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Abstract

The World Health Organization (WHO) recently reduced its health guideline for Nitrogen dioxide (NO 2) to annual and 24-hr

means of 10 μg/m 3 (5.3 ppb) and 25 μg/m 3 (13.3 ppb). NO 2 is a criteria air pollutant that varies spatiotemporally at

fine resolutions due to its relatively short lifetime (˜hours) and current models have limited ability to capture this variation.

To advance global exposure estimates, we created a daily global land use regression (LUR) model with 50 x 50 m 2 spatial

resolution using 5.7 million daily air monitor averages collected from 8,250 monitor locations. In cross-validation, the model

captured 47%, 59%, and 63% of daily, monthly, and annual global NO 2 variation. Daily, monthly, and annual root mean square

error were 6.8, 5.0, and 4.4 ppb and absolute bias were 46%, 30%, and 21%, respectively. The final model has 11 variables,

including road density and built environments with fine (30 m or less) spatial resolution and meteorological and satellite data

with daily temporal resolution. Major roads and satellite-based estimates of NO 2 were consistently the strongest predictors

in all regions. Daily model estimates from 2005-2019 are available 1 and can be used for global risk assessments and health

studies, particularly in countries without NO 2 monitoring. Short synopsis: This is the first global NO 2 model with daily

temporal and 50m spatial resolution, valuable for capturing NO 2 variation.
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Abstract 

The World Health Organization (WHO) recently reduced its health guideline for Nitrogen dioxide (NO2) 

to annual and 24-hr means of 10 µg/m3 (5.3 ppb) and 25 µg/m3 (13.3 ppb).  NO2 is a criteria air pollutant 

that varies spatiotemporally at fine resolutions due to its relatively short lifetime (~hours) and current 

models have limited ability to capture this variation.  To advance global exposure estimates, we created a 

daily global land use regression (LUR) model with 50 x 50 m2 spatial resolution using 5.7 million daily 

air monitor averages collected from 8,250 monitor locations.  In cross-validation, the model captured 

47%, 59%, and 63% of daily, monthly, and annual global NO2 variation.  Daily, monthly, and annual root 

mean square error were 6.8, 5.0, and 4.4 ppb and absolute bias were 46%, 30%, and 21%, respectively.  

The final model has 11 variables, including road density and built environments with fine (30 m or less) 

spatial resolution and meteorological and satellite data with daily temporal resolution.  Major roads and 

satellite-based estimates of NO2 were consistently the strongest predictors in all regions.  Daily model 

estimates from 2005-2019 are available and can be used for global risk assessments and health studies, 

particularly in countries without NO2 monitoring.   

 

Short synopsis: This is the first global NO2 model with daily temporal and 50m spatial resolution, 

valuable for capturing NO2 variation. 
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Introduction 1 

Outdoor air pollution is an environmental health hazard.  The Global Burden of Disease study 2 

estimates that outdoor air pollution was responsible for 6% (3.4 million) of global deaths in 2017 [1].  3 

Outdoor air pollution is a combination of multiple air pollutants of concern, such as fine particulate 4 

matter, black carbon, ozone, benzene, and nitrogen dioxide (NO2).  NO2 is a criteria air pollutant strongly 5 

associated with traffic-related air pollution and is often used in health studies as a maker of overall 6 

tailpipe emissions [2].  Studies suggest both acute and chronic exposure to ambient NO2 is associated 7 

with adverse health outcomes.  Acute ambient NO2 exposures are associated with child asthma hospital 8 

visits [3] and adult ischemic stroke [4], while chronic NO2 exposure is associated with increased odds of 9 

adult and childhood asthma incidence [5] and lung cancer [6].  Based on epidemiological and animal 10 

evidence, in 2021 the World Health Organization (WHO) revised its health guidelines for NO2, reducing 11 

the annual mean NO2 level to 10 µg/m3 (5.3 ppb) and the 24-hr mean to 25 µg/m3 (13.3 ppb).   12 

Recent years have seen significant progress in advancing global NO2 models and concomitant 13 

global NO2 exposure estimates.  Remote sensing columnar tropospheric NO2 measurements from the 14 

TROPOspheric Monitoring Instrument (TROPOMI) are available daily at 7 × 3.5 km2 resolution starting 15 

April 30, 2018 through August 5, 2019 and 5.5 × 3.5 km2 thereafter [7].  The Ozone Monitoring 16 

Instrument (OMI) is the predecessor instrument to TROPOMI, launched in July 2004 and is still active 17 

[8]. While OMI reports data at a coarser resolution (24 × 13 km2) than TROPOMI, the measurements are 18 

over a multi-decadal timeframe, which makes it advantageous for performing retrospective long-term 19 

trend studies [9-11], such as this one. Satellite NO2 measurements can be reported at finer spatial 20 

resolution (~1 x 1 km2) when aggregated to monthly, seasonal or annual timescales using a process called 21 

oversampling [12,13]. Global LUR models for annual NO2 are available at high spatial resolutions 22 

(100m) for single snapshots in time [14], daytime and nighttime 2017 average global LUR models are 23 

available [15], and deterministic global models adjusting OMI and TROPOMI measurements with the 24 

Geos-chem chemical transport model exist at moderate spatial resolutions (~2.8km2) [16].  However, for 25 



health studies and burden of disease estimates (e.g. Global Burden of Disease Study [17]) that rely on 26 

retrospective exposure assessments prior to 2018, there are no global NO2 models available with spatial 27 

resolutions < 1km and temporal resolutions < annual averages.  Given that NO2 gradients near major 28 

roads and highways rapidly fall to background levels (100-400m) and ambient NO2 concentrations exhibit 29 

strong seasonal trends, retrospective exposure estimates require both fine spatial and temporal resolutions. 30 

We developed a daily global NO2 LUR model with 50 x 50 m2 spatial resolution and coverage 31 

from 2005 to 2019.  The model was trained using 5.7 million daily averages of air monitor records 32 

collected from 8,250 air monitor stations.  We included a range of important datasets for prediction, 33 

including remote sensing measurements of tropospheric column NO2 from the OMI, road networks, built 34 

up environments, and meteorological variables.  This model can improve retrospective global risk 35 

estimates of NO2 exposure and associated health burden, provide standardized NO2 estimates for 36 

international health studies, and refine NO2 estimates for health studies in developing countries where 37 

city- or country-specific measurements or retrospective models do not exist. 38 

Methods 39 

Data Collection 40 

NO2 Air Pollution Monitoring.   41 

Hourly NO2 air monitor measurements from 2005-2019 were collected from a wide range of data 42 

aggregators and environmental and regulatory agency websites (Table S1, Table 2). This includes 43 

OpenAQ (n=3.3 million daily averages) and country specific monitoring networks for the European 44 

Union (7.2 million daily averages), Japan (2.6 million daily averages), United States (2.1 million daily 45 

averages), Canada (0.8 million daily averages), Mexico (0.1 million daily averages), and South Africa 46 

(0.1 million daily averages).  We did not include data that required manual data downloading since we 47 

wanted the modelling process to be repeatable and easily updated for future GBD estimates.  Most 48 

regulatory NO2 monitors use a chemiluminescence technique that suffers from a well-characterized high 49 



bias [18,19].  This bias varies from approximately +10% to > +100% and is smallest in high-density 50 

urban (fresh emissions) and largest in rural, heavily forested regions (highly oxidized emissions) [19]. We 51 

decided not to correct for this monitor bias since most epidemiological studies are based on unadjusted 52 

regulatory monitoring data. We excluded air monitor records prior to 2005 as several predictor variables, 53 

most notably OMI, are not available prior to 2005.  Daily 24-hour averages (12 am to 11pm local time) 54 

were calculated if at least 18 of the 24-hour measurements were valid.  Daily averages greater than 250 55 

ppb (above the 99.99th percentile) were excluded.  Monthly averages were calculated if at least 50% of the 56 

daily averages within a month were valid.  Annual averages were calculated if 50% of the daily averages 57 

within the year and two monthly averages within each quarter were valid.  For duplicate air monitor 58 

records in multiple databases, validated air monitor records from regulatory agencies were kept while 59 

unofficial hourly measurements from air quality websites were discarded.  The final database included 5.7 60 

million daily air monitor averages collected from 8,250 air monitor locations.  61 

Predictor Variables.  62 

Predictor data derived for each monitoring state are summarized in Table 1.  Data were 63 

downloaded at the temporal resolution listed in Table 1 and for each fine-scale land use characteristic, 64 

multiple buffer variables were created, ranging from 50m to 20km in radius. Buffer variables and point 65 

estimates were calculated using Python 3.8.8 scripts written for automated analysis in ArcGIS Pro 2.8.0.  66 

Python scripts are available at https://github.com/larkinandy/LUR-NO2-Model.   67 

 68 

Table 1.  Predictor Variables Derived for 8,250 Air Monitor Locations, Ordered by Temporal Resolution 69 
Available. 70 

Variable Spatia
l Scale 

Temporal 
Scale 

Years Unit Source 

Major Roads na na 2018 na www.openstreetmap.org 
Minor Roads na na 2018 na www.openstreetmap.org 
Residential 
Roads 

na na 2018 na www.openstreetmap.org 

Major 
Railways 

na na 2018 na www.openstreetmap.org 

https://github.com/larkinandy/LUR-NO2-Model


Minor 
Railways 

na na 2018 na www.openstreetmap.org 

Water Body 30m na 2018 indicator developers.google.com/earth-
engine/datasets/catalog/GLCF_GLS_WATER?
hl=en 

Elevation 30m na multiple 
years 

 developers.google.com/earth-
engine/datasets/catalog/USGS_SRTMGL1_003
?hl=en#description 

Population 
Density 

1km five year 2005-
2020 

persons/k
m 

developers.google.com/earth-
engine/datasets/catalog/CIESIN_GPWv411_G
PW_Population_Density?hl=en 

Tree Cover 30m five year 2005-
2015 

% landsat.gsfc.nasa.gov/article/global-30m-
landsat-tree-canopy-version-4-released  

Power Plant 
Emissions 

na annual 2016 tons 
CO2/year 

developers.google.com/earth-
engine/datasets/catalog/WRI_GPPD_power_pl
ants 

Built 
Environment 

30m annual 2005-
2018 

indicator developers.google.com/earth-
engine/datasets/catalog/Tsinghua_FROM-
GLC_GAIA_v10?hl=en 

NDVI 250m monthly 2005-
2019 

normaliz
ed units 

developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MOD13
Q1  

CEDS Sector 
Specific NO2 
Emissions 

0.5˚ monthly 2005-
2019 

total 
mass 

www.globalchange.umd.edu/ceds/ceds-cmip6-
data/ 

Active Fires 0.1˚ daily 2005-
2019 

megawat
ts 

developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MOD14
A1?hl=en  

Boundary 
Layer Height 

31km daily 2005-
2019 

m www.ecmwf.int/en/forecasts/datasets/reanalysi
s-datasets/era5 

OMI NO2 
column 
density 

0.25˚ daily 2005-
2019 

mol/m2 registry.opendata.aws/omi-no2-nasa/ 

Surface 
Pressure 

31km daily 2005-
2019 

Pa www.ecmwf.int/en/forecasts/datasets/reanalysi
s-datasets/era5 

Temperature 31km daily 2005-
2019 

K www.ecmwf.int/en/forecasts/datasets/reanalysi
s-datasets/era5 

Precipitation 31km daily 2005-
2019 

m www.ecmwf.int/en/forecasts/datasets/reanalysi
s-datasets/era5 

Downward 
UV Radiation  

31km daily 2005=2
019 

Jm-2 www.ecmwf.int/en/forecasts/datasets/reanalysi
s-datasets/era5 

 71 

The temporal scale of variable predictors varied substantially based on availability. Road and 72 

railway networks were extracted from an August 2018 snapshot of the OpenStreetMap (OSM) 73 

geodatabase.  We reclassified OSM road and railway networks into the following categories: Major roads 74 

were derived from OSM motorways, motorway links, trunks, trunk links, primary and secondary roads 75 

and links.  Minor roads were derived from OSM tertiary roads and tertiary road links.  Residential roads 76 

were derived from OSM residential roads and residential road links.  Other OSM road classifications (e.g. 77 

http://www.globalchange.umd.edu/ceds/ceds-cmip6-data/
http://www.globalchange.umd.edu/ceds/ceds-cmip6-data/
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
http://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5


service roads and bridleways) were excluded.  Major railways were derived from OSM mainline railways, 78 

and minor railways were derived from OSM light rail and monorails.  Other predictors were available for 79 

temporal scales of 5 years, annually, monthly, or daily for our study period of 2005-2009.  80 

Daily temporal variables included NO2 tropospheric column density measurements and 81 

meteorological data. Daily NO2 tropospheric column density measurements from the Ozone Monitoring 82 

Instrument (OMI) version 4.0 [20] were downloaded from NASA.  Measurements were preprocessed by 83 

NASA with a screen for snow cover, cloud fraction < 30%, and data unaffected by an instrument 84 

obstruction called the row anomaly.  Monthly averages were calculated if 25% of the daily averages were 85 

valid, and annual averages were calculated if 25% of the daily averages within the year and 1 monthly 86 

average within each quarter were valid.  This screening will disproportionately affect polar and cloudy 87 

regions and have no effect on areas with climatologically clear skies. For meteorology, hourly boundary 88 

layer height, precipitation, surface temperature, and near surface atmospheric pressure predictions 89 

generated by the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis Model v5 90 

(ERA5) were downloaded from the ECMWF database.  Daily averages (12am to 11pm local time) were 91 

calculated after adjusting for local time zones.   92 

Statistical Analysis 93 

Daily LUR models were developed using Lasso variable selection (glmnet package in RStudio, v. 94 

1.4.1106), weighted by geographical and seasonal coverage. We used weights to account for the different 95 

global and season coverage of the available NO2 monitoring data, to better model global NO2 96 

concentrations and predictors. Appendix Figure S1 describes the weighting method used.  Parameters for 97 

Lasso variable selection include standardizing independent variables (standardization = True), selecting 98 

variables to minimize mean-squared error (type.measure=’mse), and forcing the direction of variable 99 

coefficients to conform to a-priori hypotheses (lower.lim=0).  The lasso model with a lambda cross-100 

validation score of one standard deviation from the minimum cross-validation score was selected as the 101 

model of choice to favor model simplification and inference over model prediction (s=lambda.1 se).  To 102 



reduce multicollinearity, models with incremental buffer sizes of the same land use characteristics were 103 

reduced to include the smallest buffer size, if the radii of the larger buffers were within 5 times the radii 104 

of the smaller buffers.  Variables were included in the final model if they were statistically significant, 105 

increased adjusted R2 either globally or within one or more continental regions by 1 percent or more, 106 

exhibited variance inflation factors less than 5 for at least one region and less than 10 for all regions. 107 

To evaluate the final model performance, we calculated root mean squared error (RMSE) mean 108 

absolute error (MAE), adjusted R-squared (Adj. R2), mean percent bias (MB) and mean absolute bias 109 

(MAB) for the entire global dataset as well as within each continental region.  Leave 10% out cross-110 

validation was performed, in which 10% of the monitors from each continental region were randomly 111 

sampled into a testing dataset, with the remaining 90% combined to create the model training dataset.  112 

Cross-validation was repeated in a bootstrap fashion 10,000 times to generate cross-validation estimates 113 

of RMSE, MAE, Adj. R2, MB, and MAB both globally and within each continental region. 114 

In chronic health studies, exposure estimates are often aggregated to monthly or annual averages 115 

to better capture seasonal and chronic NO2 exposure trends.  To test the performance of model 116 

aggregations, we derived monthly and annual averages of daily model predictions and compared them to 117 

monthly and annual averages of air monitor measurements.  We also created a separate LUR model using 118 

annual rather than daily air monitor records and predictor variables and compared the performance of the 119 

annual and daily NO2 models in predicting annual NO2 concentrations.   120 

In our previous 2010-2012 model, RMSE and MB were greater in rural vs. urban areas.  To test 121 

model performance across urban development levels, we identified urban development levels at air 122 

monitor locations using the Global Human Settlement layer [21] and stratified daily, monthly, and annual 123 

cross-validation by urbanicty. 124 

All of the R scripts used to create the LUR models, perform model performance, and perform 125 

sensitivity analyses are available at https://github.com/larkinandy/LUR-NO2-Model. 126 

https://github.com/larkinandy/LUR-NO2-Model


Results  127 

Global NO2 Database 128 

The geographical distribution of NO2 annual averages are shown in Figure 1.  Summary statistics 129 

for daily NO2 averages stratified by region are shown in Table 2.  More than 5.7 million days of valid 130 

measurements were collected from 8,250 air monitor locations.  Air monitor coverage is greatest in Asia, 131 

Europe, and North America and sparse in Oceania, South America, and Africa.  Annual concentrations 132 

range from 0 to 59 ppb (mean = 11.8), while daily concentrations range from 0-249ppb (mean = 11.7).   133 

Mean daily concentration is noticeably lower in Oceania (4 ppb) in comparison to other regions (9-13 134 

ppb).  Daily standard deviation is likewise lower in Oceania (4 ppb) compared to other regions (9-11 135 

ppb).   136 

 137 

Figure 1.  Global Distribution of NO2 Air Monitor and Annual NO2 Concentrations (2005-2019).  For air 138 
monitors with multiple years of measurements the most recent annual average is shown.   139 

 140 

 141 

 142 

 143 



Table 2.  NO2 Air Monitor Summary Statistics (2005-2019), Stratified by Region. 144 

Region Daily 
Average
s  (n) 

Monitor
s (n) 

Min 
NO2 
(ppb) 

Max 
NO2 
(ppb) 

Mean 
NO2 
(ppb) 

SD 
NO2 
(ppb) 

25th 
% 

50th 
% 

75th 
% 

90th 
% 

N 
America 

1315926 1056 0 139 10 9 4 8 15 23 

S America 12581 47 0 245 11 11 4 8 15 25 
Europe 1922511 3475 0 224 11 9 5 9 16 23 
Africa 105078 124 0 249 9 10 4 6 11 19 
Asia 2343387 3522 0 241 13 10 6 11 18 26 
Oceania 14674 25 0 87 4 4 2 3 5 8 
Global 5714157 8250 0 249 12 9 5 9 16 24 

 145 

Global LUR Model 146 

Model Performance   147 

Global NO2 predictions are shown in Figure 2 for the final global LUR model. Cross-validation 148 

performance is shown in Table 3.  See Figure S3 for a closer look at model predictions below 5ppb.  149 

Additional performance metrics are available in Table S5.  Using 10% cross-validation, the model 150 

predicts 47% of daily, 59% of monthly, and 63% of annual global NO2 variation.  Model predictions are 151 

positively biased, with bias greatest for daily predictions (46%) and smallest for annual predictions 152 

(21%).  Similarly, RMSE is greatest for daily predictions (6.8 ppb) and smallest for annual predictions 153 

(4.4 ppb).  Regionally, explained variance in daily predictions ranged from 10% (Oceania) to 57% (North 154 

America).  In general, model performance improved in each region when aggregating daily predictions to 155 

monthly and annual averages.  Except for Oceania, annual averages of model predictions explained 49% 156 

to 66% of annual NO2 variation within each region.  Explained annual variance for Oceania is just 2% 157 

(due to limited measured NO2 variation in our dataset). 158 



 159 

Figure 2.  Global NO2 Model Predictions for the Year 2018.  Inserts of select cities for each continental 160 
region demonstrate within city variation of model predictions.   161 

 162 

Table 3.  Cross-Validation Model Performance at Predicting Daily, Monthly, and Annual NO2 163 
Concentrations. 164 

  Daily Monthly Annual  
RMSE 
(ppb) 

Adj R2 

(ppb) 
MB 
(%) 

RMSE 
(ppb) 

Adj R2 

(ppb) 
MB 
(%) 

RMSE 
(ppb) 

Adj R2 

(ppb) 
MB  
(%) 

Global 6.8 0.47 46 5.0 0.59 30 4.4 0.63 21 
Region          
N America 6.4 0.51 57 4.9 0.54 49 4.0 0.62 34 
S America 6.2 0.37 55 4.4 0.50 37 3.4 0.66 28 
Europe 6.4 0.45 39 4.8 0.53 26 4.3 0.56 17 
Africa 6.7 0.35 54 5.1 0.39 23 3.8 0.49 22 
Asia 7.3 0.40 45 5.2 0.53 24 4.6 0.54 17 
Oceania 5.7 0.10 168 5.5 0.10 164 5.6 0.02 120 
Global 6.8 0.47 46 5.0 0.59 30 4.4 0.63 21 
Abbreviations: RMSE – root mean square error, Adj R2 – adjusted R2, MB – mean percent bias. 

 165 
 166 

Model Structure  167 

Predictor variables and contributions to model performance are shown in Table 4.  Predictor 168 

variables include satellite based NO2 estimates (OMI), meteorological conditions (temperature, 169 

atmospheric pressure), land use characteristics with positive coefficients (major, minor, and residential 170 

roads, population density) and land use characteristics with negative coefficients (tree cover, water body).  171 



The most significant variable is major roads within 50m.  Buffer sizes range from 50m (major roads) to 172 

20km (water body).  Major roads and OMI each consistently explain more than 5% of the NO2 variation 173 

both globally and within all regions.  However, the importance of other model variables varied between 174 

regions.  For example, built up environment explains 12% of the NO2 variation within Africa, but only 175 

1.6% globally. Similarly, atmospheric pressure explains 5.1% of the NO2 variation in South America, but 176 

less than 0.1% globally.   177 

Variables in the model with daily temporal resolution include OMI, temperature, and atmospheric 178 

pressure.  The built up environment variable has annual resolution, while the tree cover and population 179 

density variables were updated every five years.  Road networks and water body predictors were derived 180 

from a single time point and do not capture changes over time.   181 

Table 4. Global LUR Model Structure. 182 

Variable Units IQR Trans-
formation 

Buffer 
Radius 
(km) 

β Std Err Global %R2 
Reduction* 

Regional 
%R2 
Reduction** 

Major Roads km2 0.00E+00 sqrt 0.05 9.29E+00 2.85E-02 7.5 10.4 
OMI molec. 

/cm3 
1.80E+04 sqrt/blh NA 1.32E-06 5.20E-07 6.2 15.2 

Built 
Environment 

% 5.10E-01 sqrt 2.5 2.90E+00 1.63E-02 1.6 11.9 

Population 
Density 

persons/
km 

3.34E+01 sqrt 3 8.00E-02 1.72E-04 1.5 1.8 

Tree Cover % 2.15E+00 sqrt 10 -3.92E-01 1.75E-03 1.1 5.1 
Major Roads km2 1.74E+00 sqrt 1.5 1.15E+00 2.47E-03 1.1 1.8 
Minor Roads km2 3.02E-01 sqrt 0.05 1.86E+00 2.27E-02 0.9 1.9 
Residential 
Roads 

km2 7.17E-01 sqrt 0.2 6.27E-01 6.32E-03 0.8 1.5 

Water Body % 4.13E-01 sqrt 20 -3.44E+00 1.28E-02 0.7 4.1 
Temperature K 1.14E+01 - NA -1.40E-01 4.50E-04 0.5 4.8 
Atm Pressure Pa 3.40E-02 ln NA 9.53E-01 3.04E-03 0.1 5.1 
*Global reduction in explained variance after removing variable from the model. **Maximum reduction in explained variance in each 
region after removing variable from the model.  Variables are listed in order of global %R2 reduction.  All variables were statistically 
significant (p < 0.001).  Abbreviations: OMI – Ozone Monitoring Instrument, Atm – atmospheric. 
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 186 



Spatial and Temporal Distribution 187 

Figure 3 illustrates the different temporal predictors of the final model with January, July, and 188 

annual 2011 averages for Delhi, India.  Also shown in Figure 3 are the three year 2010-2012 average 189 

predictions from a previously published LUR model developed with similar methodology and predictor 190 

variables [13].  In general, the spatial distribution of NO2 is similar for both monthly and annual averages.  191 

Concentrations are greatest in areas with dense population density and built up environment (Eastern 192 

Delhi) and alongside major road networks.  While spatial patterns are consistent across the year, the 193 

magnitude of predicted NO2 concentrations differs between months and the annual average.  Predicted 194 

NO2 levels are noticeably above and below the annual average in January and July, respectively, in 195 

agreement with seasonal trends of NO2 lifetime in the Northern Hemisphere [22].   In comparison to 196 

2010-2012 model published by Larkin et al [13], inclusion of minor and residential roads in the present 197 

model adds NO2 traffic-related gradients outside of the dense urban core.   198 



 199 

Figure 3. Comparison of NO2 Estimates Across Delhi, India.  Top Left: annual 2011 averages of daily 200 
model predictions.  Bottom left and right: Average model predictions for January and July 2011, 201 
respectively.  Top right: three year 2010-2012 average predictions from a previously published global 202 
NO2 land use regression model using similar predictor variables (Larkin et al, 2017).   203 
 204 

Sensitivity Analysis 205 

Cross-validation performance of annual predictions derived from daily and annual NO2 LUR 206 

models are shown in Table 5.  Globally, model performances are similar.  RMSE and MAE differ by 0.1 207 

ppb, MB and MAB differ by 1 and 2%, respectively, and Adj R2 differs by 0.02.  Regionally, the daily 208 

and annual models differ the most in South America (RMSE and Adj R2 are 1.2 ppb lower and 0.09 209 

higher, respectively for the daily model) and Oceania (RMSE is 0.9 ppb lower for the annual model, 210 

while Adj R2 is equal between the daily and annual models).  In general, results suggest the error in 211 



annual averages of daily model predictions does not significantly differ from predictions generated by an 212 

LUR model optimized for predicting annual concentrations.   213 

Table 5.  Cross-Validation Performance of Daily and Annual LUR Model Performances in Predicting 214 
Annual NO2 Concentrations. 215 

  Daily Model - Annual Averages from 
Daily Predictions 

Annual Model - Annual Predictions 

Region RMSE 
(ppb) 

MAE 
(ppb) 

Adj R2 

(ppb) 
MB 
(%) 

MAB 
(%) 

RMSE 
(ppb) 

MAE 
(ppb) 

Adj R2 

(ppb) 
MB 
(%) 

MAB 
(%) 

N America 4.0 3.2 0.62 34 47 4.0 3.1 0.64 45 58 
S America 3.4 2.6 0.66 28 45 4.4 3.3 0.57 1 38 
Europe 4.3 3.1 0.56 17 34 4.1 2.9 0.59 16 33 
Africa 3.8 2.8 0.49 22 43 3.6 2.6 0.52 16 38 
Asia 4.6 3.4 0.54 17 32 4.5 3.2 0.57 17 33 
Oceania 5.6 4.7 0.02 120 152 4.7 4.0 0.02 100 127 
Global 4.4 3.2 0.63 21 36 4.3 3.1 0.61 22 38 
Abbreviations: RMSE – root mean square error, MAE – mean absolute error, Adj R2 – adjusted R2, MB – mean percent bias, 
MAB – mean absolute bias. 

 216 

Table 6 shows cross-validation model performance stratified by urbanicity (urban vs rural).  217 

RMSE is lower in rural settings vs urban settings.  For example, annual RMSE is 4.6 ppb and 2.9 ppb for 218 

urban and rural air monitors, respectively.  However, RMSE relative to mean concentrations are greater in 219 

rural than urban air monitors.  For example, the annual mean:RMSE ratio is 2.8 and 1.8 for urban and 220 

rural air monitors, respectively.   221 

Table 6.  Cross-Validation Performance Annual LUR Model Performances Stratified by Urbanicity. 222 

Urbanicity n Mean 
(ppb) 

RMSE 
(ppb) 

Adj R2 

(ppb) 
MB 
(%) n Mean 

(ppb) 
RMSE 
(ppb) 

Adj R2 

(ppb) 
MB 
(%) 

Urban* 4721936 13.1 7.2 0.48 43 29956 13.1 4.6 0.65 20 

Rural 992027 5.2 4.5 0.41 61 6024 5.2 2.9 0.55 27 
*Includes air monitors in urban and suburban locations.   223 

 224 

Discussion 225 

We collected 5.7 million days of valid measurements from 8,250 air monitors and developed a 226 

daily global NO2 model at 50 meter resolution.  The model captured 47% of daily, 59% of monthly, and 227 

63% of annual global NO2 variation. Predictor variables for the model are available from 2005 to the 228 



present, which allows for retrospective exposure estimates for global burden of disease studies as well as 229 

in long running epidemiological cohorts, particularly in developing countries where NO2 data and models 230 

are limited or not available.  231 

The model structure consists of variables with a range of spatial and temporal resolutions that 232 

correspond to NO2 emission sources and patterns.  Road networks make up variables from 50 to 200 233 

meters in resolution.  Population density and built up environment variables capture moderate spatial 234 

resolutions (2.5 and 3 km, respectively), while OMI, meteorological variables, and protective land use 235 

characteristics such as water and trees capture more regional NO2 distributions (10 km to 31 km).  While 236 

OMI and meteorological variables might have coarse spatial resolutions, these variables have daily 237 

temporal resolution and thus are responsible for the model’s ability to capture day to day variation in NO2 238 

concentrations.    239 

Several model variables contributed little to global variation but were highly significant to 240 

capturing regional NO2 variation.  For example, built environments explained 11.9% of NO2 variation in 241 

Africa (specifically, South Africa), but only 1.6% of the global NO2 variation.  This highlights one of the 242 

challenges of developing large scale LUR models, in which associations between predictors and outcomes 243 

may differ when stratified by sub-regions compared to examining unstratified associations.  This trade-off 244 

has been highlighted in other studies examining global NO2 modelling [14] Other variables such as road 245 

networks may have strong associations across all subregions, but the magnitudes of those associations 246 

may differ due to regional factors such as fleet composition, traffic levels and congestion, and emission 247 

standards.  In this model we included Community Emissions Data System (CEDS) [23] Sector Specific 248 

NOx Emissions, including surface transportation emissions, but these variables were not selected in the 249 

final model.  250 

Air monitor records are disproportionately greater in North America, Europe, and Asia.  To 251 

mitigate, we weighted air monitor records to adjust for disproportionate spatial and temporal 252 

representation.   Still, confidence in model predictions is greatest in these regions with greater coverage.  253 



Regression models were fitted to minimize mean square error (MSE), the square of RMSE, and daily 254 

RMSE of continental regions with large numbers of daily records (6.4-7.3 ppb) is surprisingly greater 255 

than RMSE of regions with small numbers of daily records (5.7 to 6.7 ppb).  This may be due to the 256 

higher absolute concentrations in areas where there are many monitors. In non-polluted areas with lower 257 

absolute concentrations, RMSE of ~6 ppb can still represent percent errors exceeding 100%. Despite this, 258 

for global studies which aim to standardize RMSE as equally as possible across multiple continents, the 259 

weighted modeling approach implemented in this model appears to work well. However, while RMSE is 260 

evenly distributed across regions, MB is noticeably higher and Adj. R2 (0.10) is noticeably lower for 261 

Oceania than other regions.  Poor MB and Adj. R2 performance in Oceania is in partly attributable to the 262 

inclusion of a small set of NO2 monitoring data from Australia that was available in OpenAQ.  The mean 263 

and standard deviation of daily concentrations in Oceania is low (4 and 4 ppb, respectively) and well 264 

below global values (9 and 11 ppb). The smaller daily averages lead to larger MB when RMSE is the 265 

same.  For example, an RMSE of 2 ppb with an air monitor record of 2 ppb is a 100% MB, while an 266 

RMSE of 2 ppb with an actual concentration of 20 ppb is 10% MB.   267 

In our sensitivity analysis we used our data to develop new monthly and annual NO2 models and 268 

compared these model cross-validation performances to monthly and annual averages of the daily model 269 

predictions.  Differences between models were within 2%, which is within the random variation observed 270 

between bootstrap cross-validation instances.  The geographic variables includes in the monthly and 271 

annual model (Table S4) were similar to the daily model, suggesting these are consistently the most 272 

important predictors of geographical NO2 patterns. These comparisons suggest using the daily model for 273 

deriving monthly and annual exposures does not increase model error.  However, it also suggests the 274 

additional computational costs of deriving daily results is not needed unless health studies can leverage 275 

daily exposure estimates to refine their health analyses.  For acute studies such as hospital admissions 276 

following extreme exposures, daily estimates can be more useful than monthly or annual estimates.   277 



Sensitivity models suggest model performance differs between urban and rural areas.  Model 278 

predictions for rural locations have greater error than their respective urban counterparts, which is not 279 

surprising given the limited number of rural air pollution monitors available. For studies with rural 280 

participants, we recommend either using annual rather than daily or monthly model predictions or 281 

restricting analyses to urban and suburban participants.   282 

Our NO2 model has several limitations that should be considered when applying the model.  First, 283 

model predictions are dependent on valid daily OMI measurements.  In addition to meteorological 284 

limitations such as cloud cover, the number of valid daily pixel measurements from the OMI sensor on 285 

the Aura satellite has gradually been decreasing over time due to an instrument obstruction first noticed in 286 

2007 [24].  From 2018 onwards, measurements are available from the TROPOMI instrument, with 287 

substantially higher spatial resolution compared with OMI.  Future studies would benefit from an 288 

adaptation of this model using TROPOMI rather than OMI as the satellite-based measure of columnar 289 

NO2.  Second, this model relies on road networks as a secondary indicator for vehicle emissions.  Travel 290 

patterns have significantly changed since the onset of the COVID-19 pandemic and studies have 291 

demonstrated significant declines in NO2 during lock-down periods [25]. We therefore restricted our 292 

model training and performance analysis to the years 2005 to 2019. Future research should examine 293 

potential long-term changes in travel behavior and how this impacts NO2 levels and patterns.   294 

We created a daily global NO2 model with 50m spatial resolution, with coverage from 2005-295 

2019.  In bootstrap cross-validation, the model captured 47%, 59%, and 63% of daily, monthly, and 296 

annual variation in NO2 concentrations.  We will make these NO2 model estimates available, which can 297 

be used to retrospectively estimate acute and chronic exposures for risk assessments (e.g. global burden of 298 

disease studies), for multi-national health studies, where measurements are ideally standardized across 299 

regions, and for studies in developing countries were NO2 monitoring data or detailed models are not 300 

available.    301 
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Supplemental Materials. 

Table S1.  Air Monitor Record Data Sources. 

Data Source Monitor
s (n) Daily* (n) Temporal 

Coverage* 
Spatial 
Coverage Website 

OpenAQ 6134 3300710 2015-2019 Global openaq.org 

NAPS 262 767525 2005-2018 Canada www.canada.ca/en/environment-climate-change/services/air-p
data/national-air-pollution-program.html 

US EPA 801 2084273 2005-2019 US aqs.epa.gov/aqsweb/documents/data_mart_welcome.html 
EU Airbase 4975 7235828 2012-2019 Europe www.eea.europa.eu/data-and-maps/data/airbase-the-european  
Japan Ministry of the 
Environment 912 2642571 2009-2017 Japan www.env.go.jp/en/air/aq/aq.html 

SAAQIS 90 115363 2005-2019 South 
Africa saaqis.environment.gov.za/ 

Mexico Ministry of the 
Environment 62 136589 2005-2019 Mexico www.aire.cdmx.gob.mx/default.php 

*Number of valid daily averages. Abbreviations: AQ – Air Quality, NAPS – National Air Pollution Surveillance Program, 
US EPA – United States Environmental Protection Agency, EU: European Union, SAAQIS: South African Air Quality 
Information System. *Air monitor records preceding 2005 were not collected.   

 

Table S2. Predictor Variable Buffer Distances. 

Buffer Distances (m) 
50 100 200 300 400 500 600 700 800 1000 

1200 1500 2000 2500 3000 3500 4000 5000 6000 7000 
8000 10000 15000 20000             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table S3. Sectors Included in CEDS Emission Estimates. 

Sector Description 
AGR Non-combustion agricultural sector 
ENE Energy transformation and extraction 
IND Industrial combustion and processes 
TRA Surface Transportation (Road, Rail, Other) 
RCO Residential, commercial, and other 
SLV Solvents 
WST Waste disposal and handling 
SHP International shipping (including VOCS from oil tanker loading/leakage) 

 

 

Table S4.  Comparison of Variables Selected by Lasso to Predict Daily, Monthly, or Annual Air Monitor Averages 

  Daily Monthly Annual 
Major Roads x x x 
OMI x x x 
Built Environment x x x 
Population Density x  x 
Tree Cover x    
Minor Roads x  x 
Residential Roads x x x 
Water Body x    
Temperature x  x 
Atm Pressure x x x 
Solar Radiation   x x 
Precipitation   x x 
Elevation   x   
Railways     x 

 

 

 

 

 

 

 

 

 

 



Table S5.  NO2 Model Training Performance.   

  Daily Monthly Annual 

Region 

RMS
E 
(ppb) 

MAE 
(ppb) 

Adj 
R2 

(ppb) 

MB 
(%
) 

MA
B 
(%) 

RMS
E 
(ppb) 

MAE 
(ppb) 

Adj 
R2 

(ppb) 

MB 
(%
) 

MA
B 
(%) 

RMS
E 
(ppb) 

MAE 
(ppb) 

Adj 
R2 

(ppb) 

MB 
(%
) 

MA
B 
(%) 

N 
America 6.4 4.8 0.51 57 80 4.9 3.9 0.54 49 63 4.0 3.2 0.62 34 47 
S America 6.2 4.4 0.37 55 78 4.4 3.4 0.50 37 59 3.4 2.6 0.66 28 45 
Europe 6.4 4.6 0.45 39 63 4.8 3.5 0.53 26 44 4.3 3.1 0.56 17 34 
Africa 6.7 4.3 0.35 54 80 5.1 3.1 0.39 23 48 3.8 2.8 0.49 22 43 
Asia 7.3 5.4 0.40 45 65 5.2 3.8 0.53 24 40 4.6 3.4 0.54 17 32 
Oceania 5.7 4.5 0.10 168 187 5.5 4.8 0.10 164 185 5.6 4.7 0.02 120 152 
Global 6.8 5.0 0.47 46 68 5.0 3.7 0.59 30 46 4.4 3.2 0.63 21 36 

Abbreviations: RMSE – root mean square error, MAE – mean absolute error, Adj R2 – adjusted R2, MB – mean percent 
bias, MAB – mean absolute bias. 

 

 

 

Figure S1.  Distribution of Annual 2018 NO2 Concentrations Across Mexico, Southern Canada, and the 
Continental US.  The color ramp was chosen to emphasize the distribution of annual concentrations below 5ppb.   

 

 

 

 

  



Figure S1. Geographic Weighting. 

 

Define the variable sh as follows: 

𝑠𝑠ℎ =  
𝑛𝑛 ∗ 𝑁𝑁ℎ ∗ 𝜎𝜎ℎ
∑ 𝑁𝑁𝑘𝑘 ∗ 𝜎𝜎𝑘𝑘𝐿𝐿
𝑘𝑘=1

 

 

Where 

 𝑠𝑠ℎ = number of units sampled from region h  

n = total number of units sampled 

 𝜎𝜎ℎ = standard deviation of region h 

 𝜎𝜎𝑘𝑘 = standard deviation of region k 

 𝑁𝑁ℎ= number of units available from region h 

 𝑁𝑁𝑘𝑘= number of units available from region k 

 𝐿𝐿= number of regions 

 

 

Let the geographical weights for regions be defined as follows 

 

𝑔𝑔ℎ =  
𝑠𝑠ℎ
𝑛𝑛ℎ

 

 

Where 

𝑔𝑔ℎ = weight for each annual monitor in region h  

 𝑠𝑠ℎ = number of units sampled from region h  

 𝑛𝑛ℎ = number of annual monitors in region h 

 

 

Let the geographical and monthly weights for each region-month be defined as follows 

 

𝑔𝑔ℎ𝑖𝑖 =  
𝑠𝑠ℎ

12 ∗ 𝑛𝑛ℎ𝑖𝑖
 

 

Where 

𝑔𝑔ℎ𝑖𝑖 = weight for each daily air monitor in region h and month i 



 𝑠𝑠ℎ = number of units sampled from region h  

 𝑛𝑛ℎ𝑖𝑖 = number of daily air monitors in region h and month i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


