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of 83.0% with the ground truth spectra. In the second case, the approach demonstrates the ability to identify potentially
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Key Points:

• We develop a machine-learning approach to automatically identify un-
known mineral phases and unmix their compositional spectra.

• The approach successfully identifies all phases in a synthetic mixture
dataset with an average spectrum similarity 83% to the ground truth.

• The approach demonstrates its robustness by identifying unknown Fe-
bearing particles and background-subtracted chemical signals.

Abstract

Identification of unknown micro- and nano-sized mineral phases is commonly
achieved by analyzing chemical maps generated from hyperspectral imaging
datasets, particularly scanning electron microscope - energy dispersive X-ray
spectroscopy (SEM-EDS). However, the accuracy and reliability of mineral iden-
tification are often limited by subjective human interpretation, non-ideal sample
preparation, and the presence of mixed chemical signals generated within the
electron-beam interaction volume. Machine learning has emerged as a powerful
tool to overcome these problems. Here, we propose a machine-learning approach
to identify unknown phases and unmix their overlapped chemical signals. This
approach leverages the guidance of Gaussian mixture modeling clustering fitted
on an informative latent space of pixel-wise elemental datapoints modeled us-
ing a neural network autoencoder, and unmixes the overlapped chemical signals
of phases using non-negative matrix factorization. We evaluate the reliability
and the accuracy of the new approach using two SEM-EDS datasets: a syn-
thetic mixture sample and a real-world particulate matter sample. In the for-
mer, the proposed approach successfully identifies all major phases and extracts
background-subtracted single-phase chemical signals. The unmixed chemical
spectra show an average similarity of 83.0% with the ground truth spectra. In
the second case, the approach demonstrates the ability to identify potentially
magnetic Fe-bearing particles and their background-subtracted chemical signals.
We demonstrate a robust approach that brings a significant improvement to min-
eralogical and chemical analysis in a fully automated manner. The proposed
analysis process has been built into a user-friendly Python code with a graphical
user interface for ease of use by general users.

1 Introduction
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Hyperspectral imaging (HSI) data is a two-dimensional pixelated dataset, where
each pixel stores a one-dimensional array of spectral data, forming a three-
dimensional datacube. HSI data provides vast quantities of spatial and spectral
information and has been widely applied in various fields, such as remote sens-
ing (Blackburn, 2006), vegetation and water source control (Adam et al., 2010;
Govender et al., 2007), food safety (Carrasco et al., 2003; Feng & Sun, 2012;
Gowen et al., 2007), and biomedical sciences (Afromowitz et al., 1988; Carrasco
et al., 2003; Gendrin et al., 2008). In mineral sciences, scanning electron mi-
croscopy (SEM) is one of the most used microanalysis techniques. SEM provides
measurements of surface morphology (by the detection of secondary electrons),
elemental composition (by X-ray spectroscopy), crystallography (by backscat-
tered electrons), chemical bonding (by Auger electrons), and electronic state (by
cathodoluminescence) (Goldstein et al., 2017; Zaefferer & Habler, 2017). X-ray
emission can be analyzed by energy dispersive X-ray spectroscopy (EDS), where
an X-ray spectrum is recorded for each pixel scanned by an electron beam over
the sample surface, building up an HSI dataset. HSI-EDS data is frequently used
for chemical phase identification. By integrating over manually defined intervals
of the EDS spectra for each pixel, elemental distribution maps are generated in
qualitative and quantitative manners. Traditionally, phase identification is con-
ducted by analyzing the elemental maps superimposed on morphological SEM
images “by hand”. However, this process is time-consuming and prone to error,
particularly for large datasets. Furthermore, the resulting qualitative informa-
tion only relies on subjective human interpretation, reducing the reliability and
reproducibility, particularly when dealing with unknown samples. Automating
this process with high accuracy and reliability is critical for studying natural
materials.

Multivariate statistical analysis (MSA) is a popular choice for automated solu-
tions (Bosman et al., 2006; Kannan et al., 2018; Kotula et al., 2003; Malinowski
& Howery, 1980; Teng & Gauvin, 2020). Principal component analysis (PCA)
and non-negative matrix factorization (NMF) are two widely used MSA algo-
rithms for the exploration of the HSI-EDS data (Jany et al., 2017; Kotula et al.,
2003; Rossouw et al., 2016; Rossouw et al., 2015; Teng & Gauvin, 2020). These
algorithms aim to extract the underlying features from the available HSI-EDS
data by reducing the dimensionality of the data, where high-dimensional pixel-
wise datapoints are linearly projected onto a basis in a low-dimensional space
(Hotelling, 1933; Kotula et al., 2003; Potapov & Lubk, 2019; Tipping & Bishop,
1999). With these algorithms, phase masks are typically produced, which di-
vide the dataset into regions belonging to the different components of the MSA
models. Although able to perform without a priori assumptions, this approach
contains inherent mathematical limitations (e.g., the restrictions of orthogo-
nality and parsimony), which may lead to non-intuitive and non-interpretable
results (Kotula et al., 2003; Stork & Keenan, 2010). Clustering has been ex-
plored as an alternative approach. Clustering is an unsupervised technique that
organizes entities into clusters or groups whose members bear similarities (Funk
et al., 2001; Rui & Wunsch, 2005; Stork & Keenan, 2010). Some clustering algo-
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rithms, such as k-means and fuzzy clustering, are commonly applied for phase
characterization (Durdziński et al., 2015; MacRae et al., 2007; Vekemans et al.,
2004; Yan et al., 2006) (Duan et al., 2016; Parish, 2019). Nevertheless, such
algorithms have some intrinsic drawbacks. For example, k-means has problems
analyzing data with varying sizes and densities. Whilst fuzzy clustering does
allow pixels to belong to multiple clusters, the values of the pixel within each
cluster are not probabilistic, providing little or no information on the confidence
of the assignment.

In recent years, modern machine learning (ML) techniques have been success-
fully applied to analyzing electron microscopy datasets (Ede, 2021), including
image denoising (Antczak, 2018; Han et al., 2021; Yoon et al., 2019), image
classification (Aguiar et al., 2019; Vasudevan et al., 2018; Yokoyama et al.,
2020), and semantic segmentation (Roberts et al., 2019; Roels & Saeys, 2019;
Urakubo et al., 2019; Yu et al., 2020). However, most ML models are trained with
human-labeled datasets in a supervised manner. To some extent, this makes the
process still expensive and time-consuming, limiting the ability to unlock the
potential of these methods. Self-supervised learning can avoid these problems
by acquiring supervisory signals from the data itself (Yann & Ishan, 2021). In
self-supervised learning, models are trained to capture the underlying patterns
of the input data without relying on labels (Yann & Ishan, 2021). Thus, the
combination of self-supervised or unsupervised algorithms, i.e., dimensionality
reduction and clustering, can leverage the inherent structure in the HSI data to
explore or identify physically sensible features (Chen et al., 2021).

In this work, we introduce a self-supervised ML approach that automatically
identifies unknown phases and unmixes the overlapped chemical signals for each
potential phase with only one HSI-EDS dataset. This approach leverages a neu-
ral network autoencoder to extract underlying features of data through dimen-
sionality reduction. A probabilistic Gaussian mixture model is used to identify
inherent clusters, followed by factor analysis through non-negative factoriza-
tion to distinguish chemical signals from the background. We name this new
approach Spectral Interpretation using Gaussian Mixtures and Autoencoder
(SIGMA). It is shown that SIGMA works on various HSI-EDS datasets with no
need for user expertise in machine learning while bringing a significant improve-
ment of accuracy and reliability. An overview of this approach is illustrated in
Figure 1.

Here, we evaluate SIGMA using two HSI-EDS datasets, both motivated by the
types of data typically encountered in studies of particulate matter air pollution.
Such samples pose a particular challenge to interpretation using HSI-EDS as
they comprise complex mixtures of unknown, overlapping phases, deposited in
an uncontrolled manner on non-ideal, non-planar substrates (e.g., air filters
or leaf substrates), and commonly contain grains that are smaller than the
electron beam interaction volume. The two samples chosen are: (1) a synthetic
mixture containing seven known minerals; (2) a sample representing a potential
source of vehicular particulate matter. The synthetic mixture sample dataset
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demonstrates the reliability and accuracy of this approach. SIGMA is further
examined using the real-world particulate matter dataset, where the complex
nature of the sample complicates the identification of the individual pollution
particles. Additionally, SIGMA is built into a user-friendly Python code and
can produce results within 30 min for a regular computer or even faster using
graphic processing units (GPUs).

Figure 1. Workflow of SIGMA showing phase identification and signal unmix-
ing on an HSI-EDS dataset. (a) A neural network autoencoder is trained to
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learn good representations of elemental pixels in the 2D latent space. (b) The
trained encoder is then used to transform high-dimensional elemental pixels into
low-dimensional representations, followed by clustering using Gaussian mixture
modeling (GMM) in the informative latent space. (c) Non-negative matrix fac-
torization (NMF) is applied to unmix the single-phase spectra for all clusters.
In such a way, the algorithm not only identifies the locations of all unknown
phases but also isolates the background-subtracted EDS spectra of individual
phases.

2 Background

Throughout the paper, scalars are represented by italics, e.g., k. Vectors and
matrices are represented by boldface lowercase characters, e.g., x, and boldface
uppercase characters, e.g., X, respectively.

2.1 Neural network autoencoder

Autoencoder is a neural network architecture that consists of two neural net-
works: an encoder and a decoder. The encoder 𝑓𝜙 (x) with parameters � converts
the input x to a low-dimensional representation z, and the decoder 𝑔𝜃 (z) with
parameters � attempts to map the representation z back to a reconstruction of
the initial input x̂. Upon training, autoencoder aims to minimize the error in
reproducing the initial input x, i.e., the reconstruction loss:

𝐿 (x, x̂) = ‖x − x̂‖2 = ∥x − 𝑔𝜃 (𝑓𝜙 (x))∥2

The critical attribute of designing an autoencoder is through an information bot-
tleneck (Tishby & Zaslavsky, 2015). The bottleneck forces the model to learn a
compressed representation that contains the underlying information of the data.
As a result, autoencoder is often applied to dimensionality reduction (Hinton &
Salakhutdinov, 2006). Due to its non-linear characteristic, the autoencoder can
learn representations that capture more complicated features than traditional
methods, such as PCA, which only employs linear transformation on the data.

2.2 Gaussian mixture modeling

Gaussian mixture modeling (GMM) is an unsupervised probabilistic technique
that fits clusters as a linear superposition of K Gaussian distributions (Bishop
& Nasrabadi, 2006), which can be expressed as:

𝑝 (x) =
𝐾

∑
𝑘=1

𝑤𝑘𝑁 (x|�𝑘, �𝑘)

where 𝑤𝑘 is the weighting coefficient, and 𝑁 (x|�𝑘, �𝑘) denotes the kth Gaussian
component of the mixture and is parametrised with the mean �𝑘 and the co-
variance �𝑘. Clustering through GMMs is achieved by applying the maximum
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likelihood via expectation-maximisation (EM) algorithm (Bishop & Nasrabadi,
2006; Dempster et al., 1977), where the models attempt to learn optimal solu-
tions for parameters (i.e., �𝑘, �𝑘 and 𝑤𝑘 for each Gaussian distribution) to model
the empirical data distribution. In GMM clustering, datapoints are probabilisti-
cally assigned to clusters, therefore providing the confidence of the assignment,
which makes the clustering process physically meaningful.

3 Materials and Methods

3.1 Datasets

The synthetic mixture sample is composed of seven mineral phases, including cal-
cium carbonate (CaCO3), orthoclase feldspar (KAlSi3O8), magnetite (Fe3O4),
aluminum oxide (Al2O3), silicon oxide (SiO2), titanium oxide (TiO2), and zinc
carbonate (ZnCO3). All mineral phases were ground into particles less than ~50
�m, followed by individual measurements of EDS spectra for validation. All min-
erals were physically mixed, forming a synthetic mixture sample, and deposited
onto carbon tape mounted on a standard aluminum SEM stub. The dimensions
of the acquired EDS dataset are 279 × 514-pixel × 1547-spectral-channel.

The particulate matter specimen was collected by scraping the inside of an
exhaust pipe of a petrol-powered vehicle in Lahore, Pakistan using an A5 paper.
More details about the specimen can be found in (Sheikh et al., 2022). The
dimensions of the raw EDS dataset are 738 × 672-pixel × 1595-spectral-channel.

Both specimens were carbon-coated before collecting the EDS data to prevent
charging. Backscattered electron (BSE) images and EDS raw data were col-
lected at an accelerating voltage of 15 keV using a Thermofisher Quanta-650F
scanning electron microscope at the University of Cambridge, Department of
Earth Sciences, equipped with two Bruker XFlash 6 EDS detectors.

3.2 Autoencoder architecture

For both synthetic and particulate matter datasets (9 and 8 elemental channels,
respectively), the encoder block consists of three fully connected layers with
512, 256, and 128 neurons, respectively. Each layer is followed by a layer nor-
malization (LayerNorm) layer (Ba et al., 2016) and a Leaky Rectified Linear
Unit (LeakyReLU) with a slope of -0.02 as activation function. LayerNorm is a
technique that normalizes distributions of neuron outputs in the intermediate
layers of a neural network; it can enhance the training speed of neural networks
(Ba et al., 2016). Different from ReLU, which gives zeros as outputs for negative
inputs, LeakyReLU outputs a small linear component for each negative input
(in this case, inputs are multiplied by 0.02 for negative values). This provides
small positive gradients for negative outputs during training, avoiding the “dy-
ing ReLU” issue (Lu et al., 2019). The decoder block uses the reversed structure
of the encoder. The autoencoder was trained with Adam (Kingma & Ba, 2014)
as optimizer function and squared L2 norm as loss function. Figure 2 shows
the training history of the autoencoder used for the synthetic mixture dataset.
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The loss values for the training (85% data), validation (15% data), and all data
datasets converge progressively within 100 epochs. Note that the autoencoder
architecture can vary according to the number of pixels and the number of the
elemental channels of the dataset. The proposed architecture is suitable for
datasets with 8–11 input elemental channels, which falls in the regime of typical
mineralogical analyses.

3.3 Gaussian mixture modeling parameters

One big challenge for GMM clustering is to determine the number of clusters.
We use the Bayesian information criterion (BIC) (Bishop & Nasrabadi, 2006)
and the elbow method (Wit et al., 2012) to quantitively determine the optimal
number of clusters. BIC is a metric that measures the trade-off between the
model complexity and the goodness of fit (i.e., maximum likelihood) to the
datapoints, which is defined as:

BIC = 𝑝 ln(𝑁) − 2 ln (𝐿)

where 𝑝 is the number of parameters in the GMM model, 𝑁 is the number
of datapoints for the GMM clustering, and 𝐿 is the mean likelihood for the
GMM model. The elbow method is to locate the “elbow” of the BIC curve as
the optimal number of clusters (K) based on the law of diminishing marginal
returns (Wit et al., 2012). Figure 3 shows the result of the elbow method, where
the optimal number of clusters is 12, i.e., when K>12, the model fitting does
not benefit from the increase of the number of clusters.

Figure 2. Training history for the autoencoder trained on the training data,
validation data, and all data.
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Figure 3. Bayesian information criterion (BIC) scores as a function of the
number of clusters (K) of GMM, showing a preference for K=12, marked in red.
Note that the data here is associated with the GMM clustering results in Figure
7.

4 Results and Discussion

4.1 Data pre-processing and normalization

The data pre-processing consists of three sequential steps: (optional) smoothing,
z-score normalization, and softmax normalization. Figure 4 shows an example
of the Fe signal intensity maps and the associated histograms after each pre-
processing or normalization step.

Prior to the normalization steps, the synthetic mixture dataset is binned into
the dimensions of 139 × 257-pixel × 1547-spectral-channel. Elemental intensity
maps (i.e., X-ray lines of Al K�, C K�, Ca K�, Fe K�, K K�, O K�, Si K�, Ti K�,
and Zn L�) are extracted, where the width of the energy windows is defined as
the double full-width-at-half-maximum (FWHM) of individual elemental peaks
with no background subtraction. This yields a datacube with the size of 139 ×
257 × 9 for further processing. Each elemental map (with the size of 139 × 257
× 1) is then smoothed individually by applying a 3 × 3 mean filter, where each
pixel is replaced by the average of pixel values in the surrounding 3 × 3 pixel
area, as shown in Figure 4b.

Then, z-score normalization is separately applied to each elemental map (with
the size of 139 × 257 × 1), converting the mean and the standard deviation of
the intensity values into 0 and 1 in each elemental map, respectively, as shown in
Figure 4c. Consequently, for each elemental intensity map, regions with intensity
values above the average will become positive, while the other way around will
become negative. With respect to a single 9-channel pixel (with the size of 1 ×
1 × 9), the higher the positive value is, the more “above-average” the element
composition is, in comparison with the same channel of other pixels. With
z-score normalization, pixels in each elemental map incorporate the elemental
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information across the entire measured area.

Next, each 9-channel pixel (regarded as a vector with the size of 1 × 1 × 9)
is normalized to 0–1 interval using the softmax function. Softmax function
(Bishop & Nasrabadi, 2006), or normalized exponential function, is a function
that maps a feature vector of real values � into a vector of probabilities � that
sum to one, which can be expressed as:

𝜇𝑛 = 𝑒𝑥𝑝(𝜂𝑛)
∑𝑗 𝑒𝑥𝑝(𝜂𝑗)

where 𝜂𝑛 represents the nth value in a feature vector �, and 𝜇𝑛 represents the nth
probability in a vector of probabilities �. In the current case, as shown in Figure
4d, each 9-channel pixel vector (with the size of 1 × 1 × 9) will be transformed
into a probability vector. Due to the characteristic of the exponential function,
channels in a pixel with positive z-scores are emphasized, and those with nega-
tive z-scores are downplayed. Therefore, the values in a 9-channel pixel indicate
the relative degrees of “above average” for individual elements. This can help
the following machine learning model to extract underlying features from the
dataset. Figure 5 displays elemental intensity maps of the synthetic mixture
dataset after the sequential pre-processing and normalization steps.

Figure 4. Elemental intensity maps and the associated histograms: (a) raw
data; (b) smoothed data using a 3 × 3 mean filter; (c) data after smoothing
and z-score normalization, and (d) data after smoothing, z-score, and softmax
normalization.
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Figure 5. Normalized elemental intensity maps after the sequential pre-
processing and normalization techniques, i.e., smoothing, using a 3 × 3
mean filter, and normalization using z-score and softmax. The associated
backscattered electron (BSE) image of the same measured area.

4.2 Non-linear dimensionality reduction

We firstly use a neural network autoencoder to reduce the dimensionality of the
nine-dimensional (9D) datapoints (9-elemental-channel pixels) before clustering.
Although clustering directly in the 9D space is feasible, it might suffer from the
problem of the curse of dimensionality (Bellman et al., 1957; Molchanov & Lin-
sen, 2018), i.e., datapoints in the high-dimensional space become sparse. In
the current case, initial 9D pixels that belong to the same cluster may be still
far from each other in the 9D space, limiting the performance of clustering al-
gorithms. Some dimensionality reduction methods, such as PCA, are typically
used to deal with this problem but usually come with the compromise of informa-
tion loss and mixture of the underlying clusters during the process. Non-linear
dimensionality reduction methods, such as autoencoder, can overcome these
problems.

Figure 6 compares the ability of PCA and autoencoder to capture the underlying
2D structure of the synthetic mixture dataset (35,723 datapoints). In Figure 6a,
datapoints are linearly projected onto the first two principal components with
the highest variances, forming a distribution with a three-pointed-star shape.
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Only three clusters are conceivable in the PCA-modelled latent space. On the
other hand, the autoencoder (Figure 6b) splits datapoints into more clusters in
the 2D latent space due to its capability to learn non-linear transformation. This
may bring physical meaning to the latent space, which PCA lacks (discussed in
the later section). Figure 6c shows the distribution of the pixel-wise datapoints
in the autoencoder-modeled latent space, providing brief density information of
the empirical distribution.

Figure 6. Two-dimensional visualizations of the synthetic mixture dataset. The
latent space is modeled by (a) PCA by taking the first two principal components
and (b) autoencoder, where each datapoint represents the associated pixel in
the high-dimensional elemental intensity vector space; (c) the associated latent
space histogram showing the datapoint distribution.

4.3 Clustering in two-dimensional latent space

We perform GMM clustering directly to the 2D representation of pixels in the
latent space modeled by the autoencoder. In this process, chemically similar
pixels are grouped into the same cluster. Figure 7 shows the clustering result
for a GMM having K=12 components, where datapoints in different clusters
are marked in different colors with 95% confidence ellipses superimposed. Each
datapoint is assigned to the cluster for which the posterior probability 𝑝(𝐶𝑘|x)
is the highest, i.e., given a datapoint x, the probability that it belongs to the
cluster 𝐶𝑘 is the highest. The clustering result yields areas that point out
compositional differences, which makes the latent space physically meaningful.
For example, cluster #8, located in the middle of the latent space, contains
a similar elemental signal to the averaged signals of all pixels, indicating no
elemental fluctuation in this area. On the other hand, clusters with one or two
enriched elemental signals tend to locate in the margin of the latent space, e.g.,
clusters #1 and #2 in the upper middle are Fe-rich, and cluster #7 on the left
shows a strong Zn signal. Interestingly, the elemental signals of pixels increase
from the center to the point within clusters, i.e., the composition of a pixel
will smoothly change from the average to element-rich signals. Furthermore,
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gradual transitions of elemental intensity among clusters are observed; the Al
signal decreases as the cluster changes from cluster #3 to #4 to #5. Four
unlabelled clusters that belong to background signals are circled with a dotted
line.

Figure 7. Visualization of latent space clustered using Gaussian mixture mod-
eling. Each cluster is marked with a different color and overlapped with the
associated 95% confidence ellipse. Locations and the sum EDS spectrum of the
pixels in each cluster are illustrated. The blue dotted lines denote the average
spectrum of all pixels in the synthetic mixture dataset. Note that the average
spectrum is normalized to the scale of the sum spectra.

4.4 Unmixing overlapped EDS spectra

A key limitation of the GMM clustering result is that none of the cluster-spectra
corresponds to the single-phase spectra measured separately. The detection of
multiple-phase EDS signals can be explained by the unique surface morphol-
ogy of the sample. In both synthetic mixture and particulate matter samples,
mineral particles are spatially piled or stacked on top of each other. During
EDS signal collection, these particles may contribute to the emission of X-rays

12



due to the electron-specimen interaction. As a result, each pixel may include
signals from multiple phases and the background. Upon GMM clustering, the
mixture of multiple-phase signals is observed in the sum spectra of pixels in
each cluster (Figure 7). Thus, although having compositional signals, clusters
still contain potential background and mixed-phase signals and fail to match
any single-phase spectrum.

To obtain background-subtracted signals, we apply NMF to unmix the individ-
ual cluster-spectra. In this study, “unmixing” refers to distinguishing underlying
EDS spectra of individual phases (called “components”) from the superposed
spectra that consist of a mixture of the contribution of each phase and determin-
ing the associated weights of each spectrum component (called “abundance”).
The mixture of the spectra x𝑖 is approximated using a linear mixing model
(Bioucas-Dias et al., 2012):

x𝑖 =
𝑘

∑
𝑖=1

𝑎𝑖s𝑖 + n

where s𝑖 is the underlying components of individual spectra, 𝑎𝑖 is the abundance
coefficients, and n is additive noise. Different from typical MSA approaches
that analyze the pixel-wise dataset (Benhalouche et al., 2019; Kotula et al.,
2003), NMF is applied here to the sum spectra of the GMM-clusters (called
“cluster-spectra”) on the synthetic mixture dataset, i.e., 1547 × 12 data matrix
X that consists of 12 cluster-spectra with 1547 spectral-channels. The NMF for
unmixing can be formulated as:

X ≈ SA

where the 1547 × 12 matrix S is composed of 12 pseudo-spectra components
(i.e., s𝑖 in the linear mixing model), and the 12 × 12 matrix A contains the asso-
ciated abundance coefficients (i.e., 𝑎𝑖 in the linear mixing model). In this case,
the NMF is applied without involving dimensionality reduction (i.e., the num-
ber of pseudo-spectra components is equal to the number of clusters) because
no prior knowledge is provided. The optimal approximation of X is obtained
through minimizing the Frobenius norm of the matrix difference. In addition,
a regularization term (i.e., elementwise L1 norm) is applied to penalizes the
model yielding a trivial solution (i.e., S = X and A = I, where I is an identity
matrix) and facilitates more sparse solutions. Thus, the objective function for
the unmixing NMF can be expressed as:

min
S, A≥0

‖ X − SA ‖2

𝐹
+ �R (S) = min

S, A≥0
∑
𝑖, 𝑗

(Xij − (SA)ij)
2 + 𝜌 ∑

𝑖,𝑟
Sir

where 𝜌 is a hyperparameter determining the impact of the regularization term.
Figure 8 shows the unmixed 12 pseudo-spectra components. To examine the
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accuracy of the unmixing performance, we compare these 12 pseudo-spectra
with the real single-phase spectra that are measured separately. All seven phases
are identified, and the associated spectra show an average cosine similarity of
83.0% to the experimental single-phase spectra, where the ground truth spectra
are normalized to the same scales as the pseudo-spectra.

However, the unmixing process is not perfect. First, some phases are not prop-
erly unmixed, e.g., TiO2 and ZnCO3 in components #10 and #12, respectively.
This may result from the relatively small amount of these phases in the dataset.
In the GMM clustering step, pixels with similar elemental signals are grouped
into the same cluster. Clusters that include pixels from minor phases would
have lower signal intensity in the sum spectrum, e.g., the Ti-rich cluster #6
only contains 455 pixels yielding the Ti peak with height ~2.4 a.u., whereas the
Fe-rich cluster #1 contains 3,936 pixels yielding the Fe peak with height ~41.7
a.u. (as shown in Figure 7). This leads to imbalanced signal intensity scales
among different cluster-spectra, e.g., the intensities of peaks in the Fe-rich clus-
ter are much higher than in the Ti-rich cluster. Consequently, cluster-spectra
with major phases (higher intensity scales) tend to acquire better approxima-
tion upon optimization with the criterion of the Frobenius norm. In contrast,
cluster-spectra with minor phases (lower intensity scales) may yield relatively
inaccurate unmixed pseudo-spectra, or even be overlooked by the algorithm.
Second, some components may have little or no physical meaning, i.e., showing
compositions with unrealistic intensity ratios and/or a combination of elemental
peaks. These components do not correspond to any ground truth phase and may
represent the general background and/or noise introduced by instrument arti-
facts. For instance, component #7 (containing only the potassium peak) does
not fit any measured phase and is regarded as part of the signal from KAlSi3O8.
Also, components #4, showing a strong oxygen signal, may be interpreted as
the component that capture instrumental artifacts. Third, some components
are repetitive. For example, components #9 and #11 are similar to component
#3 (Fe3O4) but have extra peaks.

These problems can be mitigated by analyzing the abundance coefficients (𝑎𝑖)
and the intensity of peaks in the pseudo-spectra. According to the linear mixing
model, each cluster can be approximated by a linear combination of underlying
spectra weighted by abundance coefficients. Figure 9 shows the analysis of the
abundance coefficients for each component, indicating the importance of the
contribution of each component. As shown in Figure 9a, cluster #1 can be
approximated using components #3 and #4 with an abundance coefficient of
13.9 and 5.9, respectively; component #4 is responsible for the oxygen signal
in component #3. Therefore, cluster #1 most likely is Fe3O4. In most cases,
abundance coefficients are sparse, i.e., only one or two components are dominant,
as shown in Figure 9b, c, and d. As a result, most physically meaningless
components with low abundance coefficients may be intrinsically excluded when
drawing inferences. Similar abundance coefficient analyses can be conducted for
all clusters, producing a phase map for the synthetic mixture dataset (Figure
10).
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Figure 8. NMF components showing the underlying pseudo-spectra. Certain
pseudo-spectra components are in excellent agreement (i.e., average cosine sim-
ilarity = 83.0%) with ground truth single-phase spectra measured from the
individual mineral particles before the mixture. Note that the real single-phase
spectra are marked in orange and normalized to the same scales as the associated
pseudo-spectra.
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Figure 9. Bar charts of abundance coefficients and pixel distributions showing
the importance of NMF components for each cluster. The underlying single-
phase spectrum of each cluster of (a) Fe3O4, (b) KAlSi3O8, (c) TiO2, and (d)
SiO2 can be identified according to the abundance coefficients.

Figure 10. Backscattered electron (BSE) image of the synthetic mixture
dataset and the corresponding phase map according to the NMF unmixing anal-
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ysis. Note that red and dark blue represent the same phase of Fe3O4 but are
unmixed from different clusters.

4.5 Testing SIGMA on exhaust pipe residue particulate matter
dataset

We evaluate the performance of SIGMA on the exhaust pipe residue particu-
late matter dataset, where particles with various compositions and sizes are
distributed on the substrate. Exposure to particles containing heavy metals,
particularly, Fe-bearing ultrafine particles can have serious health implications.
Inhalation of Fe-rich nanoparticles is a major health risk for cardiovascular dis-
eases (Dusseldorp et al., 1995; Maher et al., 2020) and has been found to enter
the human brain through olfactory transport (Maher et al., 2016). The toxicity
of Fe-bearing ultra-fine particles is linked to their size, composition, and distri-
bution. Thus, it is critical to identify and quantify the abundant presence of
Fe-bearing ultrafine particles in urban microenvironments. In a previous study
(Sheikh et al., 2022), the task to identify these particles was manually conducted
by individually analyzing backscattered electron (BSE) images and their associ-
ated EDS elemental maps, which is an inefficient and time-consuming process.

Here, SIGMA offers huge potential for automated identification of potential Fe-
bearing particles with background-subtracted compositional information (Fig-
ure 11). After pre-processing and normalizing (the same procedure in the syn-
thetic mixture dataset), the dataset is built into elemental intensity maps with
the dimensions of 396 × 336-pixel × 8-spectral-channel (i.e., X-ray lines of O
K�, Fe K�, Mg K�, Ca K�, Al K�, C K�, Si K�, and S K�). Then, an autoen-
coder is trained to learn the 2D representation of pixels. Figure 11a shows
the autoencoder-modeled 2D latent space and the result of GMM clustering
(K=13), where datapoints that belong to different clusters are marked with
different colors. Again, the clusters yield physically meaningful areas, indicat-
ing compositional information for pixels. The distribution of pixels forms a
pointed-star shape, where the center refers to the averaged signals, and the
arms represent certain element-rich clusters.

In this specimen, our main goal was to identify Fe-bearing ultrafine particles;
therefore, we primarily focus on the Fe-rich phase (green cluster observed in the
top right of the latent space). Figure 11b and c show the spatial distribution
of Fe-rich pixels and the associated backscattered electron (BSE) image. The
size distribution (Figure 11d) is obtained by analyzing the spatial distribution
of the identified Fe-bearing particles in Figure 11b. Prior to the unmixing step,
although containing the Fe K� peak well above the average, the sum spectrum
(Figure 11d) appears to include overlapped signals from the background. After
NMF unmixing, the background-subtracted Fe-oxide spectrum is successfully
identified through abundance coefficient analysis (Figure 11f). We can see that
SIGMA is capable of not only identifying potential Fe-bearing particles but also
unmixing and isolating its chemical signal from the matrix in an automated
manner.
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Figure 11. Phase identification and elemental signal unmixing on particulate
matter dataset using SIGMA. (a) 2D latent space modeled by autoencoder show-
ing the GMM clustering result, where clusters are marked with different colors
and overlapped with the associated 95% confidence ellipses; (b) pixel distribu-
tion in the Fe-rich cluster; (c) associated backscattered electron (BSE) image;
(d) size distribution of the Fe-rich particles, where the equivalent diameter is
defined as the diameter of the circle that has the same area of the region. Nor-
malized sum spectrum of the Fe-rich cluster (e) before NMF unmixing (overlaid
with the average spectrum of the blue dotted line) and (f) after NMF unmixing.

5 Conclusions

We have developed a self-supervised approach for automated phase identification
and hyperspectral unmixing with only one hyperspectral image—energy disper-
sive X-ray spectroscopy (HSI-EDS) dataset. Specifically, we apply non-linear
dimensionality reduction to the HSI dataset using a neural network autoencoder
and analyze the underlying structure of the data using Gaussian mixture mod-
eling (GMM) clustering. Non-negative matrix factorization (NMF) is employed
cluster-by-cluster to isolate the background-subtracted EDS signals from the
matrix. We evaluate this approach with two HSI-EDS datasets. For the known
synthetic mixture dataset, all seven major phases are identified and verified by
the individually measured EDS spectra, revealing the accuracy (i.e., average
cosine similarity = 83.0%) and robustness of our technique. For the particu-
late matter dataset, the performance of this approach is further demonstrated
by distinguishing potential Fe-bearing particles from several unknown chemical
phases with different particle sizes. Furthermore, the proposed approach can be
applied to more general HSI datasets, such as electron energy loss spectroscopy
(EELS), scanning tunneling microscopy (STM), and time-of-flight secondary ion
mass spectrometry (ToF-SIMS), providing a robust and reliable analysis in a
fully automated manner.
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