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Abstract

This paper discusses a project aimed at detecting whether protected areas (PAs) influence the socioeconomic well-being of

adjacent communities. The Belmont Forum funded PARSEC project is using satellite images and deep learning algorithms to

predict socioeconomic conditions. In this paper we show our ongoing work for the selection of PAs, development of methodology

using deep learning to detect socioeconomic indicators from remote sources, facilitation in data management and the approach

used to handle a complex inter-disciplinary and trans-national team. We note the challenges in selecting case studies with

examples from Australia, Brazil, Japan and the USA, and meshing remote sensed data with census data. We discuss the

advantages of good data management for the individual and for the project and some simple steps to make this easy.
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Abstract  
This paper discusses a project aimed at detecting whether protected areas (PAs) influence 
the socio-economic well-being of adjacent communities. The Belmont Forum funded 
PARSEC project is using satellite images and deep learning algorithms to predict socio-
economic conditions. In this paper we show our on-going work for the selection of PAs, 
development of methodology using deep learning to detect socio-economic indicators from 
remote sources, facilitation in data management and the approach used to handle a 
complex inter-disciplinary and trans-national team. We note the challenges in selecting case 
studies with examples from Australia, Brazil, Japan and the USA, and meshing remote 
sensed data with census data. We discuss the advantages of good data management for 
the individual and for the project and some simple steps to make this easy. 

1 Introduction 
The impact of global changes on the world's ecosystems, as well as the repercussions for 
human societies, is a major concern for the research and policy agenda. Protected areas 
(PAs) can contribute directly or indirectly to socioeconomic outcomes such as food security 
and development opportunities for nearby human communities in this uncertain future.  
This topic is being addressed through the Belmont Forum-funded PARSEC project 
(www.parsecproject.org), with funding partners from France, the USA, Brazil, Japan, and 
associates in Australia and the UK. The method we are using is based on recent research 
on how satellite images and deep learning can be used to predict socioeconomic conditions 
(Jean et al., 2016; Yeh et al., 2020). 
As a desired outcome from this project, the Belmont Forum expects not only a good 
scientific product but also a workflow and outputs that are transparent, open, and 
reproducible (i.e. it is FAIR, Wilkinson et al., 2016). To this end, the PARSEC project has 
two components, a team of synthesis scientists (the synthesis strand) and a team of data 
scientists (the data strand). The synthesis strand is working on the subject of this paper, 
while the data strand is developing tools to support active international collaboration and 
good data management practices. These two strands are designed to learn from each other: 
by the end of the project the domain scientists should be better equipped to practice good 
data management, and the data scientists better able to speak with and respond to 
researcher priorities. In this paper we discuss some initial successes and challenges using 
examples from Australia, Brazil, Japan and the USA. 

2 Methods 
2.1 Towards the detection of socio-economic indicators  
The synthesis strand is essentially a working group of the FRB-CESAB, the French 
synthesis centre, and led by David Mouillot of the University of Montpellier. This strand is 
engaged with the core business of detecting the socio-economic effects of the protected 
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areas. The work can be summarised in two steps: (i) to identify areas with PAs for which 
satellite images before and after their establishment exist; and (ii) to use novel techniques of 
deep learning and artificial intelligence to model the socioeconomic outcomes of the effects 
of creation of those protected areas on their settlements. 
2.1.1 Site Selection 
The primary concern for the synthesis strand to date has been site selection. We are 
prioritising protected areas (PAs) that are listed globally in the IUCN World Database of 
Protected Areas (WDPA, https://www.protectedplanet.net/), and we need PAs that will allow 
us to obtain satellite images before and after their establishment, ideally those PAs 
established after 1990 and before 2015. The PAs selected will have adjacent, small towns 
nearby that are relatively unaffected by strong influences like big cities and mining activity. 
For validation, ‘mirror’ or reference sites are also being selected (Figure 1). We have 
stratified the selection according to ecoregions using Olson, et al. (2001) for the terrestrial 
sites, and Spalding, et al. (2007) for the marine.  

Figure 1: PARSEC criteria for site selection.  

2.1.2 Satellite Data Availability 
To conduct a time-series analysis for change detection using remote means, satellite images 
are preferably required a few times before the creation of a protected area, and several 
times after its creation. Reference sites also need to have such a time series. Effects may 
not be seen for some time after the ‘impact’. 
For a global project such as this, the availability of images is variable across space and time. 
Some countries have better coverage than others, and of course changes in satellites over 
time affects the quality of the images available. Some images are expensive, and this project 
does not have a large budget for acquiring them. Image type determines their spatial 
resolution, from 1m2 for some modern satellite images (often only commercially obtainable) 
to 70m2 resolution for old Landsat MSS images. 
As an example for this paper, we have chosen a marine protected area in Jurien Bay, 
Western Australia, and the small town next to it (Figure 2). This PA was created between 
2003 and 2005 (depending on source). In the satellite image before its creation (1985), the 
little village can clearly be observed. Over time the small town has clearly grown, but 
whether its growth is due to the creation of the PA, and whether the economic 
circumstances of the people living there have changed, is the question to be determined.  
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Figure 2: Satellite data before and after the creation of the marine protected area in Jurien Bay, 
Western Australia. 

In many situations there are a lack of signals from the satellite image that are 
socioeconomically meaningful. One of the inspirations for this project was successful in 
finding that in East Africa (Jean, et al., 2016), and a few others have shown some success 
including Yeh, et al. (2020), and Ayush, et al. (2021).  
2.1.3 Workflow 
Census data from each country and international (harmonised) sources will be spatially 
aggregated and interpreted through satellite imagery using visually detectable 
socioeconomic indicators. Using a deep learning model the team aims to develop predicted 
socioeconomic indicators that may well be used for decision support (Figure 3). Moreover, 
within the deep learning methodology the satellite images that belong to a selected site will 
be split for training, test and validation, which are used for the deep learning model.  
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Figure 3: The proposed workflow. First, the dataset preparation, where the remote sensing image 
data and census data are acquired and aggregated into the image-labelled dataset. Second, neural 
network architecture will be used to train these data. Third, the configuration of experiments is set up 
using data sets split for training, validation and testing. The sites selected (S: sites (villages and 
towns) near to PAs and S*: the mirror sites without PAs) are used for validation of the experiments in 
order to analyse the effect. Diagram based on Machicao, et al., 2020. 
2.2 Towards optimising data management and developing tools for researchers 
The data scientists, led by Shelley Stall of the American Geophysical Union, are working in 
parallel with the research team. They are guided by the Belmont Forum’s Data and Digital 
Object Management Plan (DDOMP: https://bit.ly/3yPsQIl) and Bishop et al., (2020). The 
Belmont Forum requires its funded projects to ensure they are open and reproducible, and 
the data strand aims to be an exemplar. This strand is charged with anticipating and 
responding to the data management needs of the synthesis strand and engaging actively 
with the wider research community. This includes the digital logistics of communication 
through to delivery of resultant data in a CoreTrustSeal registered repository (Lin et al., 
2020). It also requires the actions taken in the project to be re-traceable and reportable at 
any time.  
Communication and feedback from the wider community is achieved via conference 
participation (e.g. the Research Data Alliance, CoData, ESIP, the European, Japanese and 
American Geophysical Unions), round table discussions and training workshops as well as 
refereed articles. The engagement of a range of members from both strands in these 
activities is an important component of the sociological health of the whole team. 

3 Results 
3.1 Selected PAs 
The first task has been to identify areas with PAs for which we could obtain satellite images 
before and after their establishment, and these are illustrated for four countries, the USA, 
Australia, Brazil, and Japan (Figure 4). As mentioned before, our main source for suitable 
protected areas is the WDPA, but we validate them with national information (e.g. Ministério 
do Meio Ambiente in Brazil, and CAPAD in Australia). In the USA there are many protected 
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areas, but most of them, especially on the east coast, were established before 1990, so they 
were immediately excluded. On the west coast, there are suitable PAs, but villages that are 
not affected by other influences are hard to find. In Australia many parks were created in the 
1990s, which is very promising, and in a draft selection last year in Western Australia we 
were able to identify some potential sites, but again adjacent settlements and the absence of 
disturbance factors become really significant in many cases. The same is true in Brazil, 
where most of the suitable parks are in relatively isolated regions (in the north west), and we 
have the same challenge.   
In Japan, the filtering criteria were adjusted due to the small distance between cities. Despite 
this, the PAs that fell within the project’s temporal and spatial envelope were those found on 
the Ogasawara Islands (Figure 4), so a different approach is being explored for Japan. The 
selection of suitable PAs remains a challenge and we have learned a lot during this process, 
not just about the choice of parks themselves. 

Figure 4: Maps from Australia, Brazil and the USA showing protected areas that fall within our criteria 
(green) and selected PAs for Western Australia and Brazil (blue). For Japan a range of potential PAs 
are shown in yellow, but only the PA on the Ogasawara Islands (highlighted) falls within the project 
criteria.  
3.2 Test of remote sensing of socio-economic parameters 
In an experiment to test the use of machine learning to discover indices of socio-economic 
well-being from remote sources we took Google Street View (GSV) images as our ‘remote’ 
source using an approach developed by Suel et al. (2019) in a very comprehensive case of 
use of GSV for the city of London.  
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As described more fully in Machicao et al. (subm.), we aimed to evaluate the prediction of 
income indicators using street view images, through a case study conducted in the area 
Vale do Ribeira, located in the southeast of Brazil. This area is a semi-rural area with a large 
proportion occupied by protected areas. We collected 2010 census data from the Brazilian 
Institute of Geography and Statistics (IBGE) and Google Street View imagery of 30 regions 
within the Vale do Ribeira for our images. As the images returned from GSV are panoramic, 
we requested four picture orientations (0°, 90°, 180° and 270°) to cover the image view 
completely. The computation for the analysis involved extraction by a pre-trained 
convolutional neural network (CNN) whose goal is to classify the images to detect socio-
economic indices (Figure 5). 

Figure 5: Deep Learning method applied to the prediction of a socioeconomic (income) indicator on 
the Vale do Ribeira (southeast of Brazil) using Google Street view images. The census areas without 
colour are mostly occupied by sparsely settled rural or protected areas. Source: (Machicao subm.) 

The observed income score was compared spatially with the predicted values from the 
census (Figure 6). The best performance (80%) was obtained for the higher income region 
of the predicted cases, while it decreased uniformly for other regions. The result was 
inherently biased by the number of images in GSV, as the higher income regions had more 
available images (had more visible infrastructure) than lower income areas. 
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Figure 6: Results of the prediction of income level using GSV images on the Vale do Ribeira. This 
plot shows the performance of the trained network to predict income score. The colour scale runs 
from 1 to 5, with 1 representing the lowest income and 5 representing the highest. Source: (Machicao 
subm.) 
3.3 Data management practices 
The data strand has established a common set of resources for the transnational and 
transdisciplinary team. This starts with support for effective group function.  
Communication tools used are primarily email and Slack (the latter less well used by the 
members), with regular zoom meetings held within country teams, strands, between the 
postdocs in the project (Brazil and France) and around particular sub-projects. Twice a year 
the whole group meets and given this project has mainly existed in the time of Covid19, this 
has, with one exception, been remote. Additional opportunities have been grasped at 
conferences with regular co-located meetings, for example, at RDA Plenaries since the start 
of the project. 
Google Drive is being used for document sharing (including meeting notes) and as a 
temporary repository for data files. Google Drive is connected to a dedicated space on Open 
Science Framework (OSF, https://osf.io/), which in turn is integrated with Amazon Web 
Service (AWS, https://aws.amazon.com/). Software development with GitHub works well and 
is commonly used by the developers, with jupyter notebooks and R Markdown some of the 
most popular forms of recording code and versioning. As recommended, we have identified 
a repository for final data storage, the Environmental Data Initiative (EDI, 
https://environmentaldatainitiative.org/), which has become a partner in the project. We have 
a project library on Zotero for our bibliographic records. We have our own community on 
Zenodo to publish workshop materials, presentations, short reports, and software 
(https://bit.ly/2U1iCpj). Zenodo provides a digital object identifier (with versioning capability) 
and citation for each object published there. More details about this organisation can be 
found in Stall (2021). 
Another big contribution of the data strand has been listening to the synthesis science team 
and getting them to think about a process during their workflow that would facilitate their 
data management goals and open-access practice. This has evolved into a simple checklist 
for the researcher which can be applied to any research team, not just PARSEC (Stall et al., 
2021). Everyone on the team has their ORCID profile, ensuring links to CrossRef and 
DataCite are activated. Every quarter the team member reviews their ORCID profile to check 
that it is updated. Every week the datasets created and used are ideally recorded using 
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spreadsheets provided on Google Drive, and any workflow or provenance details added. 
Monthly we update conference presentations and posters in a spreadsheet on Google Drive 
(cross-checking with Zenodo), and each team member is charged with ensuring data sets, 
images and software used are preserved and the publications that referred to them are 
recorded.  

4 Discussion 
We have presented some of the challenges and preliminary results for the PARSEC project, 
a project involving forty people from different disciplines, countries, languages and cultural 
backgrounds. Having two components, the data strand and the synthesis strand, has been 
useful to divide the goals and organize the knowledge flow.  
The selection of protected areas with the criteria we require to address the core project 
question has proved challenging. Part of the reason for the project was to test the generality 
of the approach of Jean et al. (2016), and it was expected that there would be different 
situations in each country. Adjustments for variation in population density, from high (Japan) 
to low (some parts of Brazil and Australia) and conflicting land-use activities remain to be 
solved. 
Blending census information with remote imagery, however, looks promising, assuming a 
good series of repeated images can be obtained. The experiment with Google Street View 
(GSV) was a direct attempt to test this, and it highlighted some useful limitations for which 
we need to plan. These include repeatability of the method. In the case of GSV the 
attractiveness of its ubiquitous nature throughout the world is offset by, even for one 
extraction event, the high temporal variability in the images, anywhere between 2011 and 
2019 for the Vale do Ribeira study, while the census data were available for 2010 only. We 
continue to conduct small experiments that will be useful for choosing the best data 
management and the appropriate configuration for deep learning architecture. 
The work of the data strand aims to ensure transparency across the team and encourage 
and support group work practices. Following the tasks outlined in the checklist has greatly 
eased the onerous reporting process for Belmont and the country funders (all of which have 
additional separate annual reporting requirements). The regular attention to recording 
activity ensures appropriate credit for data providers as well as team members when 
publishing their data, code or articles of any sort. The data strand has had many outputs 
which have largely been stimulated by the fortnightly meetings and high activity 
(conferences, presentations posters) in the data science community.  
The desired outcome is not only to have a good science project, but also to have a workflow 
and a product that is transparent, open and reproducible. 
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