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Abstract

Persistent warming and water cycle change due to anthropogenic climate change modifies the temperature and salinity dis-

tribution of the ocean over time. This ‘forced’ signal of temperature and salinity change is often masked by the background

internal variability of the climate system. Analysing temperature and salinity change in watermass-based coordinate systems

has been proposed as an alternative to traditional Eulerian (e.g., fixed-depth, zonally-averaged) co-ordinate systems. The

impact of internal variability is thought to be reduced in watermass co-ordinates, enabling a cleaner separation of the forced

signal from background variability - or a higher ‘signal-to-noise’ ratio. Building on previous analyses comparing Eulerian

and water-mass-based one-dimensional coordinates, here we recast two-dimensional co-ordinate systems - temperature-salinity

(T-S), latitude-longitude and latitude-depth - onto a directly comparable equal-volume framework. We compare the internal

variability, or ‘noise’ in temperature and salinity between these remapped two-dimensional co-ordinate systems in a 500 year

pre-industrial control run from a CMIP6 climate model. We find that median internal variability is reduced in both ocean heat

and salt content in T-S space compared to Eulerian coordinates, and that a large proportion of variability in T-S space can be

attributed to processes which operate over a timescale greater than 10 years. We show that, as a consequence of the reduced

projection of internal variability into T-S space, the signal-to-noise ratio in watermass co-ordinates is at least two times greater

than in Eulerian co-ordinate systems, implying that the climate change signal can be more robustly identified.
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ABSTRACT: Persistent warming and water cycle change due to anthropogenic climate change

modifies the temperature and salinity distribution of the ocean over time. This ‘forced’ signal

of temperature and salinity change is often masked by the background internal variability of the

climate system. Analysing temperature and salinity change in watermass-based coordinate systems

has been proposed as an alternative to traditional Eulerian (e.g., fixed-depth, zonally-averaged)

co-ordinate systems. The impact of internal variability is thought to be reduced in watermass

co-ordinates, enabling a cleaner separation of the forced signal from background variability - or

a higher ‘signal-to-noise’ ratio. Building on previous analyses comparing Eulerian and water-

mass-based one-dimensional coordinates, here we recast two-dimensional co-ordinate systems -

temperature-salinity (𝑇 − 𝑆), latitude-longitude and latitude-depth - onto a directly comparable

equal-volume framework. We compare the internal variability, or ‘noise’ in temperature and

salinity between these remapped two-dimensional co-ordinate systems in a 500 year pre-industrial

control run from a CMIP6 climate model. We find that median internal variability is reduced

in both ocean heat and salt content in 𝑇 − 𝑆 space compared to Eulerian coordinates, and that a

large proportion of variability in 𝑇 − 𝑆 space can be attributed to processes which operate over

a timescale greater than 10 years. We show that, as a consequence of the reduced projection of

internal variability into 𝑇 − 𝑆 space, the signal-to-noise ratio in watermass co-ordinates is at least

two times greater than in Eulerian co-ordinate systems, implying that the climate change signal

can be more robustly identified.
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SIGNIFICANCE STATEMENT: Changes in ocean temperature and salinity are driven both by28

human-induced climate change and by modes of natural variability in the climate system, such as29

the El-Niño SouthernOscillation. It can be difficult to isolate the human-induced ‘signal’ of climate30

change from the natural fluctuations or ‘noise’ in the climate system. Watermass-based methods,31

which ‘follow’ a parcel of water around the ocean, have been thought to improve on ‘Eulerian’32

(i.e., analyses performed at fixed latitude, longitude and depth) frames of reference as they are33

less impacted by the ‘noise’. However, it is difficult to cleanly compare between watermass-based34

methods and Eulerian methods. Here, we aim to quantify the extent to which watermass-based35

frameworks improve on Eulerian frameworks in isolating the climate signal from the noise. We36

recast watermass and Eulerian methods onto an equivalent grid, enabling a clean comparison37

between them, and find that doing so reduces the median signal-to-noise ratio in watermass-based38

co-ordinates by a factor of at least two. These results emphasise the utility of watermass-based39

methods in analysing long-term climatic changes in the ocean.40

1. Introduction41

Anthropogenic climate change is characterised by the persistent build-up of heat in the climate42

system (Stocker et al. 2013) and long-term changes to the hydrological cycle (Durack et al. 2012;43

Sohail et al. 2022). A vast proportion of excess heat in the climate system is absorbed by the44

ocean (Schuckmann et al. 2020), and changes to the water cycle manifest as ocean salinity changes45

(Pierce et al. 2012). These human-induced changes to ocean heat and salinity occur alongside46

natural variability in the climate system, driven in part by physical modes of climate variability47

like the El-Niño Southern Oscillation (ENSO) (Trenberth 2020) and the North Atlantic Oscillation48

(Visbeck et al. 2001). Natural variability in the climate system can obscure forced anthropogenic49

trends in the ocean, adding ‘noise’ to the system that can obscure the signal.50

Numerous studies have aimed to tackle the problem of detecting the anthropogenic signal of51

climate change in observations and climate models. A conventional approach to detecting changes52

in ocean temperature and/or salinity involves detecting changes to ocean properties at fixed loca-53

tions on the ocean surface (that is, in latitude-longitude co-ordinates, Hawkins and Sutton 2012;54

Hamlington et al. 2011) or by zonally-averaging (that is, in latitude-depth co-ordinates, Pierce et al.55

2012; Silvy et al. 2020; Boyer et al. 2005). In these traditional Eulerian frames of reference, the56
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‘noise’, natural variability in the climate system, can be reduced by coarsening the grid, filtering57

out the relevant time-scales, taking large ensemble means, and/or by focusing on specific ocean58

regions that may not be impacted by dominant modes of variability (Hamlington et al. 2011; Pen-59

land and Matrosova 2006; Maher et al. 2021; Pierce et al. 2012). In doing so, this past research60

has effectively increased the ‘signal-to-noise‘ ratio - allowing for a more robust identification of61

the long-term climate change-induced trend.62

Watermass-based frameworks have been proposed as an alternative to traditional Eulerian-based63

methods for tracking ocean change. Tracking changes in ocean properties following iso-surfaces64

of conservative tracers, such as density, temperature and/or salinity, is thought to filter out short-65

timescale, highly variable adiabatic motions, potentially reducing internal variability and noise66

in the system (Silvy et al. (2020); Palmer et al. (2007); Zika et al. (2015, 2021)). In addition,67

watermass-based methods can enable a direct attribution of heat or salt content tendencies to68

surface fluxes and diabatic mixing, as only diabatic flux terms are present in the budget (Walin69

1982; Groeskamp et al. 2019; Holmes et al. 2019; Bladwell et al. 2021; Hieronymus et al. 2014).70

However, a clean comparison of the internal variability, and thus signal-to-noise ratio, in71

watermass-based and Eulerian methods is challenging because the volume bounded by watermass-72

based coordinate surfaces can change with time. Thus, a given temperature or salinity surface could73

expand to fill a large portion of the ocean, while volumes bounded by latitude, longitude and depth74

surfaces are (by construction) fixed in time. For instance, Palmer et al. (2007); Palmer and Haines75

(2009) compared ocean temperature variability above the 14◦𝐶 isotherm, and the 220m depth76

level, which are approximately geographically collocated. While the use of a temperature-based77

co-ordinate reduces internal variability, the 14◦𝐶 isotherm expands over time to accommodate an78

increasingly warm ocean, while the 220m depth level remains fixed. Following work by Sohail79

et al. (2021), Holmes et al. (2022) avoided this problem by using a percentile-based co-ordinate80

system that enables a constant-volume comparison between one-dimensional temperature, depth81

and latitude co-ordinate systems. Holmes et al. (2022) showed that internal variability is indeed82

reduced in one-dimensional temperature co-ordinates (aligning with findings from Palmer and83

Haines (2009)), but only for specific timescales and regions of the ocean.84

While one-dimensional fixed-depth and fixed-temperature frameworks remain popular choices85

in assessing ocean heat and salt content (Wolfe et al. 2008; Morrison and Hogg 2013; Sohail et al.86
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2021, 2022), two-dimensional co-ordinate systems retain more information and are often used87

to assess ocean heat and salt content change (e.g., Roemmich et al. (2015); Silvy et al. (2020);88

Rathore et al. (2020)). For instance, in one dimension, ‘cold’ temperature surfaces conflate the89

ocean interior with surface polar regions, but introducing a second dimension (e.g. salinity) isolates90

the interior ocean from the polar surface effectively. Variability in two-dimensional watermass91

coordinates has been compared to variability in Eulerian coordinates by ‘re-projecting’ diabatic92

tendencies inferred in water mass coordinates back onto the geographical coordinates. Evans93

et al. (2014) inferred seasonal diabatic tendencies in 𝑇 − 𝑆 coordinates within Drake’s Passage94

and then remapped these onto the average locations of the corresponding 𝑇 − 𝑆 classes along a95

repeat hydrographic section. Similarly, Zika et al. (2021) inferred diabatic tendencies necessary96

to explain changes in the global inventories of sea water in 𝑇 − 𝑆 coordinates and mapped these97

onto the 3D geographical distribution of those water masses. In each case, Eulerian changes were98

larger than the inferred diabatic tendencies. However, these methods have relied on inferring the99

diabatic tendency from either a numerical model or an inverse model, and the derived solution is100

not necessarily unique. Thus, a clean, objective comparison assessing whether the projection of101

internal variabilty into two-dimensional watermass frameworks (e.g. Temperature versus Salinity,102

hereafter𝑇 −𝑆 co-ordinates) is reduced compared to Eulerian counterparts (e.g., latitude-longitude,103

latitude-depth) has not been conducted.104

In this paper, we recast two dimensional co-ordinate systems, namely, 𝑇 − 𝑆 space, latitude-105

longitude space, and latitude-depth space, onto a constant-volume-based two-dimensional frame-106

work using a statistical method called Binary Space Partitioning (BSP). We then track changes to107

the ocean’s temperature and salinity properties to quantify internal variability (the ‘noise’) with108

the aim of establishing whether the median internal variability is reduced in watermass-based109

frameworks leading to an increased signal-to-noise ratio of the climate signal. The coupled cli-110

mate model data used in this study is described in section 2. We provide details of BSP and its111

two-dimensional remapping in section 3. Our findings, detailed in section 4, confirm that not only112

is the median internal variability (the ‘noise’) significantly reduced in 𝑇 − 𝑆 space, it is described113

by longer timescale processes, and by fewer statistical modes. We explore the historical ‘signal’ in114

section 5, and show that the median signal-to-noise ratio is at least two times larger in 𝑇 − 𝑆 space115

compared to its Eulerian counterparts. Conclusions are summarised in section 6.116
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2. Model data: ACCESS-CM2117

In this work, we focus on a number of simulations performed using the ACCESS-CM2 climate118

model (Bi et al. 2020) as part of the Australian submission to the 6th generation Climate Model119

Intercomparison Project (CMIP6) (Eyring et al. 2016). The ocean model component of ACCESS-120

CM2 is theModular OceanModel version 5.1 (Griffies 2012)which uses Conservative Temperature121

and Practical Salinity as its standard temperature (T) and salinity (S) variables (McDougall 2003;122

McDougall and Barker 2011). More details on ACCESS-CM2, the ACCESS-CM2 submission to123

CMIP6, and in particular, the forcing and spin-up of the piControl and historical runs, are provided124

by Bi et al. (2020).125

Weanalyse a 500 year pre-industrial control (piControl) simulation, aswell as a 165 year historical126

simulation (Eyring et al. 2016). In this work, we analyse the model Conservative Temperature,127

Practical Salinity and grid cell volume variables in temperature-salinity, latitude-longitude, and128

latitude-depth coordinates over the entire pre-industrial control period. We also analyse the model129

Potential Temperature, Practical Salinity and grid cell volume variables over the entire historical130

period, covering 1850 to 2014.131

Themonthly-averaged temperature and salinity in the piControl and historical runs are first binned132

into 2D 𝑇 − 𝑆, latitude-longitude and latitude-depth percentile coordinates using BSP as described133

in section 3. Binned outputs are then de-drifted and de-seasoned prior to analysis. De-drifting is134

accomplished by removing a cubic fit of the piControl time series over the relevant overlapping time135

period, following Irving et al. (2020). The seasonal cycle is removed by subtracting the time-mean136

seasonal cycle over the entire time period of interest from the monthly time series.137

3. Theory138

Typically, watermass-based analyses involve tracking ocean properties at constant temperature139

or salinity (Worthington 1981; Walin 1982; Zika et al. 2015, 2018; Holmes et al. 2019). By140

following constant tracer isosurfaces, the heat and salt budgets contain contributions from diabatic141

processes only. However, there are still diasurface volume fluxes in these coordinates which must142

be accounted for and whose associated tracer flux may be ill-defined (see Holmes et al. (2019) and143

Bladwell et al. (2021) for details). In addition, as the surface outcrop location of temperature and144

salinity surfaces may shift over time, it is difficult to link changes at a given tracer isosurface to a145

6



specific geographical region in strongly forced ocean models. Thus, cleanly comparing between146

pure watermass-based coordinate systems and Eulerian coordinate systems (which track ocean147

changes at fixed latitude, longitude or depth) can be difficult, in part because Eulerian coordinate148

systems are fixed-volume by construction, while the volume of water bounded by temperature or149

salinity surfaces can change with time.150

a. Binary Space Partitioning151

In order to overcome this issue, we recast all 2D co-ordinate systems using a statistical method152

called Binary Space Partitioning (BSP). Originating from computer graphics and image processing153

fields (e.g. Radha et al. (1996); Thibault and Naylor (1987)), BSP is a method for recursively,154

hierarchically subdividing a distribution using arbitrarily oriented lines. We can use BSP to155

effectively partition the ocean’s two-dimensional volume distribution into equal weight bins in156

watermass and Eulerian space.157

To illustrate how BSP works, consider a two-dimensional volume distribution 𝑣(𝑥, 𝑦) which is158

the volume of sea-water per unit 𝑥 and 𝑦. 𝑥 and 𝑦 can be coordinates defined by Eulerian space159

or coordinates defined by time variable scalars such as T, S, density, etc. To form a BSP tree, we160

recursively subdivide the distribution with alternating axis-oriented lines 𝑛 times, such that the161

volume of the ocean in each subdivision is 1/2𝑛 of the total ocean volume
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦. This162

procedure is shown graphically in Figure 1.163

The initial slice (figure 1a) divides the volume in half along some 𝑦−value 𝑦1, such that each164

subdivision contains half of the ocean volume 12
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦. The subsequent slice (figure165

1b) divides each subdivided section further in half along two 𝑥−values 𝑥1 and 𝑥2, such that each166

subdivision now contains a quarter of the ocean volume, 14
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦. This process of recursive167

subdivision is repeated 𝑛 times along alternating axes such that each time a volume constraint of168

1
2𝑛
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦 is met. The resulting BSP tree structure thus compresses any general distribution169

into equal-volume bins.170

Once the BSP has been performed for a given choice of 𝑥 and 𝑦 coordinates, we can track changes171

to the mean temperature, 𝑇 and salinity, 𝑆 in each bin over time. This allows us to quantify how172

variability (‘noise’) behaves in each co-ordinate system regardless of whether it is Eulerian or173

water-mass based.174
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v(x,y)

y1

21 bins

v(x,y)

y1

22 bins

x2

x1

a) b)

Fig. 1. A simple demonstration of Binary Space Partitioning applied to a generic two-dimensional volume

distribution. a) One slice orthogonal to the 𝑦-axis at 𝑦1 (in red) yields 21 equal-volume bins of 𝑣(𝑥, 𝑦). b) Two

additional slices orthogonal to the 𝑥-axis at 𝑥1, 𝑥2 (in blue) yield 22 equal-volume bins of 𝑣(𝑥, 𝑦).

175

176

177

In this work, we use BSP to partition the ocean’s volume into 2𝑛 equal-volume bins in three178

2D coordinate systems: 𝑇 − 𝑆, latitude-longitude and latitude-depth space. We first illustrate the179

partitioning of the ocean’s 𝑇 − 𝑆 volume distribution in the ACCESS-CM2 piControl run in figure180

2 for 𝑛 = 1,2,5, and 8.181

In latitude-longitude and latitude-depth co-ordinates, we perform BSP on the depth-integrated185

and zonally-integrated volumedistribution, respectively. To account for the periodicity of longitude,186

we choose to ensure that the Americas and Drake Passage form both the far western and far eastern187

boundary of the ocean. This is done by slicing the ocean at 70◦𝑊 longitude from 90◦𝑆 to 3◦𝑁188

latitude, then a diagonal slice is made from 70◦𝑊 longitude to 100◦𝑊 between 3◦𝑁 latitude and189

20◦𝑁 , and the slice continues north from 20◦𝑁 to 90◦𝑁 along the 100◦𝑊 longitude. Data points190

between this line and the Greenwich Meridian, moving east, are labelled with negative longitudes191

(i.e. are measured west of Greenwich) while the remaining data points to the east of Greenwich are192
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Fig. 2. BSP splitting on alternating axes, applied to the ACCESS-CM2 piControl volumetric distribution in

𝑇 − 𝑆 space, with 2𝑛 bins, where a) n=1, b) n=2, c) n=5, and d) n=8. Note that the salinity axis has three linear

scales, delineated by the two horizontal breaks.

182

183

184
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Fig. 3. BSP splitting on alternating axes with 28 bins, applied to the ACCESS-CM2 piControl (a and c) depth-

integrated volumetric distribution in latitude-longitude co-ordinates, and (b and d) zonally-integrated volumetric

distribution in latitude-depth co-ordinates. BSP bins are coloured by the time-mean (top row) salinity and

(bottom row) temperature in each bin.

197

198

199

200

labeled with positive longitudes (i.e. are measured east of Greenwich). This ensures, for example,193

that data points either side of the Isthmus of Panama do not combine into the same BSP bin. Figure194

3 shows the resulting BSP bins in both Eulerian co-ordinate systems for 𝑛 = 8, coloured by their195

mean temperature and salinity.196

Note that in BSP, the choice of which axis to cut along, or indeed the angle of the line that201

makes the cut, is entirely arbitrary. If choosing to cut orthogonal to the distribution axes, there202
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exist 2𝑛 combinations of the order of subdivision that are valid. More generally, the choice to203

slice orthogonally to an axis is also arbitrary, and the BSP algorithm could, for instance, be204

directed to modify its angle until the volume constraint 12𝑛
∬

𝑣(𝑥, 𝑦)𝑑𝑥𝑑𝑦 is met. That said, not all205

combinations are physically plausible when subdividing the ocean in 𝑇 − 𝑆 or Eulerian space, and206

we opt to focus hereafter on the specific case of orthogonal slices alternating between the 𝑦− and207

𝑥− axes (𝑦𝑥𝑦𝑥𝑦𝑥𝑦𝑥 for 8 cuts). This order of BSP split combinations preserves the aspect ratio208

of BSP bins, ensuring a more equivalent representation of 𝑥− and 𝑦− variability. We explore this209

aspect ratio argument, and impact of choosing to slice along other orders of subdivision, in the210

Appendix, and reserve exploration of non-orthogonal slices in BSP for future work.211

b. Visualising 2D BSP framework212

In Eulerian space, the BSP bins generally align with the regular latitude-longitude (or latitude-216

depth) grid, as demonstrated by the general uniformity in BSP bin size in figure 3. However, in217

𝑇 − 𝑆 space, the ocean’s volume is concentrated over a relatively narrow range of temperatures218

and salinities (figures 2). Thus, the equal-volume binning using BSP leads to a large difference219

in the temperature and salinity ranges spanned by a given bin in 𝑇 − 𝑆 space. Surface waters220

(which occupy a large range of temperatures and salinities but represent minimal volume) are over-221

represented in the visualisation, as exhibited in figure 4a. Instead, it is advantageous to visualise222

each bin with an equal area in order to more clearly convey the equal-volume nature of the BSP223

framework. In order to achieve this, wemake use of the binary tree structure obtained from the BSP.224

By construction, the corner bins obtained from the BSP (i.e, the top-right, top-left, bottom-right225

and bottom-left bins) represent the extrema in 𝑇 − 𝑆 space. All other bins are situated relative to226

these extrema in the BSP tree, and can be remapped relative to these corner bins. Hence, we remap227

the bins obtained from BSP onto a plot relative to the ocean’s extrema.228

In figure 4, we plot the output of this remapping in 𝑇 −𝑆 space. We plot the mean salinity (figure229

4a and b) and the mean temperature (figure 4c and d) within each BSP bin in 𝑇 −𝑆 and in remapped230

𝑇 − 𝑆 space. The remapping effectively preserves the fresh-to-salty and hot-to-cold gradient of231

temperature and salinity in each bin (figure 4b and d). The use of the BSP tree structure in the232

remapping ensures that each bin (representing a single unit of volume) is saltier (fresher) and hotter233

(colder) than the bin to its left (right) and below (above) it.234
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Fig. 4. Remapping BSP bins from (a and c) real 𝑇 −𝑆 space, to (b and d) relative 𝑇 −𝑆 space based on a binary

tree structure. BSP bins are coloured by (a and b) time-mean salinity, and (c and d), time-mean temperature in

the ACCESS-CM2 piControl run.

213

214

215

The characteristic salinity and temperature of the global ocean can be seen in the remapped238

BSP plots in all coordinate systems (figure 5). The salty North Atlantic is visible in the top left239

of figure 5b and right side of figure 5c, while the relatively fresher Pacific and Southern Oceans240

are evident in the bottom and right hand side of figure 5b and top left of figure 5c, respectively.241

The clear thermal stratification of the global ocean through depth is also retained in the remapped242

latitude-depth plots, as shown in figure 5f.243

In this work, we present all results in the form of this remapped BSP visualisation, as it provides244

equal visual weight to each volume of ocean regardless of the space occupied by each bin in245

its original coordinate system. This remapping also retains the salient features of the different246

12



Fig. 5. Time-mean (a - c) salinity and (d - f) temperature in remapped equal-volume BSP bins, in (a and d)

𝑇 − 𝑆, (b and e) latitude-longitude, and (c and f) latitude-depth co-ordinates, from the ACCESS-CM2 piControl

simulation.

235

236

237

coordinate systems while presenting the data on an equivalent constant-volume metric, enabling a247

cleaner comparison between different coordinate systems. For ease of interpretation of the BSP248

remapping and further results in 𝑇 − 𝑆 space, we show the broad geographic distribution of the249

warmest (coldest), freshest (saltiest) 25% volume of the ocean in the Appendix (figure B1).250

c. Signal-to-Noise Ratio251

The signal-to-noise ratio is commonly employed to determine the relative impact of internal252

variability in the climate system (e.g., Hawkins and Sutton (2012)). Here, we define signal-253

to-noise ratio (F/N) as the change in temperature (or salinity) in a given bin over the historical254

period (1850 to 2014), divided by the standard deviation of the temperature (or salinity) over the255

pre-industrial control period:256

𝐹/𝑁 = Δ𝐶/𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , (1)
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where 𝐶 is any generic tracer. In this work, we calculate F/N for the mean T and S in all BSP bins257

in 𝑇 − 𝑆, latitude-longitude, and latitude-depth co-ordinates (section 5).258

4. Results259

The BSP framework enables an equal-volume comparison between three popular two-260

dimensional coordinate systems used to assess ocean and climatic changes - the temperature-261

salinity, latitude-longitude, and latitude-depth coordinate systems. In this section, we explore the262

internal variability, or ‘noise’, in these three co-ordinate systems.263

a. Internal Variability264

We begin by assessing the internal variability in the mean temperature and salinity of each BSP265

bin in the three coordinate systems in question. Overall, the 𝑇 − 𝑆 coordinate system exhibits266

a broad range in variance, from low variability in BSP bins corresponding to the ocean interior267

(bottom-middle bins in figure 6a and d), to high variability in BSP bins corresponding to the ocean’s268

surface (edge and corner bins in figure 6a and d). The range in variability between surface and269

interior BSP bins is also reflected in the latitude-depth plots (figure 6c and f), where deep bins have270

lower variability than surface bins. Latitude-longitude co-ordinates (which are depth-integrated)271

tend to have a smaller range in variability overall (figure 6b and e).272

The difference in variability between different BSP bins, and between co-ordinate systems, can273

be traced to two possible sources. First, the process of integrating over the ocean volume in274

different co-ordinate systems may lead to differing phase-cancellation characteristics of variability275

that varies in space. For example, any modes of variability that result in warming at one longitude276

and cooling at another longitude at the same latitude and depth will compensate each other in277

that given latitude-depth bin, leading to reduced variability in latitude-depth compared to the278

longitude-latitude coordinate where the two phases of the variability are separated.279

Second, watermass-based co-ordinates exclude by construction adiabatic processes (associated280

with, for example, wind-driven circulation changes), whichmay have a higher amplitude variability.281

Thus, the difference between variability in 𝑇 − 𝑆 space and its Eulerian counterparts may be due282

to the fact that variability in 𝑇 − 𝑆 space is solely due to diabatic processes, while variability in283

Eulerian co-ordinates may be due to both diabatic and adiabatic processes.284
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Fig. 6. (a - c) Variance in salinity, 𝑙𝑜𝑔10(𝜎2𝑆) and (d - f) temperature, 𝑙𝑜𝑔10(𝜎
2
𝑇
) in equal-volume BSP bins, in

(a and d) 𝑇 − 𝑆, (b and e) latitude-longitude, and (c and f) latitude-depth co-ordinates.

285

286

The histogram of salinity and temperature variance in each co-ordinate system (figure 7) pro-287

vides further insight into differences between watermass-based and Eulerian co-ordinate systems.288

𝑇 − 𝑆 co-ordinates filter out the adiabatic processes, resulting in a lower median variability, while289

latitude-depth and latitude-longitude both have higher median variances. The shape of the variance290

distributions is also instructive - both 𝑇 − 𝑆 and latitude-depth co-ordinates have skewed distribu-291

tions with long tails. Latitude-longitude co-ordinates, on the other hand, exhibit a quasi-‘Normal’292

Gaussian distribution. This may be an interesting example of the central limit theorem, which293

states that statistics of random, independent variables, when summed up, are distributed with a294

Normal, Gaussian distribution. The process of depth-integrating may resemble such a summation295

of random variables (though we acknowledge that ocean processes are of course not independent)296

potentially leading to the Normal distribution in blue in figure 7.297

As discussed in section 1, moving from one-dimensional temperature co-ordinates to two-301

dimensional 𝑇 − 𝑆 co-ordinates can enable a cleaner separation of surface and ocean interior302

watermasses due to the addition of the salinity co-ordinate. The histograms in figure 7 indicate303
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Fig. 7. Distribution of a) salinity variance, 𝑙𝑜𝑔10(𝜎2𝑆) and b) temperature variance, 𝑙𝑜𝑔10(𝜎
2
𝑇
) across all BSP

bins in 𝑇 − 𝑆 (red), latitude-longitude (blue) and latitude-depth (green) co-ordinates. Dashed lines show the

median variance for each co-ordinate system.

298

299

300

that this separation leads to a more skewed distribution of variance, with a large number of weakly304

varying interior bins and a small handful of surface ocean bins. Due to this skewness, the mean305

variance across the entire distribution (as calculated in the 1D case in Holmes et al. (2022)) for306

our 2D case is strongly impacted by surface bins (which have higher variance). On the other307

hand, the median variance (vertical lines in Fig. 7) is weaker, reflecting the much more numerous308

interior BSP bins. This difference is also reflected in figure A1 in the Appendix, which compares309

the mean and median variance across the three co-ordinate systems with different BSP slicing310

combinations. While the mean variance jumps around due to changes in outliers, the median311

variance is remarkably stable, with 𝑇 − 𝑆 co-ordinates having a lower median variance across all312

plausible BSP split combinations compared to Eulerian co-ordinates (see the Appendix for details).313

In this work, we opt to compare the median terms of interest moving forward, though we do explore314

the difference between mean and median variance in our spectral analysis below.315
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The internal variability in figure 6 is a consequence of inter-annual and sub-decadal ocean pro-316

cesses, (<10 year periods, such as the El-Niño Southern Oscillation and North Atlantic Oscillation),317

and multi-decadal and centennial processes (>10 year periods, such as Atlantic Meridional Over-318

turning Circulation variability). In order to parse the relative influence of sub-decadal processes319

on internal variability, we present the variability of the 10-year low-pass filtered temperature and320

salinity signal (subtracted from the total temperature and salinity variability) relative to the total321

temperature and salinity variability, in figure 8. A fraction of 1 in figure 8 indicates that all of322

the variability in the given bin may be attributed to sub-decadal processes, while a fraction of 0323

indicates that all of the variability in the given bin may be attributed to multi-decadal processes.324

Overall, variability in 𝑇 − 𝑆 coordinates is influenced most by multi-decadal processes (figure 8a325

and d). Surface waters (edge bins in figure 8a and d) have the highest proportion of sub-decadal326

variability in 𝑇 − 𝑆 space. Latitude-longitude co-ordinates have a higher fraction of sub-decadal327

variability, particularly in the North Atlantic and Equatorial Pacific (possibly due to the influence328

of ENSO; figure 8b and e). Latitude-depth co-ordinates have the highest fraction of sub-decadal329

variability of the three co-ordinate systems. This may be due to zonally-integrated barotropic330

heave processes occurring at sub-decadal timescales and enhancing variability throughout the331

ocean column (Häkkinen et al. 2016).332

The stark difference between different co-ordinate systems is highlighted by plotting the distri-336

bution of proportion of sub-decadal variance in the three co-ordinate systems explored (see figure337

9). Approximately 75% of the total variability in 𝑇 −𝑆 space comes from > 10 year processes (red338

dashed lines in figure 9), suggesting that diabatic processes tend to occur, on average, at multi-339

decadal timescales. In contrast, around 50% (30%) of the total salinity (temperature) variability in340

latitude-longitude space comes from > 10 year processes (blue dashed lines in figure 9), while less341

than 10% of the total variability in latitude-depth space comes from > 10 year processes (green342

dashed lines in figure 9). These results are consistent with the one-dimensional analysis of Holmes343

et al. (2022) who showed that the mean temperature variance in a 1D temperature-based coordinate344

became comparable to variability in one-dimensional depth and latitude co-ordinates at decadal to345

multi-decadal time-scales, where diabatic processes dominate.346

The variability fractions presented here are stable across all feasible BSP split combinations350

(figure A1). For all split combinations, a lower fraction of variability comes from sub-decadal351
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Fig. 8. Proportion of variance due to sub-decadal processes, (a - c) in salinity 𝜎2
𝑆
(𝑡 < 10)/𝜎2

𝑆
and (d - f)

in temperature 𝜎2
𝑇
(𝑡 < 10)/𝜎2

𝑇
, in (a and d) 𝑇 − 𝑆, (b and e) latitude-longitude, and (c and f) latitude-depth

co-ordinates.

333

334

335

processes in 𝑇 − 𝑆 co-ordinates compared with Eulerian co-ordinates. These results provide firm352

evidence that 𝑇 − 𝑆 coordinate systems capture more long-timescale flow processes than their353

Eulerian counterparts.354

The variability in all three co-ordinate systems may be further broken down into characteristic360

timescales using spectral analysis, as shown in figure 10. As highlighted earlier, mean variance361

is more sensitive to outlier values in 𝑇 − 𝑆 and latitude-depth space (which tend to have a skewed362

variance distribution). As a consequence, mean power spectra (figure 10a and c) are more impacted363

by outlier (often surface) sources of variability. Our mean results in figure 10c compare with the364

prior one-dimensional analysis of Holmes et al. (2022) (specifically, figure 11a in Holmes et al.365

(2022)). The mean power spectra of temperature shows a clear peak in the 2 - 3 year time period in366

temperature in both 𝑇 − 𝑆 co-ordinates and latitude-longitude co-ordinates (compare blue and red367

lines in figure 10c), aligning with findings by Holmes et al. (2022), who concluded that this peak368

is likely due to ENSO. Holmes et al. (2022) found that the mean temperature variability in 𝑇 space369
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Fig. 9. Distribution of proportion of variance due to sub-decadal processes a) in salinity 𝜎2
𝑆
(𝑡 < 10)/𝜎2

𝑆
and

b) in temperature 𝜎2
𝑇
(𝑡 < 10)/𝜎2

𝑇
across all BSP bins in 𝑇 − 𝑆 (red), latitude-longitude (blue) and latitude-depth

(green) co-ordinates. Dashed lines show the median variance proportion for each co-ordinate system.

347

348

349

exceeds that in depth space at 𝑡 > 10 years. This crossover point (compare green and red lines in370

figure 10c) is earlier in our results due to the addition of second axes (salinity and latitude) in our371

analysis.372

The median power spectra, a means of comparison between co-ordinate systems which is more373

reflective of the more numerous ocean interior bins, show a stark difference between variance in374

Eulerian and watermass-based co-ordinates (figures 10b and d). Across all time periods, median375

variance in 𝑇 − 𝑆 space is lower than that in latitude-longitude or latitude-depth space. The376

difference between sub-decadal and multi-decadal variability is also most pronounced in 𝑇 − 𝑆377

space, re-enforcing findings in figure 9. Overall, latitude-longitude co-ordinates have the highest378

median variance across most time periods, though temperature variances are similar in latitude-379

longitude and latitude-depth space (figure 10d; compare green and blue lines).380

19



Fig. 10. Power spectra of (a and b) salinity variability and (c and d) temperature variability in𝑇 −𝑆 co-ordinates

(red), latitude-longitude co-ordinates (blue) and latitude-depth co-ordinates (green). Spectra are presented both

as the mean of all BSP bins (a and c) and the median of all BSP bins (b and d). The vertical dashed line shows a

period of 10 years, the cutoff used in figure 8. Power spectra are calculated frommonthly data, using Thompson’s

multitaper method with 19 Slepian tapers.

355

356

357

358

359

b. Modes of Variability381

The primary modes of variability that drive internal variability in the three coordinate systems382

may be explored via Principal Component Analysis (PCA), where a principal component (PC) is383

the eigenvector of the covariance matrix of the distribution. The correlation coefficients obtained384

from PCA can indicate dominant modes of variability in the time series. PCA yields several PCs385

which collectively explain the total variance in a time series. We can thus find the number of PCs386

needed to adequately explain a high proportion of variance in a time series – the lower the number387

of PCs, the ‘simpler’ the time series can be considered to be. Figure 11 shows the cumulative388

proportion of variance explained by the PCs obtained from PCA.389

𝑇 −𝑆 space captures total temperature and salinity variance with the fewest principal components.390

The difference between 𝑇 − 𝑆 and its Eulerian components is particularly large when assessing391

temperature variability, as shown in figure 11a. In 𝑇 − 𝑆 space, 95% of the total temperature392
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Fig. 11. Cumulative proportion of total variance captured by principal components in the Principal Component

Analysis, for monthly a) salinity, and b) temperature, in 𝑇 − 𝑆 co-ordinates (red), latitude-longitude co-ordinates

(blue) and latitude-depth co-ordinates (green).

395

396

397

variance is captured in 17 principal components, while in latitude-depth and latitude-longitude393

co-ordinates 67 and 146 PCs respectively are required to capture 95% of temperature variance.394

The difference between water-mass coordinates and Eulerian coordinates is less distinct in the398

salinity time series (figure 11b). 95% of salinity variance can be captured by 26, 25, and 91399

PCs in 𝑇 − 𝑆 space, latitude-depth space and latitude-longitude space, respectively. Thus, while400

𝑇 − 𝑆 co-ordinates remain the preferred choice to express temperature variability most simply,401

latitude-depth presents an equivalent alternative for salinity variability.402

5. Discussion: Implications for signal-to-noise ratio403

Overall, our results show that the projection of internal variability, or ‘noise’ in the climate404

system, into 𝑇 −𝑆 co-ordinates is reduced compared to Eulerian frameworks. In theory, this should405

mean that the historical signal of ocean heating and salinity change should emerge from background406
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Fig. 12. Linear trend in historical (a - c) salinity (in g/kg/year) and (d - f) temperature (in ◦C/year), in (a and d)

𝑇 − 𝑆, (b and e) latitude-longitude, and (c and f) latitude-depth co-ordinates, from 1970-2014. The linear trend

is calculated by finding the slope of the linear regression on monthly data from January 1970 to December 2014.

415

416

417

variability more cleanly in 𝑇 − 𝑆 space, manifesting as a higher median signal-to-noise ratio. Here407

we assess the ‘signal’, that is, the historical temperature and salinity tendency, in 𝑇 − 𝑆, latitude-408

depth space and latitude-longitude space. Figure 12 shows the temperature and salinity tendencies409

from 1970 to 2014 in the ACCESS-CM2 historical simulations. The salinity tendency (figure 12a,410

b and c) aligns with previous model and historical estimates of salt content change. In 𝑇 −𝑆 space,411

salty regions get saltier, and fresh regions get fresher, following a ‘wet-gets-wetter-dry-gets-drier’412

pattern (Allan et al. 2020). Overall, the changes in salinity in 𝑇 − 𝑆 space and latitude-depth space413

align with findings by (Sohail et al. 2022; Silvy et al. 2020).414

Temperature tendency in a fixed-volume framework is proportional to heat content change, so418

the temperature tendencies presented in figure 12d, e and f may be though of as equivalent to the419

ocean heat content change. In 𝑇 − 𝑆 space, there is broad warming over almost all water masses,420

save a small water mass in a warm, salty quadrant of the global ocean. This warming profile is421

consistent, at least in temperature space and depth space, with findings by Sohail et al. (2021).422
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Thus, the BSP remapping captures well previously observed trends in ocean heat and salt content,423

lending credence to the method as a means to assess changes in historical temperature and salinity,424

or the climate change ‘signal’.425

Having quantified both the temperature and salinity signal and noise in the climate system, we426

proceed to test whether 𝑇 − 𝑆 co-ordinates do indeed improve the signal-to-noise ratio compared427

to more traditional Eulerian frameworks. We focus on the entire historical signal, from 1850 to428

2014, as our climate ‘signal. We follow equation (1) to calculate signal-to-noise ratio, and use the429

end-to-end difference over the historical period (i.e., C in 2014minus C in 1850) asΔC in the signal-430

to-noise ratio calculation. The signal-to-noise ratio in 𝑇 − 𝑆, latitude-depth and latitude-longitude431

space is shown for each BSP bin in figure 13, for salinity (panels a-c), and temperature (panels432

d-f). 𝑇 − 𝑆 coordinates broadly show the highest signal-to-noise ratio, with a large proportion433

of bins having a signal which exceeds twice the standard deviation of the pre-industrial control434

simulations 𝐹/𝑁 > 2. Latitude-depth coordinates perform relatively well in isolating the forced435

signal in salinity space, particularly in the deep ocean, with higher signal-to-noise ratio values in436

this region. However, this trend is not replicated for temperature. Latitude-longitude coordinates437

perform the worst in isolating the historical forced signal from internal variability, with the vast438

majority of bins having a relatively low signal-to-noise ratio, in both salinity and temperature.439

The difference in signal-to-noise ratio between the three co-ordinate systems is well illustrated442

in histograms of the signal-to-noise ratio, shown in figure 14. 𝑇 − 𝑆 co-ordinates exhibit a much443

longer tail of high signal-to-noise ratios compared with their Eulerian counterparts. Note that444

the difference between mean and median for these signal-to-noise ratio results (i.e. the skewness445

of the signal-to-noise histogram) is much less extreme than for the raw variance comparison,446

precisely because the signal, in addition to the ‘noise’, is strongly skewed toward the surface. As a447

consequence, the mean and median signal-to-noise ratio in𝑇 −𝑆 co-ordinates is consistently higher448

than in Eulerian co-ordinates. The median (mean) signal-to-noise ratio for salinity is 4.7 (5.2) for449

𝑇 −𝑆, compared with 1.6 (1.9) and 2.5 (3.2) for latitude-longitude and latitude-depth, respectively.450

The median (mean) signal-to-noise ratio for temperature is 4.3 (5.1) for 𝑇 − 𝑆, compared with451

1.6 (1.8) and 1.4 (1.5) for latitude-longitude and latitude-depth, respectively. Thus, these results452

indicate that two-dimensional watermass co-ordinates are at least 2 times better at isolating the453
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Fig. 13. Signal-to-noise ratio of (a - c) salinity and (d - f) temperature, in (a and d) 𝑇 − 𝑆, (b and e) latitude-

longitude, and (c and f) latitude-depth co-ordinates.

440

441

forced temperature and salinity signal from background variability based on their signal-to-noise454

ratio.455

There are several questions open for further exploration, particularly in terms of theBSP algorithm459

presented here. In the past, watermass-based frameworks have been used to develop simple ocean460

heat and salt content budgets, wherein salt and heat content tendencies can be related solely to461

diabatic air-sea flux and mixing processes (Holmes et al. 2019; Sohail et al. 2021; Bladwell et al.462

2021). In the two-dimensional BSP framework, such a budget is more difficult to formulate, as463

changes to the properties of a bin can potentially change the BSP bins in adjacent 𝑇 − 𝑆 regions.464

That said, the formulation of a budget in the BSP framework may still yield new insights into ocean465

dynamics, and is reserved for future analysis.466
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Fig. 14. Frequency of occurrence of each signal-to-noise ratio in BSP bins, for a) salinity and b) temperature, in

𝑇 − 𝑆 co-ordinates (red), latitude-longitude co-ordinates (blue) and latitude-depth co-ordinates (green). Vertical

dashed lines show the median signal-to-noise ratio for each co-ordinate system.

456

457

458

In addition, one-dimensional analyses in temperature space have highlighted the potential benefits467

of using watermass-based co-ordinates to reduce sampling bias arising from adiabatic heave in468

observations (Palmer et al. 2007; Palmer and Haines 2009). BSP presents an opportunity to extract469

synthetic profiles from climate model data, following Allison et al. (2019), and assess the influence470

of two-dimensional co-ordinate systems on observational sampling biases and observed heat and471

salt content.472

6. Conclusions473

Watermass-based frameworks are becoming popular for capturing changes in ocean heat and474

salt content, in part because they are believed to reduce internal variability, thus more effectively475

isolating the historical ‘signal’ of climate change. However, a rigorous comparison between476

watermass-based frameworks and Eulerian (latitude-longitude, latitude-depth, etc.) co-ordinate477

systems has been difficult due to fundamental differences in the way these co-ordinate systems478
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are formulated. In this work, we introduce a statistical method, called Binary Space Partitioning479

(BSP) to recast 𝑇 −𝑆, latitude-longitude and latitude-depth co-ordinate systems onto an equivalent,480

equal-volume co-ordinate. Applied to pre-industrial control and historical simulations of a state-481

of-the-art climate model, ACCESS-CM2, BSP enables an apples-to-apples comparison of internal482

variability between watermass-based and Eulerian co-ordinates. We find that 𝑇 − 𝑆 co-ordinates483

isolate the climate change signal such that median variability is reduced, and the majority of the484

variability that is captured can be attributed to multi-decadal processes in this framework. With a485

reduced ‘noise’ component, the historical signal is shown to be more effectively isolated in 𝑇 − 𝑆486

space, with a signal-to-noise ratio that is at least two times greater than its Eulerian counterparts.487

Thus, we conclusively show that watermass-based co-ordinates isolate the historical climate change488

signal more effectively than latitude-longitude and latitude-depth co-ordinates.489
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APPENDIX A501

Variability across 2𝑛 combinations of axis subdivisions502

In this study, we opt to subdivide alternating axes (starting with the 𝑦−axis) 8 times, to yield503

28 = 256 bins. However, as mentioned in section 3, there are 256 possible combinations of504

axis subdivisions that may have been chosen, including 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥𝑥𝑦, 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑥, etc. In505
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this appendix, we explore the influence of choosing some of these other combinations of axis506

subdivisions on our results.507

When assessing internal variability in two-dimensional tracer space, an ideal coordinate system508

would equally represent changes in both the 𝑥− and 𝑦−axes. For instance, in some climate model509

grids latitude and longitude have roughly equivalent resolutions as variability in the latitudinal510

and longitudinal directions is roughly similar. Of course, for the sake of reducing computational511

complexity, dimensions which are known apriori to exhibit characteristically lower variability may512

have reduced resolution - for instance, ocean model grids typically have lower depth resolution513

than latitude or longitude. Without such apriori knowledge of variability in a given dimension, and514

in an attempt to create a like-for-like co-ordinate system, we argue that the most appropriate BSP515

split combinations would be ones that preserve the aspect ratio of bins. Thus, we propose that the516

most physically plausible BSP split combinations are combinations of 𝑥𝑦 and 𝑦𝑥. Always splitting517

in axis pairs ensures that no long, thin bins are created which span a large range in one dimension518

but a small range in another dimension.519
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Fig.A1. (a and d) Mean and (b and e) Median variance, and (c and f) Median fraction of sub-decadal variance

in 𝑇 − 𝑆 (red), latitude-longitude (blue) and latitude-depth (green) co-ordinates across 16 plausible BSP split

combinations.
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521
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For 𝑛 = 8, there are 16 𝑦𝑥 and 𝑥𝑦 combinations that preserve the BSP bin aspect ratio. The mean523

temperature and salinity variance changes across across the 16 combinations of BSP slices (figure524

A1a and d, where 𝑆 = 𝑥 and 𝑇 = 𝑦). As mentioned in section 4, this is because the distribution of525

variance in 𝑇 −𝑆 and latitude-depth space is highly skewed, meaning outliers have an outsized role526

in modifying the mean variance across all BSP bins. Instead, looking at median variance (figure527

A1b and e) shows a much more consistent picture, with 𝑇 −𝑆 co-ordinates having a lower variance528

across all split combinations. The median variance fraction (figure A1c and f) shows a similarly529

consistent picture. Across all BSP split combinations, 𝑇 − 𝑆 co-ordinates are dominated by multi-530

decadal processes, while latitude-depth co-ordinates are dominated by sub-decadal processes. Our531

exploration of alternative BSP split combinations further solidifies our findings, summarised in532

section 6, showing that reduced variance in watermass-based frameworks is insensitive to the order533

of BSP splitting used.534

APPENDIX B535

Geographic location of watermasses in 𝑇 − 𝑆 space536

It is difficult to conceptualise changes in watermass space in terms of the geographic location of537

said water masses. In an attempt to aid in interpretation of the results we show the volume fraction538

in each latitude-longitude and latitude-depth grid cell that corresponds to the warmest (coldest)539

and freshest (saltiest) 25% volume of the ocean, in figure B1. The 25% coldest and freshest ocean540

by volume is predominantly located in the Southern Ocean and surface Arctic ocean (figure B1a,541

b and c). Antarctic Bottom Water and Pacific subsurface waters are captured in this quadrant. The542

25% coldest and saltiest ocean is much more broadly distributed - and largely corresponds to the543

deepest ocean water (figure B1d, e and f). The North Atlantic Deep Water and North Atlantic544

overturning are captured in this quadrant.545
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Fig. B1. The volume fraction, in latitude-longitude and latitude-depth co-ordinates, occupied by four water

masses in 𝑇 − 𝑆 space: (a, b and c) The coldest, freshest 25% of the ocean, (d, e and f) the coldest, saltiest 25%

of the ocean, (g, h and i) the warmest, freshest 25% of the ocean and (j, k and l) the warmest, saltiest 25% of the

ocean. Land masses are marked in grey.
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547
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The 25% warmest and freshest ocean is largely isolated to the surface Pacific ocean, as well as550

the Antarctic Intermediate Water, but excludes the Pacific subpolar gyres (figure B1g, h and i). The551

25% warmest and saltiest ocean, on the other hand, is almost exclusively isolated to the Indian and552

Atlantic oceans (excluding the Indo-Pacific warm pool), and includes the Pacific subpolar gyres553

(figure B1j, k and l).554
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