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Abstract

Seismic activity during the eruption of Soufriere Hills volcano comprised various transient signals, which were classified visually

by the Montserrat Volcano Observatory (MVO), considering waveforms recorded at several stations. For 217,290 transients

detected on the MVO digital seismic network between 1996/10/21 and 2008/10/16, five main classes have been identified:

rockfall (ROC: 58%), hybrid (HYB: 19%), long-period (LPE: 11%), lp-rockfall (LP-ROC: 5.8%), and volcano-tectonic (VT:

3.1%). Temporal trends in the rate and energy release of these different transients (in addition to swarms and tremor) were key

to short-term forecasting of eruptive activity. However, visual classification is highly subjective and non-repeatable, and the

inconsistency of the catalog is a barrier to research. In a pilot study, we automatically removed waveforms with dropouts, and

manually verified transient classifications until we had approximately 100 transients of each class (total 522). We found ˜21%

of these transients were incorrectly classified at MVO. Our re-labelled dataset was then used as a starting point for supervised

learning, using code from http://github.com/malfante/AAA. This code was used by Malfante et al. (2008) to classify 109,609

transients at Ubinas volcano with a 93.5% accuracy. They transformed each waveform into a set of 102 features: 34 features

for each of three domains (time, spectral, cepstral). We added 6 frequency features of our own, including band ratios, peak

frequency, median frequency, bandwidth, and frequency change. The resulting 108-point vectors of features were then used for

modeling. The dataset is randomly divided 50 times into training and testing datasets, to produce a robust model. One model

is produced per channel. We use the Random Forest Classifier algorithm from the scikit-learn library. For each waveform,

a probability is computed for each class. Initial results are promising. Separate models for 3 channels yield accuracies of

76-80%. If the LP-ROC class is omitted (following Langer et al, 2006), accuracy rises to 82-85%. If only VT and LP classes

are considered, accuracy is 96-99%. We intend to expand our labelled dataset to 1000 events, add new features, build models

for each channel, and reclassify the catalog of 217,290 transients by a weighted average of probabilities.
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By January 2000, the Soufrière Hills Volcano had been erupting for 3½ years. Seismicity was dominated by rockfall/pyroclastic flow 
(ROC) signals from the rapidly growing lava dome, which could collapse at any time. Other classes of transient event signals (Fig. 1) 
were volcano-tectonic (VTE), long-period (LPE) and hybrid (HYB) earthquakes, and long-period rockfall (LPE+ROC) signals. 
Swarms, tremor and banded tremor heralded escalations in activity. Tropical thunderstorms remobilized loose ash, causing lahars. But 
the Montserrat Volcano Observatory (MVO) had a seismic monitoring program that was designed around cataloging tectonic 
earthquakes, and examining each earthquake in isolation. There was no routine analysis of seismicity patterns, precursory signals, or 
hazard-related signals, and no alarm system to alert MVO scientists outside of office hours. As incoming MVO Seismologist, author 
GT sought to expand real-time seismic monitoring to automatically detect, locate, quantify, classify and catalog the full range of 
volcano-seismic signals, and create an early warning system for pyroclastic flows. A model of the expanded MVO monitoring system
realized that year is shown in Fig. 2., which made possible an early-warning system for pyroclastic flows. However, the real-time 
event classifier was poor. External help was needed.

In January 2001, GT initiated collaboration through the MULTIMO Consortium that led to two papers. Langer et al. (2003) used an
Artificial Neural Network applied to 336 Z-component (event) seismograms between 1996 and 2002, achieving 70% accuracy in
reproducing classifications assigned by MVO. Langer et al. (2006), expanded this method to 6000 seismograms, again achieving a
70% accuracy compared to classifications assigned by MVO. To improve on this, seismograms with a peak amplitude of less than
5000 counts were removed, reducing the dataset to 2400 seismograms. After manually reclassifying these events, and merging the
LP-ROC class with ROC, the accuracy rose to 80%. However, GT left MVO in 2004 and MVO made no further efforts to implement
a real-time classifier.

The Soufrière Hills Volcano last erupted in 2010, and seismicity rates have declined 100-fold since, so a real-time classifier is no
longer a priority. Nevertheless, Langer et al. (2006) estimated that around 30% of events in the MVO catalog are misclassified, which
limits the usefulness of the catalog for understanding the eruption, and for constructing
physical models based on seismicity before, during, and after major volcanic events. For the first 15 months of the eruption - arguable
the most important - no digital recordings of event classifications exist & manual classification would take months. Moreover, the
richness of the MVO catalog may provide an opportunity to develop a general auto-classifier that could help for
volcanic crises elsewhere, e.g. other Caribbean volcanoes.

But what really got this project off the back-burner was the publication of Malfante et al. (2018a). This is an excellent review of
machine learning methods applied of volcano-seismic signals, an almost a textbook guide to the subject. Their dataset had a similar
size and complexity to the MVO catalog, and their model reached 93.5% accuracy - a spectacular result! GT reached out to the
authors in April 2018, one of whom (JPM) is co-author on this poster.

Fig. 2: The expanded MVO seismic monitoring system. 
The concept was to locate, quantify and classify every 
event in real-time, and detect swarms and tremor events 
too. Previously, only tectonic earthquakes were located or 
quantified, and only during analyst-review. Key: parts 
colored green pre-existed, those in blue were added in 
2000.

Fig. 1. Waveforms of the six classes of transients 
considered. Year, month, day, hour, and minute at the 
onset of each transient are indicated at the upper right of 
each trace. From Langer et al. (2006).

1. Motivation

5. Discussion & Further Work
While initial results are encouraging, a 5-class model with 77.7% accuracy implies an error rate of 23.3%, which is not much better than the 30% Langer et al. (2006) 
estimated from a subset of the MVO catalog. Furthermore, we have ignored regional and teleseismic earthquake signals, and exotic volcanic events that are also present 
in the MVO catalog. We anticipate we may need to expand our reclassified (labelled) catalog (from 522) to between 1000 and 5000 events, and include examples of 
these other signals.

We see several opportunities to improve classification accuracy:

1. We can add new features. For example, a feature that measures the frequency change within a signal. This could help distinguish HYB (frequency increase) and 
LPE+ROC (frequency increase) from others (no change).

2. The MiniSEED event files have anywhere from 0-60s noise before the event signal. Testing suggests this degrades performance of the model by 5%. So if we can 
eliminate this variable, accuracy could improve from 77% to 82%. We could either run a detector, or compute features on the autocorrelation (as Langer et al., 2006, 
did), since this always peaks at t=0. This would be a 4th domain (in addition to time, spectral and cepstral).

3. We can try classifier algorithms other than RandomForest. For example, Support Vector Machine.

4. We can exploit the full network to classify events (as human analysts do). Table 3 reveals that across all experiments, the models created for 3 Trace IDs are 
similarly accurate. This suggests we can treat each Trace as a separate event. An alternative would be to train separate models for each Trace ID (as we did here), 
and return the full prediction probability vector for each class (rather than just the predicted class), and average these across all traces for that event. We will test 
both approaches and compare. Crucially, both approaches are impervious to station outages, which plague models based on a single station/channel.

5. We can exploit 3-component data, where available. For example, P and S waves have different relative amplitudes on vertical versus horizontal seismograms. More 
sophisticated analyses consider the polarization (particle motion) time series, to distinguish different wave types.

We intend to experiment with 1-4 during AGU week, and update the corresponding iPoster. .
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3. The Malfante Method
We follow the method described by Malfante et al. (2018b) to classify 109,609 events at Ubinas volcano, Peru, with a 93.5% 
accuracy. They considered 6 main event classes. VTE, HYB and LPE, tornillos, explosions, and tremor. This is a remarkably 
high accuracy with a dataset of similar size and complexity to the MVO catalog (and with 3 classes in common). Their 
method requires only a simple catalog containing event time, class, and path to the seismic waveform file. There are 5 steps 
to the method:

1) Preprocessing:

Read each signal from file. Normalize signal, so that the model will be applicable to signals of all sizes. Filter above 1 Hz, 
because different sensors were used at different times. Trim any events longer than 5 minutes.

2) Feature extraction:

A key point is how to select an appropriate set of features to be measured on, or computed from, each signal. They 
choose 9 statistical features, 9 entropy features, and 16 shape descriptors (34 total), and compute these on three different 
representations of each signal: (1) time domain, (2) frequency domain, and (3) cepstral domain. Thus, the feature vector for 
each signal has dimension 102 (34 x 3). This is a significant compression compared to using the thousands of samples 
present in the original signal, plus it reduces all feature vectors to the same length, regardless of signal length.

3) Learning (or Training):

A prediction model is built from a learning algorithm and a randomly selected 50% of the dataset of labelled feature vectors. 
The labels are the event classes assigned. Malfante et al. (2018b) used a Random Forest Classifier algorithm (100 decision 
trees) from the scikit-learn library, and compared it with a Support Vector Machine algorithm (results were similar). They use 
a maximum of 800 signals per event class for computational reasons.

4) Testing:

The 50% of the dataset of labelled feature vectors not used in learning/training, are then classified with the prediction model. 
This result is a confusion matrix, and a measurement of accuracy and precision. Accuracy and precision are best understood 
by example. If the reclassified (i.e. "labelled") dataset contains 100 rockfalls, and the model classifies 75 of those as 
rockfalls, the accuracy is 75/100 = 75%. However, if 50 non-rockfalls were also classified by the model as rockfalls, the 
precision is 75/125 = 60%. The average accuracy and precision over all classes considered are identical, but differ for each 
event class.

5) Cross-validation:

To test the stability of the prediction model, the learning & testing phases are repeated 50 times. This generates a generalized
confusion matrix and a mean and standard deviation of the accuracy and precision.

Their code is available at https://github.com/malfante/AAA. That was our starting point.

Our modifications

We introduced some small modifications to the Malfante method:

• In the and feature extractionpreprocessing step, we added an ObsPy+Pandas based function to read the MiniSEED and 
CSV files for each event.

• Since our data are instrumented corrected, we chose a lower high pass corner of 0.5 Hz, to preserve LPE events.

• Preprocessing are slow, but learning, testing and cross-validation are fast. The Malfante code reloads the data files every 
time, and recomputes features. We modified the code to read each MiniSEED file just once, compute features for each 
Trace, and save the features vectors to Pickle files. This way, the slow parts only needed to be done once. This sped 
subsequent model runs by a factor of ~100.

• We added 6 new frequency features, including 2 band ratios, peak frequency, median frequency, and bandwidth. This 
increased the feature vector dimension from 102 to 108.

• We add a wrapper to run the method for different Trace IDs, and different sets of event classes.

Table 1: The catalog after 
Seisan2Pandas contains 209,135 
events. Number of events are 
listed, according to class 
assigned by MVO.Fig. 3. The catalog after applying "Seisan2Pandas". Y-axis is number of events per week for the 5 volcano-seismic 

classes. Pauses in extrusion (e.g. most of 1998-9, 2004-5, 2007) are characterized by low event rates, except for VTE.

2. Data

Seisan2Pandas

As a Seisan database isn’t a convenient format to work with, we developed an ObsPy-based 
workflow we call ”Seisan2Pandas”. This loops through all the Nordic files and: (1) loads 
the correspond waveform file if it exists; (2) computes several data quality metrics and 
removes bad traces; (3) removes the instrument correction (we constructed 
a StationXML file for the entire network history); (4) computes numerous amplitude, 
frequency, energy, magnitude and statistical metrics for each Trace; (5) saves 
the QC’d/corrected traces in MiniSEED file along with a corresponding event CSV file 
containing all the metrics for that event. (A Trace is an ObsPy object that holds a single 
waveform/seismogram).

The catalog we ultimately construct is a single CSV file around 150 MB in size. Of the 
231,951 events in the Seisan catalog, 213,582 were detected on the MVO digital seismic 
network (the rest come from a pre-existing analog network). 3,821 waveform files are 
missing from the Seisan database, and a further 626 failed the Seisan2Pandas quality 
checks, so our catalog for machine learning comprises 209,135 events (1,859,161 good 
Traces). Fig. 3 shows a timeseries plot of this catalog, based on original classifications 
assigned by MVO, with totals in Table 1.

The dataset used in this study come from the MVO 
digital seismic network. Events were detected in real-
time, with waveform files saved and registered into a 
Seisan event database – this is the MVO catalog. 
Registration creates an event metadata file in “Nordic” 
format, corresponding to each event waveform file. 
Events were manually reviewed and classified by 
MVO’s seismic team (assigning one of the classes 
shown in Fig. 1), within 24 hours. The catalog available 
to us begins on 1996/10/23 and ends on 2008/08/31.

The network has changed over time, and stations have periodically failed. We ran the Malfante method for the 3 most common Trace IDs (net-sta-loc-chan combinations) appearing in our 
reclassified catalog of 522 events. For each Trace ID, we subsetted the catalog by different sets of event classes, to examine the method’s ability to resolve them. These were:

• All 5 classes: LPE+ROC, HYB, LP, VTE, & ROC

• HYB, LPE, VTE, & ROC (no LPE+ROC).

• HYB, LPE, & VTE, to examine just earthquake events.

• LPE, & VTE, since HYB appear like a VTE with LPE coda

Full results are shown in Table 2, and grouped by Trace ID and classes in Tables 3 and 4, respectively.

Table 4 shows an accuracy of 77.7% when all 5 classes are considered. When the LPE+ROC class is ignored, accuracy rises to 84.1% which is an improvement on the ~80% accuracy 
achieved by Langer et al. (2006) for the same classes, and we used only ~400 traces for each model compared to their 2400. Our model accuracy should rise as we reclassify (label) more 
events. Surprisingly, LPE+ROC and ROC were resolved with 78.1% accuracy. Table 5 shows these are the most easily confused signal types. When considering only the 3 earthquake types, 
LPE, HYB and VTE, accuracy is 86.3%. And when only LPE and VTE are considered, performance rises to 97.6%. These two results are consistent with LPE, HYB and VTE forming a 
continuum.

Table 2: Results for all model runs. The column 
acc_mean is the mean accuracy (in %) from cross-
validation (step 5). Results range from 76.0% to 98.4%.

Table 4: Results grouped by classes 
considered, ignoring Trace ID.

Table 3: Average results across all sets of 
event classes, grouped by Trace ID (net-sta-
loc-chan). The results are within 1 standard 
deviation (acc_std), suggesting we could 
treat each Trace as a separate event.

4. Results

Table 5: Confusion matrix for all 5 event classes (using 
all 1443 traces). Rows are given labels, columns are 
predicted labels. 90% of VTE are correctly predicted, 
but only 63% of ROC.

Catalog of reclassified (or labelled) events used in this 
study

Since we could not rely on the a-priori classifications in 
the MVO catalog, we visually re-analyzed and 
reclassified events. This is a time consuming process, so 
we stopped when we had approximately 100 of each of 
the 5 main classes (total 522 events). Based on our re-
analysis, ~21% of these events were incorrectly 
classified at MVO. This reclassified subset of the MVO 
catalog is used for supervised machine learning.


