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Abstract

Microphysics methods for climate models typically track one, two, or three moments of a droplet size distribution for various

categories of liquid, ice, and aerosol. Such methods rely on conversion parameters between these categories, which introduces

uncertainty into predictions. While higher-resolution options such as bin and Lagrangian schemes exist, they require too many

degrees of freedom for climate modeling applications and introduce numerical challenges. Here we introduce a flexible spectral

microphysics method based on collocation of basis functions. This method generalizes to a linear bulk scheme at low resolution

and a smoothed bin scheme at high resolution. Tested in an idealized box setting, the method improves spectral accuracy for

droplet collision-coalescence and improves precipitation predictions relative to bulk methods; furthermore, it generalizes well

to multimodal distributions with less complexity than a bin method. The potential to extend this collocation representation

to multiple hydrometeor classes suggests a path forward to unify liquid, ice, and aerosol microphysics in a single, flexible,

computational framework for climate modeling.
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Abstract13

Microphysics methods for climate models typically track one, two, or three moments of14

a droplet size distribution for various categories of liquid, ice, and aerosol. Such meth-15

ods rely on conversion parameters between these categories, which introduces uncertainty16

into predictions. While higher-resolution options such as bin and Lagrangian schemes17

exist, they require too many degrees of freedom for climate modeling applications and18

introduce numerical challenges. Here we introduce a flexible spectral microphysics method19

based on collocation of basis functions. This method generalizes to a linear bulk scheme20

at low resolution and a smoothed bin scheme at high resolution. Tested in an idealized21

box setting, the method improves spectral accuracy for droplet collision-coalescence and22

improves precipitation predictions relative to bulk methods; furthermore, it generalizes23

well to multimodal distributions with less complexity than a bin method. The poten-24

tial to extend this collocation representation to multiple hydrometeor classes suggests25

a path forward to unify liquid, ice, and aerosol microphysics in a single, flexible, com-26

putational framework for climate modeling.27

Plain Language Summary28

Clouds and aerosols affect global warming by reflecting and absorbing radiation and29

by storing and transporting water. Climate models need a way to efficiently track the30

size and number of cloud droplets, ice, and aerosols in order to accurately predict the31

impact that these “microphysical” particles have on climate. Existing methods of mi-32

crophysics rely on many uncertain parameters and are either too complicated or too sim-33

ple to take advantage of today’s computational resources. We propose a new way to rep-34

resent cloud droplets that can both reduce uncertainties and make use of increased com-35

puting power.36

1 Introduction37

Droplets, aerosols, and ice particles, collectively a subset of atmospheric microphys-38

ical particles, affect planetary-scale climate, yet the processes that govern their behav-39

ior occur at the microscale. This extreme range of scales, from droplets to clouds to at-40

mospheric dynamics, makes it challenging to computationally represent microphysics.41

There are simply too many particles to represent directly, yet the microphysics processes42

involved are highly nonlinear and do not lend themselves easily to simplifications. In-43

stead, microphysics schemes in climate and numerical weather models predict the par-44

ticle size distribution (PSD) present at various locations in the atmosphere: the PSD and45

number concentration determine the macroscopic behavior of the system, such as cloud46

albedo or precipitation rates. Historically, methods to represent the PSD developed along47

two trajectories: bulk methods, which predict aggregate properties of the droplet pop-48

ulation, and spectral methods, which explicitly track the PSD. Both of these represen-49

tations make assumptions about the droplet distribution and the microphysical process50

rates, with spectral methods being the more flexible of the two options. Unfortunately,51

these parameterizations and assumptions contribute a major yet difficult-to-quantify source52

of uncertainty in climate predictions (Intergovernmental Panel on Climate Change, 2014;53

Morrison et al., 2020; Randall et al., 2003; Khain et al., 2015; Arakawa, 2004).54

Bulk schemes, originating with Kessler (1969), explicitly track one or more prog-55

nostic moments of the PSD and therefore are very compact representations suitable for56

global climate applications. However, by abstracting a droplet population to one, two,57

or three variables, bulk methods make two fundamental simplifications. First, many single-58

droplet processes such as sedimentation or aerosol activation require parameterizations59

to approximate how the process impacts the prognostic moments. Second, because many60

such process rates depend on higher-order moments which are not explicitly tracked, moment-61

based methods require a closure to relate these higher order moments back to the prog-62
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nostic variables. Frequently this closure is accomplished by relating the prognostic mo-63

ments back to an underlying assumed size distribution such as a gamma or exponential64

(e.g., Morrison & Grabowski, 2008; Seifert & Beheng, 2006; Milbrandt & Yau, 2005), which65

corresponds well to data in many empirical settings. However, in the case of a multimodal66

distribution, for instance, when both small cloud droplets and larger rain droplets are67

present, this closure assumption introduces significant structural uncertainty into the mi-68

crophysics scheme. There is no physical reason, a priori, to restrict a droplet population69

to maintaining a particular size distribution as they coalesce, break up, grow, sediment,70

and change phases. Unfortunately, inverting a multimodal distribution analytically is71

frequently ill-posed (Morrison et al., 2019). Most traditional bulk methods avoid the is-72

sue by representing several categories of hydrometeors (rain, cloud droplets, and several73

categories of aerosols) through separate prognostic moments, assuming a simple unimodal74

distribution for each of these categories. However, these categories of condensed water,75

while intuitive, are artificial: in reality, liquid hydrometeors are distributed across a con-76

tinuous spectrum, from small chemically-active aerosol particles, to large liquid cloud77

droplets, to droplets which are large enough to fall as rain. Conversion between these78

categories adds further complexity and uncertainty to the model.79

On the other hand, spectral or “bin” microphysics schemes directly evolve the PSD80

in time through discrete bins, or particle size ranges (e.g., Tzivion (Tzitzvashvili) et al.,81

1987; Berry, 1967; Berry & Reinhardt, 1974; Young, 1974). Bin methods have made a82

great impact in understanding aerosol-cloud interactions (e.g., Morrison & Grabowski,83

2007; Khain et al., 2015), but at a higher computational cost that currently makes them84

infeasible for climate simulations. For example, Gettelman et al. (2021) ran a general85

circulation model (GCM) with bin microphysics, incurring a factor of five cost penalty86

over a bulk scheme. Furthermore, while bin methods avoid the closure assumptions of87

bulk schemes, they suffer from numerical challenges (Morrison et al., 2019) as well as from88

sensitivity to the bin discretization (Ghan et al., 2011). The purpose of the method pre-89

sented here is to target the middle ground of complexity, between traditional bulk and90

bin methods, using more sophisticated numerical techniques.91

To meet the needs of future climate and weather models, a microphysics scheme92

should maintain enough flexibility to function with a wide range of degrees of freedom93

and minimal structural uncertainty in the PSD representation. While bin-scheme com-94

plexity may be unattainable for GCMs in the near future, we still need a microphysics95

method that can maintain spectral details without the closure assumptions and conver-96

sion parameterizations required by moment-based bulk methods. Some recent efforts in97

microphysics modeling have focused on relaxing assumptions about the size distribution98

and process rates to reduce these structural uncertainties. One option, Lagrangian mi-99

crophysics, directly tracks tracer particles known as superdroplets (Riechelmann et al.,100

2012; Andrejczuk et al., 2010, 2008; Shima et al., 2009), but it is far too computation-101

ally expensive for global or even regional models. A different moment-based method, the102

BOSS scheme proposed by Morrison et al. (2019) leaves all process rates and closures103

as generalized power series whose parameters are learned from data. Bieli et al. (n.d.)104

present a more efficient way to learn these parameters within a similar bulk microphysics105

framework that still relies on closures. More complex yet, Rodŕıguez Genó and Alfonso106

(2022) tackle the challenge of inverting multimodal distribution closures using a machine-107

learning based method, which could avoid the necessity for cloud-rain conversion rate108

parameterizations. However, these bulk methods cannot function in a wide range of com-109

putational degrees of freedom, nor do they provide complete spectral details about the110

PSD that might alleviate uncertainties about conversion between hydrometeor types. One111

solution is to think beyond the classical bulk versus bin representations of the PSD, lever-112

aging numerical techniques developed for fluid mechanics.113

In this study, we present and test a novel way to span the gap in complexity be-114

tween bin and bulk microphysics methods by applying the collocation method with ba-115
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sis functions (BFs) to represent the particle size distribution. (For simplicity, it will be116

referred to going forward as the BF method.) Finite element methods such as colloca-117

tion have been historically overlooked for microphysics applications, with the exception118

of Gelbard and Seinfeld (1978)’s demonstration using collocation of quartic or cubic poly-119

nomials, which was never widely adopted in favor of contemporaneous bin methods. More120

recent results from the applied math community suggest that combining collocation with121

radial basis functions, rather than polynomials, is a promising numerical technique for122

advection problems (Zhang et al., 2000; Franke & Schaback, 1998). This work extends123

the basis function collocation technique to the integro-differential equations encountered124

in microphysics. Beyond retaining spectral details of the PSD, the BF method has ap-125

pealing extremes of complexity: at low resolutions, the method is effectively a linear clo-126

sure, as in the context of bulk schemes; at moderate or high resolutions, it converges to-127

ward a smoothed bin scheme (replicating a bin scheme exactly if constant piecewise BFs128

and appropriate numerics are used). Therefore collocation of basis functions promises129

greater flexibility than either bulk or bin methods alone, while retaining desirable aspects130

such as low-to-moderate complexity and spectral predictions. This paper describes the131

method and presents results of applying the method to droplet collision and coalescence,132

benchmarked against commonly used bulk, bin, and Lagrangian frameworks. We addi-133

tionally address some limitations posed by the method that are specific to the context134

of tracking a PSD, such as mass non-conservation and a finite size range. Overall, the135

BF method improves spectral PSD predictions in a box model as well as simple precip-136

itation predictions, measured as a size exceedance, compared to a three-moment bulk137

method, and with fewer degrees of freedom than a bin method. Furthermore, the run-138

time complexity of the method scales quadratically with the number of degrees of free-139

dom, making it just as efficient as or faster than a bin method.140

The remainder of this paper is organized as follows: section 2 describes the method141

of collocation of basis functions to approximately solve the population balance equation142

for collision-coalescence in microphysics, and section 3 describes a set of microphysics143

box model case studies. Section 4 compares the accuracy of these case studies solved us-144

ing basis functions, bulk, bin, and Lagrangian schemes, and discusses the computational145

complexity of these methods. Finally, section 5 concludes the paper and suggests poten-146

tial improvements and applications.147

2 Method Description148

2.1 Key Equations149

The governing equations for microphysics describe a population balance for the droplet
size distribution. The governing equation for collision-coalescence, also called the Smolu-
chowski or Stochastic Collection Equation (SCE), is given by

∂tn(x, t) =
1

2

∫ x

0

n(x− y, t)n(y, t)K(x− y, y)Ec(x− y, y)dy

−n(x)

∫ ∞
0

n(y, t)K(x, y)Ec(x, y)dy,

(1)

where n(x, t) represents the number density of particles of mass x at time t, K(x, y) is150

the collision rate of particles of masses x and y, and Ec(x, y) is the coalescence efficiency151

of said collision. The first integral represents production of droplets of size x from two152

smaller droplets, and the second integral represents loss of droplets of size x due to co-153

alescence with other droplets.154

Other microphysical processes such as condensation, evaporation, sedimentation,
and aerosol activation also affect the PSD. To demonstrate the proposed BF method for
microphysics, we initially focus on only the coalescence process as in equation (1). The
SCE is notoriously difficult to solve numerically, as it is an integro-partial differential equa-
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tion and frequently involves rapid acceleration of particle growth, yet this mechanism
is crucial to determining the onset of rain and drizzle (Stephens et al., 2010). Later, we
will also consider two non-collisional processes of sedimentation and injection of new par-
ticles. Sedimentation is defined as removal all particles above a size threshold xmax, which
can prevent unphysically rapid acceleration of collisions. Sedimentation is enforced by
limiting the upper bound of each integral to xmax, effectively truncating the PSD to have
a value of n(x > xmax, t) = 0. We can alternatively prevent particles larger than the
maximum size xmax from forming by rejecting those collisions in a mass conserving man-
ner. The appropriate upper bound for the second integral in this case is xmax−x (Filbet
& Laurençot, 2004). When such collisions are not rejected and particles exit the system,
we introduce new droplets to the system, mimicking entrainment or activation of new
particles. The rate of particle injection Pinj(x, t) is given by

Pinj(x, t) = Ṗ I(x) (2)

where I(x) represents a normalized size distribution of the injected droplets, which might155

be smaller than the average droplet in the system, and Ṗ is the rate of particle injection.156

2.2 Collocation of Basis Functions with Positivity Constraint157

In our proposed method, based on the work of Zhang et al. (2000), the PSD is ap-
proximated by a weighted sum of nBF basis functions:

n(x, t) ≈ ñ(x, t) =

nBF∑
k=1

ck(t)φ(x; θk) = c(t) · φ(x). (3)

We denote the approximate solution ñ(x, t), the collocation weights ck(t), and the ba-158

sis functions φ(x|θk) where φ is the functional form and θk are the parameters of the k-159

th BF (for instance, mean and variance of a Gaussian). In the collocation method, one160

such parameter is the center or mean of the basis function, µk ∈ θk, known as the col-161

location points. In the context of microphysics, these collocation points refer to parti-162

cle masses, which locate the mode of each basis function. In equation (3), we have also163

compactly rewritten the BFs and weights in vector form as φ(x) =
(
φ(x|θ1), φ(x|θ2), . . . , φ(x|θnBF)

)
164

and c(t) =
(
c1(x), c2(x), . . . , cnBF

(x)
)
.165

Since the basis functions have a fixed shape over the droplet size range, evolving166

the approximate PSD reduces to solving for c(t) in time as a system of ordinary differ-167

ential equations. Because liquid water is a conserved quantity in the absence of evap-168

oration/condensation, we consider the evolution of the local mass density m(x, t) = xn(x, t)169

rather than the local number density. Thus although we use basis functions to approx-170

imate the number density, the equations are evolved in time based on local mass den-171

sity, as in a one-moment bulk method or a standard flux-method bin scheme.172

Denote the vector of approximate mass density at the collocation points µk to be
m̃(t) =

(
µ1ñ(µ1, t), . . . , µpñ(µp, t)

)
. At each timestep, recovering the weights from the

interpolated collocation points requires solving for c(t) in the linear system

m̃(t) = Φ · c(t) (4)

where Φ is a nBF×nBF matrix, with elements Φjk = µjφk(µj) representing the mass173

density of the k-th basis function evaluated at the jth collocation point. For a linearly174

independent set of basis functions, this system is well-posed and guarantees a unique so-175

lution. However, it may be ill-conditioned, particularly when the choice of basis func-176

tion has global rather than compact support (Zhang et al., 2000).177

The approximate solution is initialized by projecting the initial mass distribution
onto the basis space. This projection comes from solving an optimization problem:

min
c(0)

‖Φ · c(0)− m̃(0)‖2 s.t. c(0) ≥ 0 . (5)
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The positivity constraint mathematically enforces the fact that the PSD should be non-178

negative at all points. Equation 5 is formulated as a quadratic optimization, and there-179

fore can be solved efficiently numerically.180

This projection could additionally incorporate a mass conservation constraint, both181

initially and at every future time step, but at significantly higher cost than solving the182

linear system in equation 4. Additionally, since the exact solution to the equation does183

not necessarily exist as a projection of the basis functions, the mass and positivity con-184

straints in the optimizer can lead to unphysical solutions as the approximate PSD evolves185

in time. While relaxing this constraint might lead to an artificial reduction or increase186

in mass throughout the simulation time, it allows a more efficient nonnegative least-squares187

solution. In developing this method, we observed that evolving the linear system in mass188

density with a positivity constraint, rather than using number density directly, led to189

more physical and realistic PSDs compared to including a mass-conserving constraint190

at all times.191

2.2.1 Interpretability and design choices192

The method described above generalizes to solve many categories of differential equa-193

tion, but selecting the basis functions and parameters θk requires care in order to pre-194

serve physical properties of a droplet distribution. To model a droplet PSD, we choose195

to let the basis functions themselves be distributions, in contrast to the cubic splines em-196

ployed by Gelbard and Seinfeld (1978) or spectral element methods. If we choose Gaus-197

sian or lognormal BF’s collocated on a grid of droplet sizes, each BF effectively repre-198

sents a droplet size mode. This feature provides a useful analogy to aerosol size modes,199

or cloud versus rain droplet distributions, much as a typical bin scheme will distinguish200

between aerosol, cloud, and rain size bins, or how a moment scheme will have a sepa-201

rate set of moments for cloud and rain water. In fact, this representation is a general-202

ization of bin schemes, which can be considered piecewise constant basis functions: φk(x) =203

1, x ∈ {xk, xk+1} (see figure 1). At low resolution, the BF representation can similarly204

be thought of as approximating a linear closure, as in the method of moments (MOM),205

where the prognostic variable is the first moment calculated over sub-intervals of the par-206

ticle size range.207

Additional design choices include selecting the collocation points and additional208

hyperparameters of the BFs, such as the variance for lognormal or Gaussian distribu-209

tions. An in-depth description and justification of the BF setup used in following sec-210

tions can be found in Appendix A. Notably, we introduce a compactly-supported BF that211

approximates a lognormal distribution (CSLBF1: equation A1), use exponentially-spaced212

collocation points, and set the geometric standard deviation as the distance between ad-213

jacent collocation points.214

2.3 Application to the SCE and microphysical processes215

The equations involved in applying the BF method to the SCE are derived in ap-
pendix B, with the result summarized by equation 6 below:{

dtm̃(t) = c(t) ·Q · c(t) +
∑Nproc

l=1 Pl

Φ · c(t) = m̃, with c(t) ≥ 0
. (6)

In this equation, third-order tensor Q and vectors Pl are obtained by taking various in-216

ner products of the collision kernel and additional process rates (respectively) with the217

basis functions. All integrals for this collision-coalescence term can be pre-computed for218

a fixed set of basis functions, defining these tensors through numerical integration and219

projection of rate processes onto the basis space. (The required precomputations and220

scaling of these computations with the number of BFs are described in Appendix B. In221

summary, the precomputation steps scale at most cubically with the number BFs, and222
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Figure 1. Illustration of the way that the collocation of basis functions can span the gap from

bulk to bin microphysics. The PSD for a two-mode gamma mixture of particles, corresponding,

for instance, to a cloud and rain mode, is plotted as it would be represented in a: (a) 3-moment

bulk scheme with gamma closure (one set of moments for each mode); (b) 4 lognormal basis func-

tions; (c) 16 lognormal basis functions; (d) 16 piecewise-constant basis functions; (e) bin method

with 32 bins.
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Case Dynamics Parameters Duration Initial/Injection Distribution

1C Constant kernel A = 10−4cm3s−1 360s Gamma
1G Golovin kernel B = 1500s−1 4hr θ = 100µm3

1H Hydrodynamic kernel C = π × 10−9cm−3µm−4s−1 360s N0 = 100cm−3, k = 3

2 Golovin kernel B = 1500s−1 4hr Gamma mixture
N0,a = 100cm−3

ka = 4, θa = 100µm3

N0,b = 100cm−3

kb = 2, θb = 15µm3

3 Golovin kernel, B = 1500s−1 4hr Gamma distribution,
Injection, Pinj = 1cm−3s−1 θ = 100µm3

Precipitation xmax = 1000µm3 N0 = 0, k = 3

Table 1. Summary of the dynamics, parameters, and initial or injection distributions employed

for each box model test case.

the computation at each time step scales cubically or quadratically depending on the ba-223

sis chosen.) The result is a simple set of quadratic coupled ordinary differential equa-224

tions for the mass density at the collocation points, m̃(t), and the BF weight vector c(t).225

3 Test Cases226

To compare the accuracy and efficiency of the proposed BF method with bin, bulk,227

and Lagrangian microphysics schemes, we use three sets of dynamics in a zero-dimensional228

box. The parameters for these experiments are summarized in table 1.229

The first test case evolves a PSD with collision-coalescence dynamics only, begin-230

ning from a single droplet size mode following a gamma distribution with number den-231

sity N0, shape parameter k and scale parameter θ. We consider a constant collection ef-232

ficiency Ec = 1 and three separate collision kernels: (1C) a constant rate of collision233

KC(x, y) = A; (1G) a Golovin linear kernel (Golovin, 1963) KG(x, y) = B(x+y), and234

(1H) a hydrodynamic kernel KH(x, y) = C(r(x) + r(y))2|a(x)− a(y)|, where r(x) and235

a(x) represent the particle radius and area respectively. Collision kernel parameters and236

time of simulations are chosen such that the final droplet spectrum has approximately237

1/3 the number density of the initial spectrum. We investigate the PSD (mass density)238

following collisions, as well as the first three moments of the PSD which correspond to239

total number density, mass density, and radar reflectivity. Spectral errors are calculated240

as a sum of squared differences in the approximated profiles and a reference solution from241

Lagrangian microphysics. In addition, we calculate the percent mass exceedance over a242

droplet-size threshold of xmax = 1000µm3. This exceedance can be considered a proxy243

for precipitation, even though all mass remains in the box.244

The second test case retains the Golovin collision kernel but uses a two-mode ini-245

tial distribution: a sum of two gamma distributions. This initial distribution can be thought246

of as representing two aerosol modes, or alternatively a cloud mode and rain droplet mode.247

A simple closure-based bulk representation cannot capture multiple modes without an248

additional set of prognostic moments and autoconversion rates; therefore, this test case249

highlights the information gained from using a more flexible PSD representation.250

The third test case incorporates additional dynamics of particle injection and pre-251

cipitation from the box. Given a constant prescribed injection rate, this set of dynam-252
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Figure 2. Initial spectrum (left) and post-collision spectrum (right) resulting from a Golovin

kernel collision-coalescence (1G) for bulk (MOM), bin (flux), and Lagrangian methods, and using

the BF (collocation) method with 8 or 16 degrees of freedom.

ics will drive the PSD to a steady state in which particles enter the system, collide, grow,253

and precipitate out of the system. While modeling collision-coalescence by itself is a use-254

ful numerical test, it requires that the microphysics scheme be able to represent arbitrar-255

ily large particles with an accelerating rate of growth. Using a simplified proxy for the256

introduction of small droplets and removal of large droplets allows for a more physically257

realistic particle size distribution and time scale of dynamics.258

We solve each test case numerically using the flux method for spectral bin micro-259

physics with 32 bins (Bott, 1998), a three-moment gamma-closure method of moments260

(Bieli et al., n.d.), and collocation of BFs with varying numbers of basis functions, re-261

ferred to as the degrees of freedom. The bin method used follows the original setup from262

Bott (1998), spanning a range of 1.06µm3 to 2.28×109µm3 with mass doubling between263

bins. Additionally we include results from a Lagrangian particle-based code called PySDM264

(v2.5) (Bartman et al., 2022) as a high-resolution reference for the first three cases. The265

PySDM simulations use 16,384 superdroplets to represent the particle population in a266

box of volume 1m3.267

The BF method as demonstrated here uses 8 or 16 CSLBF1 basis functions to span268

a particle size range of 8µm3 to 125,000µm3, which corresponds to 15 of the 32 bins used269

in the bin approach. Collocation points are logarithmically spaced over this size range.270

Particles are assumed spherical with liquid water density. BF shape parameters θk are271

chosen such that the basis functions overlap with their nearest neighbors: θk = µk −272

µk−2 and θ1 = θ2 = µ2. The method is implemented in the Julia programming lan-273

guage and uses a variable time-step with the DifferentialEquations.jl package (Rackauckas274

& Nie, 2017). The inversion is solved using NonNegLeastSquares.jl v0.4.0 (non-negative275

least squares). Numerical integrals are computed using Cubature.jl v1.5.1.276

4 Results277

4.1 Case 1: Unimodal collision-coalescence278

For the collision-coalescence only box case, we are interested in the ability of each279

microphysics method to accurately predict: (1) the PSD; (2) the first three moments of280

the distribution; and (3) the number of particles above a particular size threshold. The281

spectra in figure 2 reveal that more than eight basis functions are necessary for this par-282

ticular BF configuration to approximate the initial condition’s primary size mode. From283
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Figure 3. Spectral error (L2) for the bulk, bin (flux), and BF methods with 8 or 16 basis

functions, computed relative to a Lagrangian PySDM result. Errors are shown for each of three

coalescence-only experiments using a constant, Golovin, and hydrodynamic kernel (case 1C, 1G,

and 1H, respectively).
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Figure 4. Evolution of the first three moments of the PSD over time for bulk, bin, and BF

method with 8 or 16 degrees of freedom for the Golovin collision kernel (1G).

the final spectra in figure 2 for the Golovin kernel, as well as the summarized spectral284

errors in figure 3, we find that the collocation method with 8 BFs performs on par with285

a flux bin method, and with 16 BFs it outperforms both a bin and bulk method in pre-286

dicting the post-collision spectra. The bin method consistently has a spectral error of287

around 40% relative to the Lagrangian results, owing in part to numerical diffusion, while288

the bulk method of moments has an error which varies significantly according to the com-289

plexity of the collision kernel. While the 8-BF collocation approach suffers from this same290

challenge, using the BF approach with 16 degrees of freedom results in consistently small291

spectral errors less than 15% for all three collision kernels investigated. These results demon-292

strate the potential for the collocation method to resolve realistic droplet spectra using293

the same or fewer degrees of freedom than a traditional bin method.294

Next we investigate bulk quantities predicted by each method in figures 4 and 5,295

which illustrate the time evolution of the first three moments and exceedance mass, re-296
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Figure 5. Volume of droplets exceeding 1000µm3 in size for Lagrangian, bulk, bin, and collo-

cation methods as a function of time for a Golovin collision kernel (1G).

spectively. The bulk method of moments outperforms the BF method in predicting the297

time evolution of the PSD moments, as the first two moments are predicted as prognos-298

tic moments analytically, and the gamma closure approximation is only employed in com-299

puting the second moment. The BF method does not exactly conserve mass in the lower-300

resolution case, in part because the use of compactly supported basis functions prevents301

the representation of particles larger than the support of the basis functions (125,000µm3
302

in this case). Larger particles may form according to the physics of the collision-coalescence303

equation; therefore the BF method encounters error in the tail of the spectral represen-304

tation, and especially in the higher-order moments as a result. Furthermore, the matrix305

inversion in equation 4 does not guarantee conservation of mass, particularly where the306

system of equations might be large and ill-conditioned. The second moment is overes-307

timated by the BF method initially due to error in projecting the initial PSD onto the308

basis space: the initial projection slightly overpredicts the size of some droplets, but not309

so much as to miscategorize them in the exceedance regime larger than xmax = 1000µm3
310

in the higher-resolution BF case, as indicated in figures 2 and 5. Indeed, despite short-311

comings in predicting PSD moments, the BF method does comparably well or better than312

bin or bulk methods at capturing the mass of particles which lie in the tail of the dis-313

tribution (figure 5). It is apparent that the conversion of small particles to medium or314

larger particles is adequately captured by the BF method. All methods underpredict the315

exceedance volume relative to the Lagrangian superdroplet method at longer times, but316

the BF approach displays comparable accuracy to the bulk method of moments and out-317

performs the bin method.318

4.2 Case 2: Multimodal collision-coalescence319

One strength of the BF method is its ability to represent up to nBF modes of a PSD,320

where nBF is the number of basis functions used. By contrast, bulk methods can rep-321

resent at most one droplet mode, and bin methods lose spectral detail of the modes due322

to the piecewise constant representation of the PSD. We demonstrate in figure 6 an ex-323

ample of collision-coalescence with an initially bimodal distribution: the second mode324

initially has a narrower and more peaked structure, which broadens and extends as these325

larger particles collide more rapidly according to the Golovin collision dynamics. The326
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Figure 6. Spectra following collision-coalescence of a bimodal droplet population using La-

grangian, bulk, bin, and BF methods with a Golovin kernel (case 2).
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Figure 7. Steady state PSD for the third case with collisions, sedimentation, and injection,

using a bin method and the BF method with 8 or 16 basis functions. The PSD of injected parti-

cles is plotted as a solid black line with units on the right y axis.

BF method accurately captures both of these modes during the PSD evolution, while327

the bulk method with a gamma-closure cannot represent the initial or final PSD due to328

the underlying unimodal closure assumption. Furthermore, while the bin method accu-329

rately predicts droplets in both size ranges, the BF method is able to do so with fewer330

degrees of freedom and yields a closer and more interpretable spectral match to the La-331

grangian results.332

4.3 Case 3: Collision-coalescence with injection and removal333

When including removal of large particles and introduction of small particles, we334

investigate the steady-state PSD as well as the time evolution of the PSD moments. The335

Lagrangian and method of moments simulations are excluded in this case, as the removal336

and injection process rates used are not applicable in these frameworks. As seen in fig-337

ure 7, the BF method solution is a broadened image of the injected PSD, as expected:338

particles enter the system, grow through collisions, and exit once they reach 1000µm3
339

in size. As in previous cases, the BF solution is slightly narrower when more degrees of340
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Figure 8. Time-series evolution of first three moments of the distribution for the collocation

and bin methods with collisions, precipitation, and injection.

freedom are used, but the lower-resolution BF case does not display as large of a discrep-341

ancy when large particles are removed. The bin approach underpredicts the steady state342

distribution of larger particles, in part because the piecewise constant representation leads343

to over-removal of particles in the largest bin. This shortcoming is further demonstrated344

in the higher-order moments of the system in figure 8. Both the BF and bin methods345

converge to a steady state on the same time scale, with the same number density, but346

the bin method underpredicts the first and second moments relative to even the lower-347

resolution BF method, demonstrating the improvement possible from using nonlinear348

distributions as a basis, rather than piecewise bins. This more realistic set of dynamics,349

which removes large particles from the system, demonstrates that the BF method us-350

ing collocated compactly supported basis functions is well-suited for representing a com-351

plete microphysical system at longer GCM-relevant time scales. These results illustrate352

a tradeoff between higher accuracy in the spectrum and moments from using more ba-353

sis functions when coalescence dominates, and the ability to use a lower complexity setup354

with fewer (e.g., 8 versus 16) degrees of freedom when additional compensating dynam-355

ics are considered.356

4.4 Computational Complexity357

The BF method offers similar or improved computational scaling relative to the358

bin spectral method, but higher complexity than a traditional multimoment bulk method.359

Bulk methods with a closure assumption scale with the number of moments, O(Nmom)360

when the relationship between the prognostic moments and PSD parameters is known,361

but more complex PSD closures may require nonlinear operations or even optimization,362

leading to a more computationally intensive operation at each time step. Spectral bin363

methods such as the flux method used here (Bott, 1998) scale quadratically with the num-364

ber of bins, O(N2
bin), as each pair of bins is considered sequentially. The basis function365

method scales either cubically or quadratically depending on the choice of basis (see ap-366

pendix B). While the initial precomputation for the BF method is cubic in the number367

of basis functions, a compactly supported basis will lead to quadratic operations in the368

forward time-marching of equation 6, as the third-order tensor Q is sparse. This places369

the BF method at the same order of complexity as other spectral methods, O(N2
BF).370

5 Discussion and Conclusions371

This paper describes and demonstrates a novel method to represent the particle372

size distribution of droplets for atmospheric microphysics. Collocation of basis functions373
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provides a more flexible PSD approximation than either bin microphysics or the method374

of moments with closure (bulk microphysics). In particular, selecting BFs which are them-375

selves distributions generalizes traditional spectral bin methods to a smoothed represen-376

tation that can be interpreted as the sum of droplet size modes. The method is also ap-377

propriate for applications where more than three degrees of freedom (the most usually378

provided in a bulk scheme) are desired, but where full bin complexity is infeasible. In379

this low-resolution limit, collocation of basis functions can be considered a form of lin-380

ear closure relating the mass density at the collocation points to a BF weight vector.381

Tested in a variety of box model settings, we find that the BF method improves382

spectral accuracy under collision-coalescence dynamics compared to a three-moment bulk383

method, while using fewer degrees of freedom than a bin method. The spectral detail384

from the BF approach allows for a more precise calculation of water mass in the tail of385

the distribution (exceedance), which could avert the need for precipitation parameter-386

izations that are required by bulk methods. Another strength of the method is its abil-387

ity to represent multimodal distributions, unlike 3-moment bulk methods. At short time388

scales with rapidly accelerating collisions, the BF method suffers from numerical chal-389

lenges and compact support that cannot represent arbitrarily large particles; therefore,390

we propose an additional set of dynamics that allows removal of large particles from the391

box. In this collision-injection-removal case study, the BF method outperforms a bin scheme392

in computing the steady-state distribution, and it requires fewer degrees of freedom.393

In general, the BF method is a more flexible framework than bulk or bin methods:394

the suggested implementation can receive an arbitrary set of microphysical processes and395

automatedly perform all required numerical integrations. This is in contrast to bin meth-396

ods, which require tabulated collision and breakup kernels that are dependent on the bin397

discretization, and in contrast to bulk methods, which frequently include hard-coded pa-398

rameterizations and closures. This ability to specify arbitrary functional process rates399

for the BF method will be especially useful for reducing microphysics parameter uncer-400

tainty while also improving the structural PSD representation.401

The BF method does have limitations. First, although the linear system in equa-402

tion 4 is solved in mass density space with a positivity constraint, the method does not403

exactly conserve mass for a collision-coalescence-only set of dynamics. When employed404

with compactly supported basis functions, the method can only represent particles up405

to a maximum size, unlike bulk or Lagrangian methods. This shortcoming manifests in406

errors in the higher order moments of the PSD, including some mass loss from the sys-407

tem (figure 4). Solutions could involve allowing for some globally supported basis func-408

tions, or periodically rescaling the weight vector to exactly conserve mass in the system.409

Nevertheless, despite this limitation, the method is able to predict both spectral details410

and moments when particle removal and injection are considered; therefore, further re-411

finement may be unnecessary to describe a full set of microphysical processes. Future412

work to improve and test this novel microphysics method will involve incorporating ad-413

ditional microphysical processes, as well as employing one, two, and three-dimensional414

simulations to test the ability of the method to reproduce mesoscale cloud properties.415

Further testing of the method in a one-dimensional setting with spatial advection will416

be necessary to assess how susceptible the collocation implementation is to numerical417

diffusion, as is often observed with bin schemes.418

The BF method presented here improves spectral accuracy at a lower cost per de-419

gree of freedom than bulk or bin methods, and it has the potential to reduce the com-420

putational cost of microphysics even further. Using inspiration from proposed moving421

bin schemes, the locations or shapes of BFs could be periodically updated to maximize422

the information potential provided by only nBF degrees of freedom. While this approach423

would impose a higher cost of recomputing numerical integrals, it would cluster basis func-424

tions near the most-weighted droplet modes, improving the accuracy-complexity trade-425

off. Another potential benefit of the collocation representation is the ability to use mul-426
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tidimensional basis functions: one independent variable could be the droplet size, as in427

this work, while other particle properties such as aerosol hygroscopicity, ice riming frac-428

tion, or surface tension could occupy additional inputs. This multidimensional represen-429

tation has been explored for aerosol bin schemes (Lebo & Seinfeld, 2011), as well as for430

ice bulk methods (Morrison & Milbrandt, 2015). However, it may be more computation-431

ally efficient to represent multiple particle properties in the BF framework due to the432

flexibility of selecting basis functions as well as using compact support to generate a sparse433

system and lessen the computational burden. Such a representation could eliminate the434

uncertainties of conversion parameterizations and of information loss from aggregating435

particles into categories with distinct sets of dynamics. This potential provides a path436

toward unifying the numerical representation of all microphysical particles in a single,437

consistent framework.438

Appendix A Basis functions, collocation points, and hyperparameters439

The BF collocation parameters demonstrated in this study are briefly explained.440

As the collocation points correspond to the droplet mode represented by each BF, we441

should not assume a priori any particular initial or final distribution of particles. How-442

ever, we can use the inherent length scales of the physical system to aid the setup. For443

cloud droplets and aerosols, the size domain should extend from xmin ≥ 0µm to the size444

of the largest particles xmax that do not sediment out of the system or instantaneously445

break up, hence making a finite domain approximation reasonable. Furthermore, we draw446

inspiration from bin microphysics to suggest logarithmically spaced collocation points447

over the domain.448

The basis function family and their hyperparameters should then be selected to en-449

sure a few criteria:450

1. The entire domain [0, xmax] is spanned with some minimum probability.451

2. There should be no particles with negative or infinite mass; that is, φk(x < 0), φk(x→452

∞) = 0 for all basis functions.453

3. BF hyperparameters should be selected to minimize oscillations and jumps in the454

approximated distribution.455

The first condition is equivalent to requiring either globally-supported BFs, such456

that φ(x) > 0 ∀x, or sufficient overlap of compactly-supported BFs, which are positive457

over some interval and zero elsewhere. The second condition cannot be met exactly for458

any BFs that are globally supported over (−∞,∞), therefore we suggest using either compactly-459

supported BFs (CSBFs) or exponentially decaying BFs. CSBFs are additionally recom-460

mended due to their favorable numerical properties: Zhang et al. (2000) demonstrate that461

CSBFs result in a better conditioned system of equations (as in equation 5). The third462

criterion is the trickiest and will depend on the family of BFs chosen. As a simple heuris-463

tic for a two-parameter family such as Gaussians, we suggest setting the scale factors as464

some multiple of the spacing between collocation points to ensure support and smooth-465

ness over the domain. More sophisticated methods of setting the hyperparameters, such466

as optimization over a set of potential distributions or constraints on fluctuations in the467

second derivatives, are possible but beyond the scope of this paper.468

Several families of basis functions are suitable to approximate a droplet size dis-469

tribution, such as Gaussian, gamma, and lognormal distributions. In order to obtain a470

compactly supported basis, however, we propose to use a version of the CSRBF1, a com-471

pactly supported Gaussian approximation proposed by Wu (1995), modified to instead472

uses a logarithmic argument. This basis function, which we will refer to as CSLBF1 (com-473

pactly supported lognormal BF 1) takes the form:474
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φ(r) =

{
12
35 (1− r)4(4 + 16r + 12r2 + 3r3) drdx r ≤ 1

0 r > 1
(A1)

with argument

r =
| log(x)− µ|

θ

where µ is the collocation point and θ is a scale factor. Given that CSRBF1 approximates475

a normal distribution, CSLBF1 approximates a lognormal distribution, which is better476

suited to particle distributions as it is right skewed.477

Appendix B Collocation of BFs for the SCE478

Evaluating equation 1 with arbitrary additional processes Pl in mass density at col-
location point µj , we find:

∂tµjn(µj , t) =1/2µj

∫ µj

0

n(µj − y, t)n(y, t)K(µj − y, y)E(µj − y, y)dy

− µjn(µj , t)

∫ xmax−µj

0

n(y, t)E(µj , y)K(µj , y)dy +

Nproc∑
l=1

Pl(µj , n(µj , t))

(B1)

Substituting the collocation approximate solution for local mass density, xñ(x, t) =
∑p
k=1 xφk(x)ck(t),

this time derivative becomes:

∂tm̃j(t) =1/2

nBF∑
k=1

nBF∑
l=1

µjck(t)cl(t)

∫ µj

0

φk(µj − y)φl(y, t)K(µj − y, y)E(µj − y, y)dy

−
nBF∑
k=1

nBF∑
l=1

µjck(t)cl(t)φk(µj)

∫ xmax−µj

0

φl(y)K(µj , y)E(µj , y)dy +

Nproc∑
l=1

µjPl(µj , ñ(µj , t))

(B2)

The collision-coalescence dynamics are summarized via a third-order tensor in mass den-
sity: Q, with

Qjkl = 1/2µj

∫ µj

0

φk(µj−y)φl(y, t)K(µj−y, y)E(µj−y, y)dy−µjφk(xµj)

∫ xmax−µj

0

φl(y)K(µj , y)E(µj , y)dy

(B3)
The overall dynamics are then summarized by cubic collision-coalescence dynamics plus479

the additional processes projected onto the basis space as in equation 5 to obtain the terms480

Pl =
(
µ1Pl(µ1), µ2Pl(µ2), . . . , µkPl(µk)

)
in equation 6.481

Many of the quantities in equation 6 can be precomputed and stored for a given482

set of basis functions. These precomputations include:483

• The linear system, Φ;484

• The third order tensor Q which can be computed numerically via quadrature or485

Monte Carlo integration, given a functional form of the kernel.486

• Appropriate projection of additional processes onto the basis space to obtain Pl.487

For the purpose of ensuring mass conservation, this may require computing the488

first moments of the basis functions over the integration window [0, xmax].489

• The initial condition at the collocation points m̃(0).490

The computation of Q scales cubically with the number of collocation points for491

globally supported basis functions, and quadratically for partially overlapping compactly492

supported basis functions. The dynamical system in equation 6 involves at most cubic493
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vector-tensor multiplication and function evaluations for the tensor-vector inner prod-494

ucts, and therefore a small system of basis functions is more likely to be limited by the495

time-stepping scheme or matrix inversion than by the precomputation. Another advan-496

tage of choosing compactly supported basis functions is that the constant-collocation ma-497

trix Φ can be N-diagonal (CSBF’s that only overlap their nearest neighbors will result498

in a tridiagonal system, for example) thus making the inversion much more computa-499

tionally efficient. Finally, using CSBFs limits the range of particle sizes to a finite do-500

main, making numerical integration more straightforward.501

Acronyms502

BF Basis function (method)503

CSBF Compactly supported basis function504

CSLBF1 Compactly support lognormal basis function 1505

GCM General circulation model506

MOM Method of moments507

PSD Particle size distribution508

SCE Stochastic collection equation509

Notation510

x Particle mass or volume511

n(x, t) Particle size distribution: number of particles of mass x in a volume of air at512

time t513

K(x, y) Collision kernel: rate of collisions between particles of mass x and y514

Ec(x, y) Coalescence efficiency for particles of mass x and y515

xmax Particle size threshold; particles above this mass are removed from the system516

Pinj(x, t) Injection rate of particles of size x at time t, given in number of particles per517

air volume per time518

Ṗ Injection rate, in number of particles per air volume per time519

I(x) Normalized size distribution of injected particles520

ñ(x, t) Approximate PSD using a basis function representation521

c(t) Vector of basis function weights at time t522

φ(x) Vector of basis functions523

θk Hyperparameters of the k-th basis function524

µk Collocation point of the k-th basis function525

m̃(t) Mass density of the k-th weighted basis function526

Φ Basis function mass density tensor: Φjk = µjφk(µj)527

Q Third order collision kernel tensor in basis function space528

Pl Vector of process rate l projected onto basis function space529
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