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Abstract

Approximating the three-dimensional structure of a fault network at depth in the subsurface is key for robust estimates of

fluid flow. However, only observations of two-dimensional outcrops are often available. To shed light on the relationship

between two- and three-dimensional measurements of fracture networks, we examine data from a unique set of eleven X-ray

synchrotron triaxial compression experiments that reveal the evolving three-dimensional fracture network throughout loading.

Using machine learning, we derive relationships between the two- and three-dimensional measurements of three properties

that control fluid flow: the porosity, and volume and tortuosity of the largest fracture at a particular differential stress step.

The models predict the porosity and volume of the largest fracture with R2 scores of >0.99, but predict the tortuosity with

maximum R2 scores of 0.68. To test the assumption that different rock types may require different equations between the two-

and three-dimensional properties, we develop models for both individual rock types (granite, monzonite, marble, sandstone) and

all of the experiments. Models developed using all of the experiments perform better than models developed for individual rock

types, suggesting fundamental similarities between fracture networks in rocks often analyzed separately. Models developed with

several parallel two-dimensional observations perform similarly to models developed with several perpendicular two-dimensional

observations. When the models are developed with statistics of the two-dimensional observations, the models primarily depend

on the mean and median when they predict the porosity, and minimum when they predict the volume and tortuosity.
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Key Points: 9 

• Machine learning predicts three-dimensional fracture properties from two-dimensional 10 
measurements. 11 

• Model performance does not depend on the orientation of the two-dimensional 12 
observations relative to the maximum compression direction. 13 

• Models developed with several rock types perform better than models developed from 14 
individual rock types.   15 
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Abstract 16 
Approximating the three-dimensional structure of a fault network at depth in the subsurface is 17 
key for robust estimates of fluid flow. However, only observations of two-dimensional outcrops 18 
are often available. To shed light on the relationship between two- and three-dimensional 19 
measurements of fracture networks, we examine data from a unique set of eleven X-ray 20 
synchrotron triaxial compression experiments that reveal the evolving three-dimensional fracture 21 
network throughout loading. Using machine learning, we derive relationships between the two- 22 
and three-dimensional measurements of three properties that control fluid flow: the porosity, and 23 
volume and tortuosity of the largest fracture at a particular differential stress step. The models 24 
predict the porosity and volume of the largest fracture with R2 scores of >0.99, but predict the 25 
tortuosity with maximum R2 scores of 0.68. To test the assumption that different rock types may 26 
require different equations between the two- and three-dimensional properties, we develop 27 
models for both individual rock types (granite, monzonite, marble, sandstone) and all of the 28 
experiments. Models developed using all of the experiments perform better than models 29 
developed for individual rock types, suggesting fundamental similarities between fracture 30 
networks in rocks often analyzed separately. Models developed with several parallel two-31 
dimensional observations perform similarly to models developed with several perpendicular two-32 
dimensional observations. When the models are developed with statistics of the two-dimensional 33 
observations, the models primarily depend on the mean and median when they predict the 34 
porosity, and minimum when they predict the volume and tortuosity. 35 

Plain Language Summary 36 

A fundamental problem in geoscience is extrapolating two-dimensional observations to three-37 
dimensional systems. For example, we may directly observe the length and width of a fracture 38 
where it intersects the Earth’s surface. Occasionally we may be able to find multiple two-39 
dimensional observations of the same fracture network. Attempts to simulate three-dimensional 40 
fluid flow using two-dimensional systems have provided incorrect estimates of the true 41 
permeability. Thus, to estimate the dynamics of fluid flow through a fault network we must 42 
interpolate and/or extrapolate from two-dimensional observations to approximations of three-43 
dimensional systems. Here, we use machine learning to estimate three-dimensional 44 
characteristics of fracture networks that control fluid flow from two-dimensional observations. In 45 
situ X-ray tomography triaxial compression experiments provide unparalleled access to both the 46 
three- and two-dimensional observations as the rock experiences increasing differential stress, 47 
and develops more fractures. The work provides insight into the fundamental similarities 48 
between fracture network development in different rock types, into the feasibility of developing 49 
equations between two- and three-dimensional properties that control fluid flow, and into the 50 
statistics of the two-dimensional property that are most beneficial to predicting the three-51 
dimensional properties. 52 

Keywords: fracture network; fluid flow; triaxial compression; granite; sandstone; machine 53 
learning 54 

1 Introduction 55 
Estimating characteristics of the three-dimensional structure of a tectonic system or fault 56 

network from sparse, two-dimensional data is a key aspect of many field analyses (e.g., Moore et 57 
al., 1990; Gueting et al., 2018), scaled physical experiments (e.g., Sassi et al., 1993; Dominguez 58 
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et al., 2000; Tong et al., 2014), and laboratory deformation experiments (e.g., Bobet & Einstein, 59 
1998; Cao et al., 2020). Constraining the geometry of fracture networks in three-dimensions in 60 
the subsurface is critical to robust assessments of seismic hazard (e.g., Kozłowska et al., 2018), 61 
fluid flow (e.g., Auradou et al., 2005), and thus potential for CO2 storage (e.g., Iding & Ringrose, 62 
2010; Luhmann et al., 2017). However, the process of reconstructing three-dimensional fracture 63 
geometries from two-dimensional data is often qualitative, and rarely formalized with 64 
benchmarks to assess the accuracy of such reconstructions (e.g., Caumon et al., 2009; Lei et al., 65 
2017). 66 

To reconstruct three-dimensional data from two-dimensional measurements, previous 67 
analyses have relied on serial sectioning (e.g., Wei et al., 2019) and sub-sampling two-68 
dimensional slices (Karimpouli & Tahmasebi, 2016). Other analyses have used analytical and 69 
statistical methods to estimate three-dimensional values (e.g., Roberts et al., 1997; Yeong & 70 
Torquato, 1998; Manwart & Hilfer, 1999; Keehm et al., 2004; Lei et al., 2015; Saxena & Mavko, 71 
2016). Such statistical methods measure properties, such as porosity, in two-dimensional images, 72 
and then generate three-dimensional systems so that the statistics of the given property (e.g., 73 
porosity) match the measured three-dimensional statistics. While these methods can provide 74 
reasonable estimates of some properties, they struggle to accurately capture the connectivity of 75 
pore and fracture networks in three-dimensions (Hazlett, 1997; Manwart et al., 2000; Øren & 76 
Bakke, 2002). Process-based reconstruction provides an alternative method of reconstruction that 77 
can more closely approximate the connectivity of the pore network in sandstone than statistical 78 
reconstruction (e.g., Bakke & Øren, 1997; Øren & Bakke, 2002). However, this method 79 
simulates the packing of grains and subsequent processes, such as compaction and diagenesis, 80 
that produce sandstones, for example, and thus cannot be applied to rocks that do not form with 81 
this process, such as granite (e.g., Dong & Blunt, 2009). 82 

Due to the importance of fracture networks on fluid flow, recent studies have used 83 
machine learning to predict the permeability of synthetic porous media (Tian et al., 2020; Santos 84 
et al., 2020), and of natural rock cores, including sandstone, carbonate, and limestone (Sudakov 85 
et al., 2019; Kamrava et al., 2020; Elmorsy et al., 2022). This work has produced models that can 86 
predict the permeability of granular, porous rocks with strong positive correlations between the 87 
measured and predicted permeability. However, this work did not attempt to predict the 88 
permeability of rocks with more heterogeneous fracture networks, such as granite. It may be 89 
more difficult to estimate the permeability of rocks that contain more heterogeneous fracture 90 
networks, with a wider range of fracture lengths and spacing between fractures, than more 91 
homogeneous rocks. Moreover, previous work focused on nominally intact rocks, rather than 92 
rocks that had undergone some differential stress loading. In the field, the volumes of crust with 93 
the largest permeabilities may tend to be those that experienced some inelastic deformation, such 94 
as the highly fractured damage zone adjacent to the principal slip zone of faults (e.g., Mitchell & 95 
Faulkner, 2012). Consequently, estimating the permeability of volumes of the crust with fracture 96 
networks that developed due to increasing differential stress is critical for robust predictions of 97 
fluid flow.  98 
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 99 
Figure 1. Example images of the fracture and pore networks in three-dimensional volumes (first 100 
column), two-dimensional vertical slices (second and third columns), and two-dimensional 101 
horizontal slices (fourth column) in four experiments: a) monzonite #5, b) granite #4, c) marble 102 
#2, and d) sandstone #2. These scans were acquired immediately preceding macroscopic failure, 103 
after the initially intact rock was loaded to failure. The key goal of the present study is to predict 104 
the three-dimensional properties of fracture networks from two-dimensional observations. 105 
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In order to shed light on the relationships between two- and three-dimensional 106 
measurements of the fracture networks within homogeneous and heterogeneous rocks subjected 107 
to increasing differential stress, we examine data from eleven synchrotron X-ray 108 
microtomography triaxial compression experiments performed on Fontainebleau sandstone, 109 
Westerly granite, quartz monzonite, and Carrara marble (Figure 1). This data set is perhaps the 110 
most comprehensive accumulation of two- and three-dimensional observations of fracture 111 
networks that developed during triaxial compression deformation experiments with a wide range 112 
of rock types. In these experiments, we systematically increase the differential stress on the rock 113 
cores until the rocks fail, and acquire X-ray tomograms (i.e., scans) after each increase of 114 
differential stress (Figure 2). We derive relationships between the two- and three-dimensional 115 
measurements of three properties that control the fluid flow: the porosity, and the volume and 116 
tortuosity of the largest fracture in the network at a particular differential stress step. We build 117 
these relationships using two machine learning algorithms: gradient boosting and linear 118 
regression. In order to constrain the feasibility of deriving an equation between these two- and 119 
three-dimensional properties, we compare the ability of the machine learning models to predict 120 
their values. We systematically examine how much data (e.g., number of two-dimensional slices) 121 
is required to make accurate estimates of the three-dimensional property, and whether the 122 
orientation of the two-dimensional slices controls the model success. Comparing the 123 
performance of the models developed with slices of various orientations sheds light on the most 124 
appropriate orientation of thin-sections in natural rock cores with varying mechanical structures, 125 
including low porosity crystalline rocks and porous granular rocks, and the best type of two-126 
dimensional observations to gather in the field. We develop models for both individual rock 127 
types (granite, monzonite, marble, and sandstone) and all of the experiments combined in order 128 
to test the assumption that different rock types may require different equations between the two- 129 
and three-dimensional property. We then develop models using the statistics of sets of two-130 
dimensional observations in order to identify the statistics that may be the most useful when 131 
predicting the three-dimensional property. This work thus provides insight into 1) the 132 
predictability of different fracture network properties, 2) the amount and type of data required for 133 
successful estimates, and 3) the similarities of the relationships between two- and three-134 
dimensional properties in different rock types. 135 
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 136 

Figure 2. Example images of the three-dimensional and two-dimensional fracture networks from 137 
early in loading until immediately preceding macroscopic failure in two experiments: monzonite 138 
#5 (a-c), and marble #2 (d-f). The differential stress acting on the rocks, 𝜎!, increases from the 139 
top to the bottom of the figure. 140 

2 Methods 141 

2.1 Experimental conditions 142 

We performed eleven triaxial compression experiments at beamline ID19 at the European 143 
Synchrotron and Radiation Facility, Grenoble, France. In these experiments, we insert one 10 144 
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mm tall and 4-5 mm diameter cylinder rock core in the Hades triaxial compression apparatus 145 
(Renard et al., 2016) installed on the beamline. The rock cylinders have different diameters so 146 
that the cores fail before the applied axial stress reaches the limit of the Hades apparatus (200 147 
MPa for 5 mm diameter samples, and 312 MPa for 4 mm diameter samples). We then impose a 148 
confining stress (5-35 MPa) using pressurized oil against the jacket surrounding each core 149 
sample (Table 1), and increase the axial stress in steps of 0.5-5 MPa, with smaller steps closer to 150 
failure, until the rock fails in a sudden stress drop (Figure S1), at ambient temperature 151 
conditions. After each increase in axial stress, we acquire an X-ray scan within 1.5 minutes while 152 
the rock is under load inside the Hades apparatus. Thus, the total number of X-ray scans acquired 153 
in an experiment depends on the chosen set of axial stress steps, and the stress conditions at 154 
which a rock fails, producing 38-136 scans for a given experiment (Table 1). 155 

We deformed four rock types: Westerly granite, quartz monzonite, Carrara marble, and 156 
Fontainebleau sandstone. We analyze the relationship between the two- and three-dimensional 157 
properties of the fracture networks of these rocks because they represent endmembers of fracture 158 
network properties. Westerly granite and monzonite are low-porosity crystalline rocks dominated 159 
by interlocking quartz, feldspar, and mica crystals. The initial porosity of the monzonite and 160 
granite is lower than 1%. Carrara marble is a low porosity metamorphic rock that consists of 161 
calcite grains. Carrara marble has an initial porosity of about 0.2%, and grain sizes from 100-200 162 
µm (e.g., Rutter, 1972; Malaga-Starzec et al., 2002). Fontainebleau sandstone is comprised of 163 
cemented quartz grains. These Fontainebleau sandstone cores have a mean grain size of 250 µm 164 
and higher initial porosity than the marble: 5.5-7% (measured using the X-ray tomography 165 
images), and 6±1% (measured using imbibition with water) (Renard et al., 2018). 166 

 167 

Experiment 
Core diameter 
(mm) 

Confining 
stress (MPa) 

Number of 
scans 

Experiment 
abbreviation 

Westerly granite #1 4 5 38 WG01 
Westerly granite #2 4 5 27 WG02 
Westerly granite #4 4 10 53 WG04 
monzonite #3 4 20 61 MONZ03 
monzonite #4 4 35 62 MONZ04 
monzonite #5 4 25 76 MONZ05 
Carrara marble #1 5 20 39 M8_1 

Carrara marble #2 5 25 44 M8_2 
Fontainebleau sandstone #1 5 20 136 FBL01 
Fontainebleau sandstone #2 5 10 43 FBL02 
Fontainebleau sandstone #3 5 10 51 FBL03 
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Table 1. Experimental conditions of the eleven experiments. The number of scans is the total 168 
number of scans acquired throughout each complete experiment. 169 

2.2. Data extraction 170 

This analysis uses properties of the fracture networks identified in the X-ray tomograms. 171 
Following the experiment, we reconstruct the acquired radiographs into three-dimensional 172 
volumes that are 1600x1600x1600 voxels. One side length of a voxel is 6.5 µm. During 173 
reconstruction, we apply several corrections to remove noise, such as ring artefacts. We then 174 
remove remaining noise in the three-dimensional data using the image analysis software 175 
Avizo3DTM, including the application of a non-local means filter (Buades et al., 2005). Using 176 
these three-dimensional volumes, we segment the solid rock from the pores and fractures. We 177 
use an algorithm similar to Otsu’s thresholding technique to identify a global threshold between 178 
the solid material and the fractures and pores (McBeck et al., 2021). This thresholding technique 179 
is robust to noise (McBeck et al., 2021) and produces segmented scans with porosity similar to 180 
measured values (Renard et al., 2018). 181 

Because we aim to predict three-dimensional properties from two-dimensional 182 
measurements, we only consider a subset of the data so that the rounded edges of the rock 183 
cylinders do not influence the two-dimensional measurements. We only extract data within a 184 
rectangular prism at the center of the core, shown by the black rectangles in Figure 3. The size 185 
of the base of the prism depends on the width of the rock core. We set the positions of the sides 186 
of the base to "

#
− "

$
 to "

#
+ "

$
, where w is the width of the core. 187 

We test the influence of extracting the two-dimensional data along different orientations 188 
in order to constrain the best method of extracting cross sections of natural rock cores. We test 189 
four different methods of extracting two-dimensional slices: 1) acquiring horizontal slices along 190 
the vertical axis (z-axis and parallel to the maximum compression direction) (Figure 3a), 2) 191 
acquiring vertical slices along one of the horizontal axes (Figure 3b), 3) acquiring orthogonal 192 
vertical slices along both horizontal axes (Figure 3c), and 4) acquiring horizontal and vertical 193 
slices. Consequently, the area of the rock core captured in each method of slice extraction differs. 194 
We chose to compare slices of different areas in order to mirror the method of cutting natural 195 
rock cores. 196 

We also test the influence of the amount of data provided to the models on the 197 
predictability of the three-dimensional properties. We vary the number of slices provided to the 198 
models from one to twenty slices, as well as all of the slices within the black rectangles shown in 199 
Figure 3. For the results of models trained on one slice, the methods of extraction that use 200 
multiple planes use one slice along each orientation, or two in total. When we take one slice, we 201 
use the slice within the center of the core, in either the horizontal or the vertical direction. When 202 
we take multiple slices, the slices are equally spaced throughout the rectangular prism (Figure 203 
3). 204 

For each slice, and corresponding rectangular prism, at each differential stress step of 205 
each experiment, we calculate three properties. We focus on properties that control fluid flow 206 
within fracture networks: the porosity, the volume/area of the largest fracture, and the geometric 207 
tortuosity of the largest fracture. Note, we identify the largest fracture in the three-dimensional 208 
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data, and the largest fracture in each slice of the two-dimensional data separately. Consequently, 209 
the largest fracture identified in the two- and three-dimensional data at a given stress step of a 210 
given experiment may not be the same fracture. The geometric tortuosity is the ratio of the length 211 
of the true path between end points to the linear distance between end points (Figure S2). Here, 212 
we identify the end points of fractures as the locations of the fractures at the maximum and 213 
minimum z-coordinates. Thus, our tortuosity measurements reflect the path that a fluid must 214 
travel parallel to the maximum compression direction, and the long axis of the rock core. 215 
Because it is non-trivial to calculate tortuosity, we benefit from the Matlab function 216 
bwdistgeodesic, which calculates the distance of the true path between two points in two- and 217 
three-dimensions. 218 

 219 

Figure 3. Sketch of the method of extracting the two-dimensional slices: horizontal slices within 220 
the x-y plane (a), vertical slices within the z-x plane (b), and orthogonal vertical slices, within the 221 
z-x plane and z-y plane (c). The z-axis is parallel to the maximum compression direction and 222 
vertical. We select the slices within a rectangular region (black) so that the cylindrical boundary 223 
of the rock core does not influence the calculated properties. When we take multiple slices, the 224 
slices are equally spaced throughout the core. 225 

While the porosity considers all of the fractures in a particular slice or volume, the other 226 
two properties only consider the largest (most volumetric) fracture in the data. We focus on only 227 
the largest fracture for these properties, rather than all the fractures, because the volume and 228 
tortuosity of the largest fracture controls fluid flow. Following these calculations, we attain three 229 
datasets for each experiment corresponding to the three fracture network properties. Each of 230 
these datasets includes one three-dimensional measurement at each differential stress step of the 231 
experiment, and several hundred two-dimensional measurements: all of the horizontal slices 232 
along the vertical axis, and all of the vertical slices along both horizontal axes. Consequently, the 233 
data is arranged as a table where each row represents one differential stress step of a particular 234 
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experiment, and the columns include the three-dimensional measurement, and all of the two-235 
dimensional measurements. 236 

2.3. Machine learning analysis 237 

We design the machine learning models to predict three-dimensional properties from 238 
two-dimensional measurements of the porosity, area of the largest fracture, and tortuosity of the 239 
largest fracture. We test the influence of combining different rock types on the predictability of 240 
the three-dimensional values. To combine data from multiple experiments, we append the data 241 
sets described in the previous section. For example, one column in the data table contains the 242 
two-dimensional value of the property at the horizontal slice at the position 600 voxels above the 243 
base of the rock core throughout all of the scans acquired in all of the experiments included in 244 
the data. Due to the different number of scans acquired in each experiment, the dataset of each 245 
experiment contains different numbers of rows, or samples (Figure S3). To account for these 246 
varying number of scans, and ensure that the properties of one experiment do not dominate the 247 
other experiments, we extract the same numbers of samples of each experiment for the models 248 
that include combinations of experiments. Thus, for the models that use data from all of the 249 
experiments, we only take the number of samples from each experiment that match that lowest 250 
number of samples (the granite #1 experiment) (Table 1, Figure S3). Because the fracture 251 
networks grow with increasing loading, we select data from the end of the experiment. 252 

We divide the data of the combined experiments into training and testing data sets such 253 
that none of the data in the training set includes data in the testing set. We divide the data by 254 
rows, so the training and testing datasets are unique in time (differential stress steps) for each 255 
experiment. Because the performance of the models varies depending on how we split the 256 
training and testing data sets, we report the performance of ten models that only differ in how the 257 
training and testing data sets are randomly split. We use 30% of the data for testing, and 70% of 258 
the data for training. Dividing the data by continuous blocks of time into training and testing 259 
datasets does not produce lower model performance than dividing the data randomly by time. 260 

We use both gradient boosting models (XGBoost) and linear regression models. We 261 
chose XGBoost regression models because of its efficiency and accuracy (e.g., Friedman, 2001; 262 
Bühlmann & Yu, 2003; Chen & Guestrin, 2016). We scale the features using the RobustScaler of 263 
SciKit learn, which scales the data using the 25th and 75th quantile of the data (Pedregosa et al., 264 
2011). We perform a grid search over the hyperparameter-space to find the best set of 265 
hyperparameters (Lundberg & Lee, 2017). 266 

We also apply a simpler algorithm, linear regression, because of the interpretability of the 267 
parameters of the trained models. Training linear regression models produces a set of coefficients 268 
with one coefficient for each feature, or two-dimensional slice in this analysis, so that the three-269 
dimensional property is estimated as a linear combination of the features weighted by each 270 
coefficient. From these coefficients, we aim to derive a function between the two- and three-271 
dimensional properties. For the models that predict the fracture volume and porosity, we force 272 
the y-intercept of the regression model to intersect the origin because we suspect that two-273 
dimensional measurements of volume or porosity that are near zero should produce three-274 



manuscript submitted to Water Resources Research 

11 

dimensional values of zero. For these models, we do not scale the features so that the coefficients 275 
of the linear regression models are more interpretable. 276 

We then develop gradient boosting models using the statistics of sets of two-dimensional 277 
observations. In particular, we subdivide each scan into sets of 20 vertical two-dimensional 278 
slices, and then calculate a range of statistics on the two-dimensional values measured in each 279 
slice, thereby producing a set of statistics for each group of 20 vertical slices of each scan. These 280 
statistics include: the mean, standard deviation, coefficient of variation, skewness, kurtosis, 281 
minimum, maximum, and the 10th, 25th, 50th, 75th, and 90th percentile of the dataset. Changing 282 
the number of slices within each group from 10 to 50 does not influence the key results. We only 283 
focus on the results of models developed with sets of vertical slices because our analyses indicate 284 
that the slice orientation does not systematically control the model performance, as described in 285 
the Results section. Similar to the other analyses, we vary the amount of data provided to the 286 
models from 10% to 90%. We randomly select ten different portions of the data with the given 287 
percentage and then develop ten different models with these varying parts of the data. 288 

Because in this analysis we aim to determine which statistic of the two-dimensional 289 
observations provides the most useful information, we examine the impact of each feature (e.g., 290 
statistic) on the predictions of the model using a widely used metric: Shapely Additive 291 
Explanations (SHAP) (e.g., Lundberg & Lee, 2017). We compare the mean absolute value of the 292 
SHAP (mean |SHAP|) of each feature across all of the samples, and so focus on the overall 293 
influence of that feature on the model prediction. Similar to the other machine learning analyses, 294 
we divide the data into training and testing datasets by time such that none of the scans that occur 295 
in the training dataset occur in the testing dataset. Because we develop ten different models for 296 
each model of varying amounts of data, we calculate a normalized importance of the mean 297 
|SHAP| value, 𝑠, as 𝑠/max	(𝑠) for each model, 𝑠̂. We weight this normalized importance by the 298 
𝑅# score of the model and then find the mean of these values across all the models, 𝑠" =299 
∑(𝑅#𝑠̂)/𝑛, where n is the number of models, so that more accurate models (with higher 𝑅#) will 300 
have a greater influence on the results than less accurate models. The distribution of  𝑠" thus 301 
indicates the relative importance of each feature on the model predictions across several models. 302 

3 Results 303 

3.1. Predicting three-dimensional properties with gradient boosting models 304 

First, we compare the performance of the gradient boosting models (XGBoost) developed 305 
for all of the experiments combined together. To assess model performance, we compare the R2 306 
scores of the models, which represent the correlation coefficients between the observed and 307 
predicted three-dimensional values (Figure 4). High positive R2 scores (0.8-1.0) indicate strong 308 
correlations between the observed and predicted values, while scores 0.4-0.7 indicate moderate 309 
correlations, and scores <0.4 indicate weak or non-existent correlations. To identify the best 310 
approach to rock core thin-section extraction and field analyses of fracture networks, we 311 
compare the influence of extracting slices from different orientations relative to the maximum 312 
compression direction, including horizontal and vertical slices, orthogonal vertical slices, and 313 
both horizontal and vertical slices (e.g., Figure 3). To assess the influence of the number of two-314 
dimensional observations on the predictions, we also compare the performance of models 315 
developed with varying amounts of data, from one to twenty slices in increments of two slices, 316 
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and also all of the slices. Figure 4 shows the mean ± standard deviation of the R2 scores of the 317 
ten models developed for each fracture network property, and number and type of data, which 318 
only differ in how the training and testing are split. 319 

The models that predict the porosity and volume perform better than the models that 320 
predict the tortuosity (Figure 4a-d). For example, the mean R2 score of the models developed 321 
with one horizontal and one vertical slice are: 1) 0.99 (porosity), 2) 0.94 (volume), and 3) 0.28 322 
(tortuosity). Even when the models have access to all of the slices, they can only predict the 323 
tortuosity with a mean R2 score of 0.68, compared to the R2 scores near 1.0 for the other 324 
properties (Figure 4, Figure 5). This trend holds regardless of the orientation of the extracted 325 
slices. This result suggests that it may be more difficult to derive a function between the two- and 326 
three-dimensional tortuosity compared to the other properties. 327 

Increasing the amount of data generally increases the performance of the models, as 328 
expected (Figure 4, Figure 5). However, the models that predict the porosity using all of the 329 
rock types perform exceptionally well using only one slice (Figure 4). Similarly, the models that 330 
predict the volume of the largest fracture perform very well using only about four slices, 331 
regardless of the method of slice extraction. Consequently, the difference in the model 332 
performance when using 20 slices or one slice (porosity) to four slices (volume) is minor (<0.005 333 
of the R2 score). The influence of the amount of data on the model performance is most 334 
significant for the property that the models struggle to predict: the tortuosity. Thus, extracting 335 
many two-dimensional slices of a system is most beneficial when estimating the tortuosity and 336 
related properties, such as the permeability. In contrast, when estimating the porosity or volume 337 
of the largest fracture, only one to four two-dimensional measurements may be required for 338 
reasonably accurate estimates. 339 

In contrast to expectations, the different methods of slice extraction produce models that 340 
perform similarly to each other when they use more than one slice of the data (Figure 4, Figure 341 
5a-c). We expected that vertical slices (parallel to the maximum compression direction) may 342 
produce more accurate models than horizontal slices because they sample a larger area, and 343 
therefore produce stronger positive correlations between the two- and three-dimensional 344 
properties (Text S1, Figure S4, Figure S5, Figure S6). In agreement with these expectations, 345 
when the models use one slice, horizontal slices produce less successful models than vertical 346 
slices for the models that predict the porosity and volume. Both the horizontal and vertical slices 347 
produce poorly performing models with 0.2-0.3 R2 scores when the models predict the tortuosity 348 
(Figure 5c). We expected that models developed with two orthogonal vertical slices or both 349 
vertical and horizontal slices may perform better than models developed with only horizontal or 350 
vertical slices because they sample more area, and at perpendicular orientations. In contrast to 351 
this idea, the models that use orthogonal vertical slices or both horizontal and vertical slices do 352 
not perform significantly better than the other models. The comparable performance of the 353 
models developed with more than one slice at perpendicular orientations to each other and series 354 
of parallel slices indicates that it may not be critical to obtain field observations and thin-sections 355 
of rock cores at perpendicular orientations in order to make robust estimates of the fracture 356 
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network geometry, and thus fluid flow. Instead, several parallel observations may be sufficient 357 
for accurate estimates. 358 

Next, we compare the performance of models developed with all of the rock types to 359 
models developed for individual rock types. We expect that models developed for specific rock 360 
types may perform better than models developed for all of the experiments because different 361 
relationships may exist between the two- and three-dimensional data in different rock types. For 362 
example, the equation that relates the two-dimensional porosity to the three-dimensional porosity 363 
may differ between the sandstone and granite because sandstone hosts many quasi-spherical 364 
pores, whereas the granite contains fractures and pores with shapes closer to cigars, rather than 365 
spheres (e.g., Renard et al., 2018). We focus on the models developed using both horizontal and 366 
vertical slices here (Figure 5d-f). 367 

 368 

Figure 4. Performance of the gradient boosting models developed for all of the rock types using 369 
horizontal slices (a), vertical slices (b), orthogonal vertical slices (c), and both horizontal and 370 
vertical slices (d) to predict the volume (e), porosity (f) and tortuosity (g). For the models 371 
developed with the orthogonal vertical slices, and the horizontal and vertical slices, the score 372 
reported for one slice indicates the score of models developed with either one slice along both 373 
orthogonal horizontal axes, or one slice along the vertical axis and a horizontal axis. The models 374 
struggle to predict the tortuosity, but predict the volume and porosity with strong correlations 375 
between the predicted and observed values. The orientation of the extracted slices does not 376 
systematically influence the model performance. 377 

Consistent with the trend of the correlation coefficients (Text S1, Figure S6), the models 378 
developed for all of the rock types do not perform worse than the models developed for the 379 
individual rock types (Figure 5). Instead, some of the models developed for individual rock 380 
types perform worse than the models developed with all of the data (Figure 5d, e). The models 381 
that predict the tortuosity differ somewhat from this trend. The performance of the models that 382 
predict the tortuosity using one slice of the data of all the rock types perform worse than models 383 
developed with only the granite data, and models developed with only the sandstone data. 384 
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However, the models developed with all of the rock types perform better than models developed 385 
with only the monzonite data, and models developed with only the marble data. Consequently, 386 
the models developed using all of the rock types perform similarly successfully as the models 387 
developed for the individual rock types when they predict the volume and porosity, and perform 388 
better than half of the rock types when they predict the tortuosity. This result contradicts the 389 
expectation that different relationships link the two- and three-dimensional properties in different 390 
rock types, such as sandstone and granite. 391 

  392 

Figure 5. Performance of the gradient boosting models developed for all of the rock types using 393 
the four methods of slice extraction (a-c), and each individual rock type and all of the rock types 394 
using both horizontal and vertical slices (d-f). The performance of models developed with one 395 
slice (black), 10 slices (red), or all of the slices (yellow) are shown with different colors. The 396 
model performance does not systematically depend on the method of slice extraction (a-c). The 397 
models developed using all of the rock types perform better than models developed for 398 
individual rock types (d-f). 399 

3.2. Deriving a relationship between two-dimensional and three-dimensional properties 400 

The strong performance of the gradient boosting models suggest that a less complex 401 
algorithm may be able to predict the three-dimensional properties from the two-dimensional 402 
observations with success. Here, we use linear regression models to predict the three-403 
dimensional properties because these models enable identifying a function between the two-404 
dimensional measurements and the three-dimensional properties. In particular, a trained linear 405 
regression model includes a suite of coefficients, one for each slice in this analysis, 𝑐%, that 406 
provides an equation between the two-dimensional measurements (i.e., features), 𝑓%#!, and the 407 
three-dimensional property, 𝑝&!, (Pedregosa et al., 2011): 408 

    𝑝&! = ∑ 𝑐%𝑓%#!'
%()    Eq. 1 409 

where n is the number of features: the number of two-dimensional slices in this analysis. 410 
Consequently, the three-dimensional property is estimated as a linear combination of the two-411 
dimensional property measured at each slice multiplied by the associated coefficient, 𝑐%. Due to 412 
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the simplicity of these types of models, we expect that the performance of the models will be 413 
worse than the performance of the gradient boosting models. 414 

Indeed, the linear regression models perform with lower R2 scores than the boosting 415 
models (Figure 6). However, the linear regression models perform reasonably well when they 416 
predict the volume and porosity using only one slice along both the vertical and horizontal axes, 417 
with moderate-strong correlations between the observed and predicted values (Figure 6a-b). 418 
Similar to the boosting models, the linear regression models do not predict the tortuosity with 419 
strong correlations between the predicted and observed values (Figure 6c). The linear regression 420 
models that use data from all of the experiments perform better than the models that use data 421 
from individual rock types (Figure S7), similar to the boosting models. This result lends further 422 
support to the idea that the relationships between two- and three-dimensional fracture network 423 
properties may be similar in porous granular rocks (sandstone) and lower porosity crystalline 424 
rocks (granite). 425 

  426 

Figure 6. Performance of the gradient boosting models and linear regression models when 427 
predicting the volume (a), porosity (b), and tortuosity (c) using one, ten, and all of the slices, for 428 
data from all of the rock types, using slices along the horizontal and vertical axes. The boosting 429 
models perform better than the linear regression models. The linear regression models predict the 430 
volume of the largest fracture and porosity with strong correlations between the predicted and 431 
observed values. 432 

The strong performance of the linear regression models that predict the porosity and 433 
volume suggest that we may examine their coefficients in order to constrain the equations that 434 
relate the two- and three-dimensional porosity and fracture volume. We expect that these two- 435 
and three-dimensional properties will be positively correlated to each other: higher two-436 
dimensional porosity or fracture volume should indicate higher three-dimensional porosity or 437 
fracture volume. 438 

To examine how the coefficients of the models relate to the two-dimensional properties, 439 
we focus on the results of the linear regression models that use one slice of the data, in either the 440 
vertical or horizontal direction, with data from all the experiments (Figure 7, Figure 8). As 441 
described in the Methods section, the models that use one vertical slice from one experiment 442 
sample one slice position in the rock core across all of the differential stress steps, and when the 443 
models use data from several experiments, they sample one position in all of the rock cores and 444 
all the associated stress steps. Because we expect that the value of the two-dimensional property 445 
will influence the magnitude of the coefficient, we compare the coefficient and mean of the two-446 
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dimensional value across all of the slices at one particular location, and throughout all the 447 
differential stress steps and experiments. 448 

Figure 7. Relationships between the model performance, two-dimensional porosity and 449 
coefficient of the linear regression models developed with data from all the experiments, with 450 
vertical (a-c) and horizontal (d-f) slices. a, d) Mean ± one standard deviation of the R2 of models 451 
developed from vertical slices (a) and horizontal slices (d) relative to their position along the x- 452 
or z-axis. These models only differ in how the training and testing data are split. b, e) The mean 453 
R2 score of the models, and the corresponding mean two-dimensional porosity at the slice 454 
position used to develop the model. The color of the symbol indicates the position along the x- or 455 
z-axis of the model and two-dimensional measurement. The arrows in (b) highlight regions of the 456 
core at the edges that produce models with lower R2 scores. c, f) The mean two-dimensional 457 
porosity and mean coefficient of the corresponding set of models for models with higher R2 458 
scores (>0.7). The color of the symbol indicates the R2 score of the model. 459 

The position of the vertical slice within the cores influences the ability of the models to 460 
predict the porosity (Figure 7a). When the models use data at the edges of the cores, the R2 461 
scores range from -0.4 to 0.5. However, when they use data within the central portion of the 462 
cores, the R2 scores are >0.9. The lower porosity at the edges of the cores may explain the lower 463 
model performance (Figure 7b). Our method of accumulating the data from the different 464 
experiments produces these apparent regions of lower porosity. Because the marble and 465 
sandstone cores are wider than the granite and monzonite cores, the database that includes data 466 
from all of the experiments have columns in which no porosity is reported for the thinner cores, 467 
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and in which non-zero porosity is reported for the wider cores. Thus, the models developed for 468 
these portions of the cores will likely be prone to low performance. However, this edge effect 469 
does not emerge when the models predict the volume of the largest fracture (Figure 8a). When 470 
the models predict the largest fracture, the position of the vertical slices that produce the most 471 
incorrect models include the edge of the cores, as well as positions within the center of the cores, 472 
near 400 and 600 voxels from the edge of the cores (Figure 8a). In contrast to the strong 473 
influence of position on the model performance when they predict the porosity using vertical 474 
slices, the position of the horizontal slices does not lead to systematic changes in the R2 scores, 475 
for both the models that predict the porosity (Figure 7d) and volume (Figure 8d). 476 

 477 

Figure 8. Relationships between the model performance, two-dimensional volume and 478 
coefficient of the linear regression models developed with data from all the experiments, with 479 
vertical (a-c) and horizontal (d-f) slices. The format of the figure is the same as Figure 7. 480 

Because the values of the coefficients 𝑐% (Eq. 1) derived from the linear regression 481 
models may depend on the magnitude of the fracture network property at a particular slice, we 482 
now compare the coefficient and mean of the two-dimensional values across all of the slices at 483 
one particular location, and throughout all the differential stress steps and experiments. For the 484 
models that predict the porosity with R2 scores greater than 0.7, the coefficients range from about 485 
0.8 to 1.1 (Figure 7c, f). The ranges of the 25th-75th percentile of the coefficients for the models 486 
developed with horizontal slices and vertical slices are 0.89-0.95 and 0.95-1.05, respectively 487 
(Figure S8). For the models that predict the volume of the largest fracture, the coefficients range 488 
from about 0.8-2.0·104 (voxels/pixels) (Figure 8c, f). The units of these coefficients are the 489 
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number of voxels/pixels because they use the fracture area (pixels) to estimate the fracture 490 
volume (voxels) with the equation: fracture volume (voxels)=c(voxels/pixels)·fracture area 491 
(pixels), where c is the coefficient. The ranges of the 25th-75th percentile of the coefficients for 492 
the models developed with horizontal slices and vertical slices to predict the fracture volume are 493 
11·103 to 13·103 (voxels/pixels) and 9·103 to 14·103 (voxels/pixels), respectively (Figure S8). 494 
These ranges are consistent with our expectation that a positive correlation exists between the 495 
two- and three-dimensional porosity and fracture volume. The precise values of the coefficients 496 
for the models that predict the porosity suggest that horizontal slices of rock cores may tend to 497 
overestimate the three-dimensional porosity as they require coefficients less than one, with mean 498 
values of 0.92 for the models with R2 scores greater than 0.7. In contrast, vertical slices can 499 
provide a close approximation of the three-dimensional porosity, requiring coefficients close to 500 
one, with mean values of precisely 1.00. 501 

There is a negative correlation between the two-dimensional porosity and the model 502 
coefficient, for both the vertical (Figure 7c) and horizontal slices (Figure 7f). Thus, higher two-503 
dimensional porosity leads to lower coefficients for the models that predict the porosity. Similar 504 
to these models, the models that predict the volume also host a negative correlation between the 505 
two-dimensional property and the coefficient (Figure 8c, f). This negative correlation arises 506 
because slices that produce anomalously higher values of porosity and fracture area require a 507 
lower coefficient to approximate the three-dimensional value than slices that produce lower 508 
values. 509 

3.3. Comparing machine learning algorithms to simple statistics 510 

Examining the relationship between the three-dimensional porosity, and the two-511 
dimensional measurements (e.g., Figure S4-S6) suggest that calculating simple statistics of the 512 
population of two-dimensional slices may closely approximate the three-dimensional porosity. In 513 
particular, the correlation between the mean of the vertical two-dimensional slices at each 514 
differential stress step and the three-dimensional porosity of a given step is strong, with 515 
correlation coefficients near one (e.g., Figure 9a-c). Due to the ability of this simple statistic to 516 
approximate the three-dimensional porosity, we identify when the machine learning models 517 
predict the three-dimensional porosity with greater success than calculating the mean, given the 518 
same amount of data. In particular, we find the number of vertical slices for which the mean of 519 
these slices is within 5% of the three-dimensional value at each stress step of each experiment, 520 
nm (e.g., Figure S9, Figure 9). We randomly select a given number of slices throughout the rock, 521 
calculate the mean of those slices, and then determine if the two-dimensional mean falls within 522 
5% of the three-dimensional value. If the two-dimensional mean does not match the three-523 
dimensional value, then we increase the number of slices and repeat the process. To account for 524 
heterogeneity in the rock sample, we repeat this selection process 10,000 times, thereby sampling 525 
a different population of slices. We then compare the mean ± one standard deviation of nm 526 
throughout each experiment to the number of vertical slices required for the machine learning 527 
algorithms to produce R2 scores >0.9, na (Figure 9d). In order to compare these values, we use 528 
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the models developed for the individual rock types with the vertical slices, for both the gradient 529 
boosting models and the linear regression models. 530 

 531 

Figure 9. Comparing the performance of a simple statistic (the mean) to the machine learning 532 
algorithms. a-c) Relationship between the three-dimensional porosity and the mean two-533 
dimensional porosity calculated from the vertical slices in three example experiments: a) 534 
sandstone #1, b) marble #2, and c) monzonite #5. The correlation coefficients between these 535 
values are 1.0 in each of these experiments. d) Comparing the number of vertical slices for which 536 
the mean of the slices is within 5% of the three-dimensional mean at each stress step (scan) of 537 
each experiment, and the number of slices required by both machine learning algorithms to 538 
predict the porosity with R2 scores greater than 0.9. The blue and pink dashed lines indicate the 539 
linear regression and boosting results, respectively. Calculating the mean provides similarly 540 
accurate estimates as the gradient boosting models for the most homogeneous rock types 541 
(sandstone), given the same amount of data. For the more heterogeneous rocks, the machine 542 
learning algorithms provide more accurate predictions of the three-dimensional porosity than 543 
calculating the mean. 544 

The heterogeneity of the rock determines if calculating the mean requires less data than 545 
the machine learning models in order to make successful predictions. For the boosting models, 546 
the na is generally smaller than the nm, except for the sandstone experiments, indicating the 547 
superiority of the machine learning algorithms for all the experiments except the sandstone 548 
experiments (Figure 9d). The sandstone cores require a similar nm and na. For the linear 549 
regression models, nm is lower than na for two rock types: the granite and sandstone, indicating 550 
the superiority of calculating the mean rather than using linear regression for these rocks. The 551 
lower average and standard deviation of the nm of the sandstone cores indicates that the 552 
sandstone develops the most homogeneous pore and fracture networks of the rocks examined 553 
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here. These homogeneous networks then enable simple statistics to provide more accurate 554 
estimates of the three-dimensional property than the linear regression models for the same 555 
amount of data. For the more heterogeneous rocks, although they host strong correlations 556 
between the three-dimensional porosity and mean two-dimensional porosity calculated with all 557 
of the vertical slices (Figure 9a-c), the machine learning algorithms require less information to 558 
successfully predict the three-dimensional property than the mean (Figure 9d). This analysis 559 
thus reveals the rock types for which simple statistical approaches may provide reasonably 560 
accurate estimates of the three-dimensional porosity. 561 

3.4. Identifying the statistics that predict the three-dimensional properties 562 

The analysis of the previous section indicates that statistical approaches can help build 563 
equations between the two- and three-dimensional porosity at least in homogeneous rocks, such 564 
as sandstone. However, we cannot apply this approach to determine the usefulness of statistics 565 
for the other two properties: the volume and tortuosity of the largest fracture. Instead, we may 566 
use machine learning to identify the statistics that are most beneficial to predictions of the three-567 
dimensional volume and tortuosity. To identify these statistics, we reformat our dataset of two-568 
dimensional observations so that the models use the statistics of several two-dimensional 569 
observations to predict the three-dimensional value. We focus on the results of models developed 570 
using all of the rock types and vertical slices because our previous analyses indicate that 571 
combining several rock types can produce more accurate models, and that the orientation of the 572 
observation does not systematically control the model performance (Figure 5). 573 

 Comparing the performance of models developed from statistics of the two-dimensional 574 
observations indicates that the models predict the porosity and volume of the largest fracture 575 
with success, but struggle to predict the tortuosity (Figure 10a), similar to the models developed 576 
from the raw slices. In particular, the mean R2 scores for models developed with varying 577 
amounts of data are 0.99 (porosity), 0.96 (volume) and 0.59 (tortuosity). An additional similarity 578 
is that the amount of data provided to the models does not lead to a continuous improvement of 579 
the model performance. In particular, varying the amount of data provided to the models 580 
developed using statistics from 10% to 90% of the available data does not change the R2 score by 581 
more than 0.03 for the models that predict the porosity and volume of the largest fracture. For the 582 
models that predict the tortuosity, the mean R2 score in fact decreases by about 0.08 when the 583 
amount of data increase from 10 to 90%, in contrast to the idea that more data invariably leads to 584 
better model performance. Because we randomly select the data provided to the models, the 585 
decrease in model performance does not arise from selecting data earlier or later in loading, for 586 
example. 587 

To identify the statistics that are most useful to the predictions, we focus on the models 588 
developed with 90% of the data. Comparing the features that produce the highest R2-weighted 589 
|SHAP| value, 𝑠", for each set of models indicates that the models that predict the porosity 590 
primarily depend on the mean and 50th percentile (Figure 10b). The dependence of the porosity 591 
models on these statistics agrees with the ability of the mean of the two-dimensional porosity to 592 
estimate the three-dimensional porosity using less slices than the machine learning models for 593 
the sandstone experiments (Figure 9). Moreover, the dependence of the porosity models on these 594 
statistics suggests that when the data from multiple rock types are combined together, the 595 
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average and median of the two-dimensional porosity measurements may provide better estimates 596 
of the three-dimensional porosity than the other tested statistics. 597 

In contrast to the models that predict the porosity, the models that predict the other two 598 
properties do not strongly depend on the mean (Figure 10b). Surprisingly, the models that 599 
predict the volume and tortuosity of the largest fracture depend primarily on the minimum area, 600 
or minimum tortuosity, of the largest fracture identified in the group of two-dimensional slices. 601 
This result suggest that the extreme values of the population of the largest fracture identified in a 602 
particular two-dimensional slice (the minimum value) provides the most useful information 603 
about the properties of the largest fracture identified in the full three-dimensional scan.  604 

605 
Figure 10. Score (a) and R2 weighted |SHAP| value distribution (b) of models developed using 606 
the statistics of groups of vertical two-dimensional measurements for all of the rock types 607 
combined: the results for models with all of the tested amounts of data (a), and the results for 608 
only the models with 90% of the data (b). The statistics used as features are the mean, standard 609 
deviation (std), coefficient of variation (CV), minimum, 10th-90th percentile, maximum, 610 
skewness (skew), and kurtosis (kurt). a) The models that predict the volume and porosity 611 
perform very well, and better than the models that predict the tortuosity. Varying the amount of 612 
data from 10-90% does not lead to large changes in the mean R2 score. b) The models that 613 
predict the porosity primarily depend on the mean and median value. In contrast, the models that 614 
predict the properties of the largest fracture primarily depend on the minimum value in a group 615 
of two-dimensional observations. 616 

4 Discussion 617 

4.1. Predictability of three-dimensional properties of fracture networks 618 

The present study enables a direct comparison of the predictability of several fracture 619 
network characteristics that control fluid flow, and thus the potential ability to derive an equation 620 
between the two- and three-dimensional measurements. The results indicate that it may be more 621 
difficult to derive a function between the two- and three-dimensional tortuosity than the other 622 
properties (Figure 4). This difficulty of predicting the three-dimensional tortuosity is consistent 623 
with previous work that found that using two-dimensional estimates of fluid flow leads to 624 
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erroneous estimates of the three-dimensional flow properties, such as the permeability (e.g., Li et 625 
al., 2005; Duda et al., 2011; Mostaghimi et al., 2013; Lang et al., 2014; Marafini et al., 2020). 626 
This result is also consistent with work that compared the size of the representative elementary 627 
volume (REV) for permeability, porosity, and specific surface area (Mostaghimi et al., 2013). 628 
The REV is the minimum volume for which the property of interest (i.e., permeability) varies 629 
less than some threshold from the property calculated in larger volumes (e.g., Bear, 1988; Zhang 630 
et al., 2000). Mostaghimi et al. (2013) found that the REV for the permeability was up to twice 631 
as large as the REV for the porosity and specific surface area in granular rocks, including 632 
carbonate and sandstone. The larger REV suggests that the permeability distribution was more 633 
heterogeneous than the porosity and the specific surface area. Because the permeability depends 634 
on the tortuosity of the fracture network, the larger REV of the permeability relative to the 635 
porosity (Mostaghimi et al., 2013) agrees with the excellent performance of the machine learning 636 
models in the present analysis when they predict the porosity and volume of the largest fracture, 637 
and mediocre performance of the models when they predict the tortuosity (Figure 4). The more 638 
heterogeneous and anisotropic distribution of the tortuosity of the fracture network compared to 639 
the other properties, and the importance of considering connectivity in three-dimensions, 640 
produce both results. 641 

Tortuosity, and therefore permeability, are thus more difficult to predict in the laboratory 642 
than other properties of the fracture network. Similarly, estimates of the subsurface permeability 643 
can depend on the scale of the measurement. In particular, estimates of permeability derived 644 
from core samples tend to be lower than the estimates of permeability derived from pumping 645 
tests (e.g., Rovey & Cherkauer, 1995; Sánchez-Villa et al., 1996; Raghavan, 2006). These 646 
studies suggest that permeability increases with spatial scale. The presence of stratification, 647 
layering and other heterogeneities with a spatial dimension larger than the typical core sample 648 
produces this spatial dependence (e.g., Raghavan, 2006). Laboratory data further supports the 649 
idea that permeability increases with spatial scale (e.g., Schulze-Makuch et al., 1999). However, 650 
simulations indicate that permeability can both increase and decrease with spatial scale (e.g., 651 
Sahimi et al., 1986; Nordahl & Ringrose, 2008; Esmaeilpour et al., 2021; Ghanbarian, 2022). 652 
Consequently, this previous work demonstrates that varying the spatial scale in three-dimensions 653 
can change estimates of permeability, and the present analysis demonstrates that it is similarly 654 
difficult to estimate the three-dimensional tortuosity (and thus permeability) from two-655 
dimensional observations. The dimensional contraction from three to two dimensions thus 656 
produces a similar effect as varying the spatial length scale in three dimensions. 657 

The greater predictability of the porosity suggests that we may be able to estimate the 658 
three-dimensional mechanical properties of rocks that depend on the porosity (i.e., Young’s 659 
modulus) with more success than the properties that depend on the tortuosity (i.e., permeability). 660 
Consequently, estimates of the permeability may require direct numerical computation of the 661 
flow within the three-dimensional system, such as solving for Stokes flow or performing lattice 662 
Boltzmann simulations (e.g., Bultreys et al., 2016). Moreover, the relationship between the two- 663 
and three-dimensional estimates of elastic moduli may be easier to constrain than the 664 
corresponding relationship for the permeability. Indeed, recent work has successfully estimated 665 
three-dimensional elastic moduli using the aspect ratio of the pores reconstructed from three 666 
orthogonal two-dimensional slices of Berea sandstone and Grosmont carbonate (Karimpouli et 667 
al., 2018). In summary, because two-dimensional measurements of porosity can be closely linked 668 
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to the three-dimensional porosity, properties that depend on the porosity, such as the elastic 669 
moduli, may be similarly predictable. 670 

4.2. Amount and type of data required for successful predictions 671 

The analysis helps constrain the amount and type of data required for successful 672 
estimates of the three-dimensional properties. One may expect that increasing the amount of data 673 
provided to the models would increase the model performance. Our results agree with this 674 
expectation: higher numbers of two-dimensional estimates generally produce larger R2 scores 675 
(Figure 4, Figure 5, Figure 6). However, the performance of the models does not continually 676 
increase with the number of two-dimensional slices (Figure 4). Instead, the model performance 677 
increases relatively rapidly over at most ten slices, and then does not change significantly 678 
between ten slices, and all of the available slices (e.g., Figure 5). Only one to four slice positions 679 
are required for reasonably accurate estimates of the porosity and volume of the largest fracture. 680 

This analysis enables direct comparison of the usefulness of examining two-dimensional 681 
slices that are oriented parallel (vertical) or perpendicular (horizontal) to the maximum 682 
compression direction, as well as combinations of these orientations. One may expect that the 683 
models developed with both horizontal and vertical slices would provide the most accurate 684 
estimates. However, the results do not indicate that one method systematically produces higher 685 
model performance (Figure 4, Figure 5a-c). This result suggests that the orientation of thin-686 
sections or field measurements may not exert a significant control on estimates of the three-687 
dimensional property. Moreover, several parallel two-dimensional observations may provide 688 
comparable estimates of the three-dimensional system as several perpendicular two-dimensional 689 
observations. The orientation of the measurement could be more significant for properties in 690 
rocks that are more anisotropic than those analyzed here, such as layered sedimentary rock. 691 

This analysis provides further insight into the influence of rock type on the predictability 692 
of the fracture network characteristics. One may expect that different relationships can develop 693 
between the two- and three-dimensional data in different rock types. For example, the equation 694 
that relates the two-dimensional porosity to the three-dimensional porosity may differ between 695 
the sandstone and crystalline rocks because sandstone hosts many quasi-spherical pores (e.g., 696 
Dong & Blunt, 2009), whereas the granite contains fractures and pores with more anisotropic 697 
shapes (e.g., Renard et al., 2018). If such different relationships exist, one would expect that the 698 
performance of the models developed for individual rock types would be higher than the models 699 
developed for a combination of rock types. In contrast, the results indicate that the models 700 
developed using all of the experimental data perform better than or similarly to the models 701 
developed using individual rock types (Figure 5d-f). This trend may arise in part from the larger 702 
amount of data provided to the models developed for all the rock types compared to the models 703 
developed for individual rock types. However, the higher values of the correlation coefficients 704 
for the data accumulated from all of the experiments compared to the data from individual 705 
experiments (Figure S6) suggest that the content of the data also influences the model 706 
performance, and not only the amount of data. Previous analyses that link two- and three-707 
dimensional properties have tended to focus on specific rock types (e.g., Karimpouli et al., 708 
2018), rather than accumulating data from both low porosity crystalline rocks and granular rocks. 709 
Moreover, previous analyses have identified specific failure criteria that are applicable to porous 710 
granular rock, such as sandstone, but not to low porosity crystalline rock with interlocking 711 
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minerals (e.g., Wilshaw, 1971; Zhang et al., 1990). Similarly, theories from linear fracture 712 
mechanics that relate the geometric properties of individual fractures, including the length and 713 
orientation, to their propensity for propagation using the stress intensity factor do not explicitly 714 
account for the presence of nearby quasi-spherical pores (e.g., Paterson & Wong, 2005), and 715 
therefore may only be applicable to low porosity rocks, such as granite, before neighboring 716 
fractures begin to perturb each other’s local stress field. The present analysis suggests that future 717 
work may benefit from considering data from a variety of rock types, including both sandstone 718 
and granite, when deriving equations between the two- and three-dimensional properties. 719 

4.3. Comparing complex machine learning algorithms to simple algorithms and statistics 720 

Consistent with the performance of the gradient boosting models (Figure 4), and the 721 
correlation coefficients between the two- and three-dimensional porosity, and fracture area and 722 
volume (Figure S6), linear regression models are able to perform with moderate-strong 723 
correlations between the observed and predicted values (Figure 6a-b). The strong performance 724 
of these models allowed close examination of the coefficients of the models (Figure 7, Figure 725 
9), which help provide constraints on equations that relate the three-dimensional and two-726 
dimensional properties. For models that predict the porosity with R2 scores greater than 0.7, the 727 
range of the value of the coefficients (Figure S8) suggests that the horizontal slices of rock cores 728 
tend to overestimate the three-dimensional porosity as they require coefficients less than one. In 729 
contrast, the vertical slices can provide a close approximation of the three-dimensional porosity, 730 
requiring coefficients close to one. One explanation for this stronger correlation could be that the 731 
presence of vertically-trending fractures produces larger porosities and areas measured along the 732 
vertical orientation. However, measuring the orientation of individual fractures in a subset of 733 
these experiments, which includes all but the sandstone experiments, does not reveal a clear 734 
preferred orientation of the fractures (McBeck et al., 2022). The preferred explanation of this 735 
result is that the vertical slices provide more information about the system than the horizontal 736 
slices because they sample a larger area. Indeed, when the models only have access to one slice, 737 
the models developed with one vertical slice perform better than the models developed with one 738 
horizontal slice (e.g., Figure 5a-b) when they predict the volume and porosity using data from all 739 
of the rock types. 740 

Examining the coefficients of the linear regression models that predict the volume of the 741 
largest fracture reveals that the complex geometry of the largest fractures produces a discrepancy 742 
between the mathematically-expected relationship between the fracture area and volume, and the 743 
coefficients determined from machine learning (Text S2). Text S2 describes the derivation of the 744 
value of the coefficients expected from the intersection of a plane with ellipsoids of varying 745 
shape anisotropy. The geometric complexity of the large, system-spanning fractures can cause 746 
the most volumetric fracture identified in the entire three-dimensional system to not be the 747 
largest fracture, with the highest area, identified in a particular two-dimensional slice. The 748 
machine learning models then must use the area of the largest fracture identified in a particular 749 
slice to predict the volume of the largest fracture found throughout the system, which may not be 750 
the same fracture. The high values of the coefficients highlight that accurate estimates of the 751 
volume of the largest fracture in a three-dimensional system from two-dimensional 752 
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measurements of the area require a larger multiplicative factor than expected mathematically 753 
from the intersection of a plane with an ellipsoid.  754 

Due to the strong performance of the linear regression models and strong correlations 755 
between the mean of the two-dimensional porosity measurements and three-dimensional values 756 
(Figure 9a-c), we examined the ability of simple statistics to estimate the three-dimensional 757 
porosity. For the rocks with the most isotropic and homogeneous fracture networks (sandstone), 758 
calculating the mean of the two-dimensional measurements requires about the same number of 759 
slices for successful estimates as the gradient boosting models, and a lower number of slices 760 
compared to the linear regression models (Figure 9d). However, for the more heterogeneous 761 
rocks (granite, monzonite, marble), the gradient boosting models require a lower number of 762 
slices, and the linear regression models require the same or a lower number of slices than 763 
calculating the mean for all of the rocks.  764 

The homogeneous pore and fracture networks of the sandstone thus enable simple 765 
statistics to provide more accurate estimates of the three-dimensional property than the linear 766 
regression models, and similarly accurate estimates as the gradient boosting models, for the same 767 
amount of data. This result is consistent with previous work that estimated the three-dimensional 768 
permeability using two-dimensional measurements in sandstone with success, but was not able to 769 
derive accurate estimates in more heterogeneous carbonate rocks (Saxena et al., 2017). The 770 
heterogeneity of the fracture and pore network controls the potential accuracy of estimates of the 771 
three-dimensional property because a random two-dimensional slice will likely be less 772 
representative of the full three-dimensional system in a heterogeneous rock compared to a 773 
homogeneous rock. Thus, homogeneous and heterogeneous rocks may require different 774 
approaches to approximating the influence of fracture networks on fluid flow. An equivalent 775 
porous medium approach, in which representative elementary volumes approximate the 776 
distribution of hydrogeologic properties (e.g., Shaik et al., 2011), may be appropriate for 777 
homogeneous rock. In contrast, such continuum approaches may not be appropriate for more 778 
heterogeneous rocks, which instead may require modelling with a discrete fracture network (e.g., 779 
Cacas et al., 1990). In this type of modelling, a population of fractures is stochastically generated 780 
using probability density functions that determine their geometric properties, including lengths, 781 
apertures, and orientations (e.g., Lei et al., 2017). Previous work has used observations of natural 782 
fracture networks to build two-dimensional models with discrete fracture networks (e.g., 783 
Belayneh & Cosgrove, 2004). However, because there is no established method of extrapolating 784 
fracture geometries from two- to three-dimensions, few studies have extended such natural 785 
observations into a three-dimensional discrete fracture network model (Lei et al., 2017). The 786 
present analysis provides insight into how to robustly perform this extrapolation. 787 

Similar to the apparent effectiveness of continuum approaches for the homogeneous 788 
rocks (e.g., Figure 9d), models developed with all of the rock types to predict the porosity using 789 
a set of statistics of the two-dimensional measurements primarily depend on the mean and 790 
median (Figure 10). However, the models that predict the volume and tortuosity of the largest 791 
fracture do not strongly depend on the mean, and instead depend primarily on the minimum area, 792 
or minimum tortuosity, of the largest fracture identified in the group of two-dimensional slices. 793 
The minimum values may be the most useful to the model predictions because they control the 794 
ability of the fracture network to achieve the percolation threshold, when the fracture network 795 
traverses the system. Indeed, in synthetic isotropic fracture networks with power law size-796 
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distributed fractures near the percolation threshold, the two-dimensional permeability tends to 797 
underestimate the three-dimensional permeability by three orders of magnitude (Lang et al., 798 
2014). Percolation thus may occur in three-dimensions, but not in two-dimensions when the 799 
fracture density is low (Lang et al., 2014). Consequently, the minimum value of the fracture area 800 
and tortuosity measured in two-dimensions should have a significant impact on the overall three-801 
dimensional volume and tortuosity. Thus, efforts to predict the geometry and resulting 802 
connectivity of the largest fracture in a system should focus on the smallest values in a 803 
population of two-dimensional observations rather than the mean or maximum values. 804 

5 Conclusions 805 

Data from eleven in situ X-ray tomography experiments during triaxial deformation 806 
provide unique insights into the relationship between two- and three-dimensional measurements 807 
of properties that control fluid flow in both homogeneous and heterogeneous rocks subjected to 808 
differential stress loading until macroscopic failure. The machine learning models that predict 809 
the porosity and volume of the largest fracture perform with strong correlations between the 810 
predicted and observed values, and better than models that predict the tortuosity of the largest 811 
fracture. This result highlights the difficulty of successfully estimating the tortuosity, and related 812 
properties such as the permeability, from two-dimensional measurements or simulations, but 813 
suggests that two-dimensional approaches may provide robust insights for analyses that focus 814 
only on the volume of the largest fracture or porosity. 815 

The analysis enables close examination of the amount and type of two-dimensional data 816 
required for successful estimates of the three-dimensional property. The models presented here 817 
can achieve accurate estimates of the porosity and volume of the largest fracture using only one 818 
to four two-dimensional slices. Moreover, the method of slice extraction does not systematically 819 
influence the model performance. In addition, models developed using data from all of the 820 
experiments perform better than models developed for individual rock types. Consequently, 821 
based on our dataset of triaxial compression experiments: 1) dense sampling of the subsurface or 822 
rock core may not be required for successful estimates of some three-dimensional properties 823 
(porosity, fracture volume); 2) the orientation of field measurements may not exert a significant 824 
control on estimates of the three-dimensional property; and 3) including data from a variety of 825 
rock types may lead to more successful estimates of the three-dimensional property than only 826 
focusing on one rock type, in contrast to previous work that developed separate failure criteria 827 
for separate rock types (e.g., Zhang et al., 1990; Paterson & Wong, 2005). 828 

Comparing the amount of data required for more complex machine learning algorithms 829 
(gradient boosting) to estimate the porosity to the amount required for simple statistics highlights 830 
the benefit of machine learning for heterogeneous rocks. When rocks contain homogeneous and 831 
isotropic pore and fracture networks, calculating the mean of the two-dimensional slices requires 832 
a similar amount of data to successfully estimate the three-dimensional values as the gradient 833 
boosting models, and less data than the linear regression models. Similarly, models developed 834 
using a set of statistics of the two-dimensional measurements of all of the rock types indicate that 835 
the mean and median of the two-dimensional value provide the most useful information when the 836 
models predict the porosity. These results suggest that equivalent porous medium approaches 837 
(e.g., Shaik et al., 2011) may be appropriate for homogeneous rocks, such as sandstone. 838 
However, when the models predict the tortuosity and volume of the largest fracture, the models 839 
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primarily depend on the minimum value of the two-dimensional measurement in a set of slices. 840 
Thus, efforts to reconstruct the geometry and connectivity of the largest fracture in a system 841 
should focus on the smallest values in a population of local two-dimensional observations, rather 842 
than the mean. Heterogeneous rocks that include fracture populations with a wide range of 843 
lengths may require modelling using discrete fracture networks (e.g., Lei et al., 2017), rather than 844 
continuum approaches. 845 
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