetosphere
596	of Ganymede. J. Geophys. Res., 105, 5547-5554. doi: 10.1029/1999JA900450
597	Fatemi, S., Poppe, A. R., Khurana, K. K., Holmström, M., & Delory, G. T. (2016,
598	May). On the formation of Ganymede's surface brightness asymmetries: Ki-
599	netic simulations of Ganymede's magnetosphere. Geophys. Res. Lett., $43(10)$,
600	4745-4754. doi: 10.1002/2016GL068363
601	Feldman, P. D., McGrath, M. A., Strobel, D. F., Moos, H. W., Retherford, K. D.,
602	& Wolven, B. C. (2000). HST/STIS ultraviolet imaging of polar aurora on
603	Ganymede. Astrophys. J., 555, 1085-1090.
604	Ford, H. (2002, July). Jovian Satellites. HST Proposal, https://archive.stsci
605	$.edu/proposal_search.php?mission=hst&id=12244.$
606	Grasset, O., Dougherty, M. K., Coustenis, A., Bunce, E. J., Erd, C., Titov, D.,
607	Van Hoolst, T. (2013, April). JUpiter ICy moons Explorer (JUICE): An ESA
608	mission to orbit Ganymede and to characterise the Jupiter system. Plane-
609	tary and Space Science, 78, 1-21. doi: 10.1016/j.pss.2012.12.002
610	Grodent, D. C. (2016, June). HST-Juno synergistic approach of Jupiter's magneto-
611	sphere and ultraviolet auroras. HST Proposal, https://archive.stsci.edu/
612	proposal_search.php?id=14634&mission=hst.
613	Hall, D. T., Feldman, P. D., McGrath, M. A., & Strobel, D. F. (1998, May). The
614	far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J., 499(5),
615	
616	Jia, X., Walker, R., Kivelson, M., Khurana, K., & Linker, J. (2008). Three-
617	dimensional MHD simulations of Ganymede's magnetosphere. J. Geo-
618	<i>phys. Res.</i> , 113, A06212.
619	Jia, X., Walker, R., Kivelson, M., Khurana, K., & Linker, J. (2009). Properties of
620	Ganymede's magnetosphere inferred from improved three-dimensional MHD
621	simulations. J. Geophys. Res., 114, A09209, doi:10.1029/2009JA014375.
622	Kivelson, M. G., Knurana, K. K., & Volwerk, M. (2002). The permanent and induc-
623	I've magnetic moments of Ganymede. <i>Icarus</i> , 157, 507-522.
624	Kivelson, M. G., Knurana, K. K., Walker, R. J., Russell, C. L., Linker, J. A., South-
625	wood, D. J., & Polanskey, C. (1990). A magnetic signature at 10: initial report from the Caliloo magnetometer. Science, 079 , 227,240
626	Knight S (1072) Davallel electric fields <i>Diamet Space Sci</i> 01 741
627	Kinght, S. (1975). Faraner electric fields. Funct. Space Sci., 21, 741.
628	sphere: 1. Time variabilities of the magnetic field topology. I. Coophus. Res
629	107 SMP 41.1 CitaD 1400
630	Krist I. F. Hook P. N. & Stochr. F. (2011 Sontember) 20 years of Hubble
631	Space Telescope optical modeling using Tiny Tim
632	ontical instrumentation engineers (snie) conference series (Vol. 8127)
634	10 1117/12 802762
635	Lamy I. Prangé B. Hansen K. C. Clarke I. T. Zarka P. Cecconi B.
635	Ballester G (2012 April) Earth-based detection of Uranus' aurorae Geo-
627	nhus Res Lett 39(7) L07105 doi: 10.1029/2012GL051312
638	
0.00	Leblanc, F., Oza, A. V., Leclerco, L., Schmidt, C., Cassidy, T., Modolo, R.
639	Leblanc, F., Oza, A. V., Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., Johnson, R. E. (2017, September). On the orbital variability of Ganymede's
639 640	Leblanc, F., Oza, A. V., Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., Johnson, R. E. (2017, September). On the orbital variability of Ganymede's atmosphere. <i>Icarus</i> , 293, 185-198. doi: 10.1016/j.icarus.2017.04.025
639 640 641	 Leblanc, F., Oza, A. V., Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., Johnson, R. E. (2017, September). On the orbital variability of Ganymede's atmosphere. <i>Icarus</i>, 293, 185-198. doi: 10.1016/j.icarus.2017.04.025 Liuzzo, L., Poppe, A. R., Paranicas, C., Nénon, O., Fatemi, S., & Simon, S. (2020).
639 640 641 642	 Leblanc, F., Oza, A. V., Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., Johnson, R. E. (2017, September). On the orbital variability of Ganymede's atmosphere. <i>Icarus</i>, 293, 185-198. doi: 10.1016/j.icarus.2017.04.025 Liuzzo, L., Poppe, A. R., Paranicas, C., Nénon, Q., Fatemi, S., & Simon, S. (2020, September). Variability in the Energetic Electron Bombardment of Ganymede.

644	10.1029/2020JA 028347
645	Lysak, R. L., & Lotko, W. (1996, March). On the kinetic dispersion relation for
646	shear Alfvén waves. J. Geophys. Res., 101 (A3), 5085-5094.
647	Marconi, M. L. (2007, September). A kinetic model of Ganymede's atmosphere.
648	<i>Icarus</i> , 190, 155-174, doi: 10.1016/i.icarus.2007.02.016
649	Marzok A Schlegel S Saur J Both L Grodent D Strobel D F & Bether-
650	ford K D (2022 May) Figure Data for "Mapping the Brightness of
651	Ganumede's Ultraviolet Aurora using Hubble Space Telescope Observations"
652	Zenodo Retrieved from https://doi.org/10.5281/zenodo.6564687 doi:
653	10.5281/zenodo 6564687
654	McGrath M (1999 July) IV Imaging of Europa & Ganumede: Unveiling Satel-
655	lite Aurora & Electrodynamical Interactions HST Proposal https://archive
656	stsci edu/proposal search php?mission=hst&id=9296
650	McCrath M A Jia X Betherford K D Feldman P D Strobel D F
657	ly Saur I (2013) Aurora on Canymode I Ceonhue Res 118
650	doi:10.1002/igra 50122
059	Molynouv P M Nichols I D Bannistor N P Bunco F I Clarko I T
660	Cowley S W H Paty C (2018 May) Hubble Space Telescope Ob
661	sorvations of Variations in Canymodo's Oxygen Atmosphere and Aurora
662	<i>Journal of Coonductical Research (Snace Physics)</i> 192(5) 3777-3703
663	$10\ 1020\ / 2018\ I\ \Delta\ 025243$
004	Molymoux P M Nichols I D Bocker T M Raut II & Retherford K D
665	(2020 September) Converde's For-Ultraviolet Reflectance: Constraining Im-
666	purities in the Surface Ice — Iowrnal of Geonbusical Research (Planets) 125(0)
667	$\rho = 0.6476$ doi: 10.1020/2020 IE006476
008	Moos H (1007 July) STIS Determination of OL Emissions from Canumeda
609	HST Proposal https://archive.stsci.edu/proposal search.php?mission=
670	hethid=8224
0/1	
(70)	Musacchio F. Saur, I. Both, L. Botherford, K. D. McCrath, M. A. Feldman
672	Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D. & Strobel, D. F. (2017, March), Morphology of Canymede's FUV auro-
672 673	Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals <i>Journal of Geophysical Research (Space Physics)</i> 122(3) 2855-2876
672 673 674	Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. <i>Journal of Geophysical Research (Space Physics)</i> , 122(3), 2855-2876. doi: 10.1002/2016JA023220
672 673 674 675	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer F. M. (1998 September). The sub-Alfvénic interaction of the Galilean
672 673 674 675 676	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Iovian magnetosphere. L Geophys. Res. 103(E9), 19843-
672 673 674 675 676 677	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866
672 673 674 675 676 677 678	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro-
672 673 674 675 676 677 678 679 680	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS
672 673 674 675 676 677 678 678 679 680	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal search php?mission=bst&id=14634
672 673 674 675 676 677 678 679 680 681 681	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty C. & Winglee B. (2004) Multi-fluid simulations of Canymede's magneto-
672 673 674 675 676 677 678 679 680 681 682	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto- sphere Geophys. Res. Lett. 31 L24806
672 673 674 675 676 677 678 679 680 681 682 683	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto- sphere. Geophys. Res. Lett., 31, L24806. Paty, C. & Winglee B. (2006). The role of ion cyclotron motion at Ganymede;
672 673 674 675 676 677 678 679 680 681 682 683 684	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto- sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett. 33
672 673 674 675 676 677 678 679 680 681 682 683 684 685 685	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto- sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106
672 673 674 675 676 677 678 679 680 681 682 683 684 685 685	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto- sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki C. Massetti S. Jia X. Mura A. Milillo A. Grassi D. Filac-
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 687	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto- sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filac- chione G. (2020 September). Kinetic Simulations of the Iovian Ener-
672 673 674 675 676 677 678 679 680 681 682 683 684 683 684 685 686 687 688	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto- sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filac- chione, G. (2020, September). Kinetic Simulations of the Jovian Ener- getic Ion Circulation around Ganymede Astrophys. I. 900(1), 74 doi:
672 673 674 675 676 677 678 679 680 681 682 683 684 685 684 685 686 687 688 689	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auro- ral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843- 19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auro- ras with COS and STIS. HST Proposal, https://archive.stsci.edu/ proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto- sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filac- chione, G. (2020, September). Kinetic Simulations of the Jovian Ener- getic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538.4357/aba94c
672 673 674 675 676 677 678 680 681 682 683 684 685 684 685 686 687 688 689 690	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843-19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auroras with COS and STIS. HST Proposal, https://archive.stsci.edu/proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto-sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filacchione, G. (2020, September). Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538-4357/aba94c Biley A. et al. (2017). STIS Instrument Handbook (Vol. Version 16.0). Baltimore:
672 673 674 675 676 677 678 680 681 682 683 684 685 686 685 686 687 688 689 690	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843-19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auroras with COS and STIS. HST Proposal, https://archive.stsci.edu/proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto-sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filacchione, G. (2020, September). Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538-4357/aba94c Riley, A., et al. (2017). STIS Instrument Handbook (Vol. Version 16.0). Baltimore: STScI
 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 622 	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103 (E9), 19843-19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auroras with COS and STIS. HST Proposal, https://archive.stsci.edu/proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magnetosphere. Geophys. Res. Lett., 31, L24806. Paty, C., Minglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filacchione, G. (2020, September). Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538-4357/aba94c Riley, A., et al. (2017). STIS Instrument Handbook (Vol. Version 16.0). Baltimore: STScI. Both L. Juybenko N. Gladstone G. R. Sur, L. Crodert, D. Bonford, P.
 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103 (E9), 19843-19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auroras with COS and STIS. HST Proposal, https://archive.stsci.edu/proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magnetosphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filacchione, G. (2020, September). Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538-4357/aba94c Riley, A., et al. (2017). STIS Instrument Handbook (Vol. Version 16.0). Baltimore: STScI. Roth, L., Ivchenko, N., Gladstone, G. R., Saur, J., Grodent, D., Bonfond, B., Betherford K. D. (2021 July) A sublimated water atmosphere on Canymede
672 673 674 675 676 677 678 680 681 682 683 684 685 688 689 690 691 692 693 694	 Musaccho, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843-19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auroras with COS and STIS. HST Proposal.https://archive.stsci.edu/proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto-sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filacchione, G. (2020, September). Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538-4357/aba94c Riley, A., et al. (2017). STIS Instrument Handbook (Vol. Version 16.0). Baltimore: STScI. Roth, L., Ivchenko, N., Gladstone, G. R., Saur, J., Grodent, D., Bonfond, B., Retherford, K. D. (2021, July). A sublimated water atmosphere on Ganymede detected from Hubble Space Telescope observations. Nature Astronomy. doi:
 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 606 	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843-19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auroras with COS and STIS. HST Proposal, https://archive.stsci.edu/proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magnetosphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filacchione, G. (2020, September). Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538-4357/aba94c Riley, A., et al. (2017). STIS Instrument Handbook (Vol. Version 16.0). Baltimore: STScI. Roth, L., Ivchenko, N., Gladstone, G. R., Saur, J., Grodent, D., Bonfond, B., Retherford, K. D. (2021, July). A sublimated water atmosphere on Ganymede detected from Hubble Space Telescope observations. Nature Astronomy. doi: 10.1038/s41550-021-01426-9
 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843-19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auroras with COS and STIS. HST Proposal, https://archive.stsci.edu/proposal_search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magneto-sphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filacchione, G. (2020, September). Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538-4357/aba94c Riley, A., et al. (2017). STIS Instrument Handbook (Vol. Version 16.0). Baltimore: STScI. Roth, L., Ivchenko, N., Gladstone, G. R., Saur, J., Grodent, D., Bonfond, B., Retherford, K. D. (2021, July). A sublimated water atmosphere on Ganymede detected from Hubble Space Telescope observations. Nature Astronomy. doi: 10.1038/s41550-021-01426-9 Roth, L., Saur, J., Retherford, K. D., Feldman, P. D. & Strobel D. F. (2014 Jan-
 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 	 Musacchio, F., Saur, J., Roth, L., Retherford, K. D., McGrath, M. A., Feldman, P. D., & Strobel, D. F. (2017, March). Morphology of Ganymede's FUV auroral ovals. Journal of Geophysical Research (Space Physics), 122(3), 2855-2876. doi: 10.1002/2016JA023220 Neubauer, F. M. (1998, September). The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res., 103(E9), 19843-19866. Nichols, J. (2013, October). Observing Ganymede's atmosphere and auroras with COS and STIS. HST Proposal, https://archive.stsci.edu/proposal.search.php?mission=hst&id=14634. Paty, C., & Winglee, R. (2004). Multi-fluid simulations of Ganymede's magnetosphere. Geophys. Res. Lett., 31, L24806. Paty, C., & Winglee, R. (2006). The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett., 33, L10106. Plainaki, C., Massetti, S., Jia, X., Mura, A., Milillo, A., Grassi, D., Filacchioe, G. (2020, September). Kinetic Simulations of the Jovian Energetic Ion Circulation around Ganymede. Astrophys. J., 900(1), 74. doi: 10.3847/1538-4357/aba94c Riley, A., et al. (2017). STIS Instrument Handbook (Vol. Version 16.0). Baltimore: STScI. Roth, L., Ivchenko, N., Gladstone, G. R., Saur, J., Grodent, D., Bonfond, B., Retherford, K. D. (2021, July). A sublimated water atmosphere on Ganymede detected from Hubble Space Telescope observations. Nature Astronomy. doi: 10.1038/s41550-021-01426-9 Roth, L., Saur, J., Retherford, K. D., Feldman, P. D., & Strobel, D. F. (2014, January). A phenomenological model of Io's UV aurora based on HST/STIS ob-

699	servations. <i>Icarus</i> , 228, 386-406. doi: 10.1016/j.icarus.2013.10.009
700	Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath,
701	M. A., & Nimmo, F. (2014, January). Transient Water Vapor at Europa's
702	South Pole. Science, 343, 171-174. doi: 10.1126/science.1247051
703	Saur, J. (2010, September). Mapping Ganymede's time variable aurora in the
704	search for a subsurface ocean. HST Proposal, https://archive.stsci.edu/
705	proposal_search.php?mission=hst&id=13328.
706	Saur, J., Duling, S., Roth, L., Jia, X., Strobel, D. F., Feldman, P. D., Hartkorn,
707	O. (2015, March). The search for a subsurface ocean in Ganymede with Hub-
708	ble Space Telescope observations of its auroral ovals. Journal of Geophysical
709	Research (Space Physics), 120, 1715-1737. doi: 10.1002/2014JA020778
710	Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013, April).
711	Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interac-
712	tions. Astron. Astrophys., 552, A119. doi: 10.1051/0004-6361/201118179
713	Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., Kot-
714	siaros, S. (2018, November). Wave-Particle Interaction of Alfvén Waves
715	in Jupiter's Magnetosphere: Auroral and Magnetospheric Particle Accelera-
716	tion. Journal of Geophysical Research (Space Physics), 123, 9560-9573. doi:
717	10.1029/2018JA025948
718	Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (1999, November).
719	Three-dimensional plasma simulation of Io's interaction with the Io plasma
720	torus: Asymmetric plasma flow. J. Geophys. Res., 104 (A11), 25105-25126.
721	Saur, J., Willmes, C., Fischer, C., Wennmacher, A., Roth, L., Youngblood, A.,
722	Reiners, A. (2021, November). Brown dwarfs as ideal candidates for
723	detecting UV aurora outside the Solar System: Hubble Space Telescope
724	observations of 2MASS J1237+6526. Astron. Astrophys., 655, A75. doi:
725	10.1051/0004- $6361/202040230$
726	Strobel, D. F. (2005, January). Comparative Planetary Atmospheres of the Galilean
727	Satellites. Highlights of Astronomy, 13, 894.
728	Tóth, G., Jia, X., Markidis, S., Peng, I. B., Chen, Y., Daldorff, L. K. S., Dorelli,
729	J. C. (2016, February). Extended magnetohydrodynamics with embedded
730	particle-in-cell simulation of Ganymede's magnetosphere. Journal of Geophysi-
731	cal Research (Space Physics), 121, 1273-1293. doi: 10.1002/2015JA021997
732	Zarka, P. (2007, April). Plasma interactions of exoplanets with their parent star and
733	associated radio emissions. <i>Planetary and Space Science</i> , 55, 598-617. doi: 10
734	.1016/j.pss.2006.05.045
735	Zhou, H., Tóth, G., Jia, X., & Chen, Y. (2020, August). Reconnection-Driven Dy-
736	namics at Ganymede's Upstream Magnetosphere: 3-D Global Hall MHD and
737	MHD-EPIC Simulations. Journal of Geophysical Research (Space Physics),
738	125(8), e28162. doi: $10.1029/2020$ JA028162
739	Zhou, H., Tóth, G., Jia, X., Chen, Y., & Markidis, S. (2019, July). Embedded Ki-
740	netic Simulation of Ganymede's Magnetosphere: Improvements and Inferences.
741	Journal of Geophysical Research (Space Physics), 124(7), 5441-5460. doi:
742	10.1029/2019JA026643

Figure 3. Selected observations of Ganymede's auroral emission at OI 1356 Å showing Ganymede's leading, trailing, sub-Jovian and anti-Jovian side. The auroral ovals are closer to the equator on the leading side compared to the trailing side, but appear continuous in both cases. In contrast, on the sub-Jovian and anti-Jovian side the aurora appears to be interrupted near 0° and 180° (meridians as solid white lines). The individual images of this Figure have been generated from the original HST data. The observations at the anti-jovian geometry have not been published before, while observations at other orbital longitudes have already been displayed in the work discussed in Section 1.

Figure 4. Simplified illustration of how pixels are mapped from the processed disk array (left) to a Mercator map (right). The examples shows a disk viewed at central meridian of 180° west longitude. After calculating the latitudes and longitudes of each pixel edge, the Rayleigh values are inserted into the pixel corresponding to the respective region.

Figure 5. Main brightness map at 1356 Å that incorporates all 46 exposures from Table 1 (top) and the corresponding signal-to-noise map (bottom).

Figure 6. Comparison of the evaluated 46 exposures separated by Ganymede's magnetic latitude when it is above $(\theta_{mag} > 6^{\circ})$, inside $(|\theta_{mag}| \le 6^{\circ})$ or below $(\theta_{mag} < -6^{\circ})$ the Jovian current sheet.

Figure 7. Average auroral brightness (based on all available exposures) for the northern (top, red) and southern (bottom, blue) ovals as a function of longitude. The average brightness is approximated by sinusoidal based fit functions (also red and blue). The signal-to-noise ratio for the averaged regions is plotted in green. The center panel is a replot of the main brightness map (Figure 5) and includes as red and blue bands the oval regions used to calculate the values in the top and bottom panel (more details see Section 3.3). Regions with a width of 36° longitude used to calculate average peak and faintest emission are indicated by vertical bars in the top and bottom panels, and the points with error bars indicate average values in these longitude ranges (Table 3).

Figure 8. Mean brightness as function of latitude for the downstream, Jovian-facing side, the upstream side and the anti-Jovian side (in red). For the mean brightness, latitudinal bands within a width of three bins have been used. The curves in green display the associated SNR. In blue a Gaussian fit to the mean brightness within the northern and southern hemispheres is overlaid.