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Key points:

• A spatiotemporal attention mechanism is proposed to achieve accurate
predictions.

• Interpretability of model shows short-term and periodical dependency in
temporality and importance of wind direction in spatiality.

Abstract

Due to the limited understanding of the physical/chemical processes and large
uncertainties in emissions, ozone prediction task becomes more difficult with
numerical models. Deep learning provides an alternative way. However, most of
the deep learning ozone prediction models only consider temporality and have
limited capacity. Exist spatiotemporal deep learning models generally suffer
from model complexity and inadequate spatiality learning. Thus, we propose a
novel spatiotemporal model, namely the Spatiotemporal Attentive Gated Recur-
rent Unit (STAGRU), which employs double attention mechanism and Gated
Recurrent Unit (GRU) to capture spatiotemporal information. We compare
STAGRU with Seq2Seq and their single attention version on nine monitoring
stations in Nanjing. The results show that STAGRU outperforms other com-
petitors in terms of RMSE, R2, and SMAPE. In addition, we make an inter-
pretability discussion for STAGRU. The discussion reveals that wind direction
plays an important role in ozone transmission and temporality mainly involves
short-term and periodical dependency.

Plain Language Summary: Ozone is considered as one of the most concerned
primary pollutants in air pollution control. Ozone prediction is a promising
way to provide assistance to the control process, which however is challenge-
able due to the complex and imperfectible understanding of ozone formation.
We propose a spatiotemporal model, namely Spatiotemporal Attentive Gated
Recurrent Unit, which learn the temporality from the past sequence of the tar-
get and capture the spatiality from the surrounding stations. Further, learned
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model reveals that temporality information involves short-term and periodical
dependency and spatiality information implies the importance of wind direction.

1. Introduction

Ground level Ozone (O3) is the products of photochemical reactions of VOCs
and NOx(Atkinson, 2000), which has spatiotemporal disparity primarily re-
sulted from different emission characteristics, synoptic conditions, topographic
distribution, and land use types(Carvalho et al., 2006; Meng et al., 2022; Tu et
al., 2007; Wang et al., 2017; Yu et al., 2021). Generally, emission source and
meteorological characteristics are the fundamental and essential factors to the
formation, transport and dispersion of O3(Mousavinezhad et al., 2021). The
source of O3 precursors emission can be labeled as anthropogenic source and
natural source(Lelieveld & Dentener, 2000), while the meteorological variables
such as solar radiation, wind direction, wind speed, atmospheric pressure, high
temperature and low humidity exhibit complicated relation with O3(Camalier
et al., 2007; Dueñas et al., 2002; Hu et al., 2021; Li et al., 2017; Pu et al.,
2017). Recently, ozone pollution has gradually increased and become one of
the primary pollutants of great concern in air pollution control(Lu et al., 2018;
Sun et al., 2016; Wang et al., 2009) because of its detrimental impacts on both
human health and agriculture field(Dimakopoulou et al., 2020; Keiser et al.,
2018; Michaudel et al., 2018; Zhang et al., 2021). Considering the complexity
of O3 formation mechanism, the aggravated atmospheric combined pollution
increases the difficulty in ozone control(Wennberg & Dabdub, 2008). One of
the most important tasks affecting the assessment of efficient prevention and
control strategies for O3 pollution is O3 prediction. Building precise O3 predic-
tion model can strongly support decision makers efficiently cutting heavy ozone
pollution peaks, which is urgent and necessary.

Generally, ozone prediction approaches can be classified into two types: nu-
merical and statistical approaches. Numerical approaches simulate real atmo-
spheric environment based on an accurate anthropogenic emissions estimation
and specific atmospheric physics and chemistry reaction. Some numerical ap-
proaches(Bey et al., 2001; Dennis et al., 1996; Grell et al., 2005) have been widely
used in ozone prediction. Unfortunately, numerical models suffer by imper-
fectible understanding of complex ozone formation and sacrificing spatiotempo-
ral resolutions. Therefore, the spatiotemporal representativeness, emission and
model mechanisms still need to be perfected(Zhou et al., 2017). By contrast,
statistical models do not take into account complicated reaction mechanisms,
having higher flexibility and more computing advantages(Schlink et al., 2006).
Classical statistical ozone prediction models mainly consist of basic regression
models(Huang et al., 2017; Hubbard & Cobourn, 1998; Kumar & Jain, 2010;
Pagowski et al., 2006; Wang et al., 2015), which limit the capacity of describing
mostly non-linear and complex internal physicochemical processes. Therefore,
they usually fail in meeting practical requirements(Comrie, 1997; Robeson &
Steyn, 1990). Machine Learning (ML) methods, as a promising one, have in-
spired the ozone forecasting domain. Basic ML algorithms(Burrows et al., 1995;
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Luna et al., 2014), advanced ensemble algorithms(Cai, 2018; Ding et al., 2018;
Eslami et al., 2020; Requia et al., 2020) and Artificial Neural Network (ANN)
(Al-Alawi et al., 2008; Arhami et al., 2013; Tsai et al., 2009) have been inten-
sively studied in ozone forecasting. Nevertheless, these models cannot focus
on capturing spatial and temporal features simultaneously, consequently, more
powerful models are needed.

To capture spatiotemporal information, the emerging Deep Learning (DL) is
a good choice, which own powerful representative capability. Theoretically,
DNN is able to fit any form of function, but it will be extremely hard to train.
Considering the No Free Lunch Theorem(Wolpert, 1996; Wolpert & Macready,
1997), a majority of task-oriented neural network were conducted such as re-
current neural network (RNN)(Elman, 1990), which is designed for sequence
forecasting. Nonetheless, RNN has the issues of gradient explosion and gradi-
ent vanishing, and also lack of long-term memory property. Accordingly, the
Long-Short Term Memory (LSTM)(Lipton et al., 2015) and the Gated Recur-
rent Unit (GRU)(Chung et al., 2014) are proposed to avoid these problems
by introducing memory units and gate mechanism(Pascanu et al., 2013). The
LSTM and the GRU are normally applied in ozone prediction coupled with
Encoder-Decoder framework(Sutskever et al., 2014). However, the performance
of Encoder-Decoder is limited by the fixed length of hidden state. The presence
of attention mechanism(Vaswani et al., 2017) breaks the bottleneck of Encoder-
Decoder. With the attention mechanism, some methods(Liu et al., 2018, 2019)
can achieve a more precise results. Besides temporal features, spatial factors
are also crucial. Ozone pollution is usually a regional air quality issue, thus, it
is not only affected by local emissions and meteorological conditions but also
by long-range transport of ozone and precursors(Chung, 1977; Wild & Akimoto,
2001). Several DL based methods(Abirami & Chitra, 2021; Wang et al., 2019;
Wang et al., 2020) have been proposed to learn spatiality, yet the application
of these methods is usually hampered by model complexity.

In this paper, we propose a novel method called Spatiotemporal Attentive Gated
Recurrent Unit (STAGRU) based on Seq2Seq model and double attention mech-
anism to predict local ozone levels using spatiotemporal information from in-situ
observations. STAGRU applies two kinds of attention to capture both spatial
and temporal information. Model construction details and data used for train-
ing and other experiments are introduced in section 2. Then, we conduct ex-
periments that compare STAGRU with Seq2Seq and Seq2Seq+Attention based
models. At last, we discuss about the interpretability of STAGRU, which pro-
vides us insights of temporality and spatiality. Furthermore, a derivative model,
STAGRU-Decoding, is proposed, which predict ozone for multiple stations syn-
chronously.

1. Data and Methods

2.1 Spatiotemporal attentive gated recurrent unit
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𝑤 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (score ([ℎ]past, ℎcurrent)) ,

When predicting ozone for a certain station, we believe that its surrounding
stations can provide assistance to improve prediction accuracy, because ozone
pollution is usually a regional air quality issue. Thus, we learn spatial infor-
mation from some specific moments in the past sequence of each surrounding
station. Here, we propose to employ the particular moments not the whole
sequence as it can reduce computation and alleviate the disturbance from unim-
portant moments. We utilize temporal attention layer to select the past moment
that has the highest attention weight for each station and introduce another at-
tention layer, spatial attention layer, to calculate spatial context vector. The
purpose we use the temporal attention layer to make selections is that this layer
contains knowledge about how to evaluate the importance of a certain past mo-
ment to the current prediction on the view of target station. After determining
these specific moments, spatial attention layer calculates the attention score for
each selected moment and obtain the spatial context vector. In this manner,
spatial attention layer builds a connection between target station and its neigh-
bors, and the knowledge in the past sequence of each station eventually affect
the prediction of the target.

Figure 1. The conceptual diagram of STAGRU, where 𝑛 is the number of
stations, 𝑇 is the length of past sequence and 𝐻 is the size of hidden state. The
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dark blue cuboid in the input sequence and the hidden state matrix represents
the target station related information. Three vectors in the concatenate part
are temporal context vector (upper), decoding hidden state (middle) and spatial
context vector (lower). Both encoder and decoder are basing on GRU. (9 × 24)
etc. represents the shape of data in that forward propagation step.

Along with the learning of temporal and spatial information, a model named
STAGRU (Spatiotemporal Attentive Gated Recurrent Unit), which is spatiotem-
poral attentive based, is proposed. We employ the widely used recurrent neural
network model, GRU, to be the time series related component, and compare
the performance with another popular model LSTM in experiment. The pro-
cess of STAGRU is shown in Figure 1. As shown in Figure 1, firstly, the
past sequence of each station is fed into encoder. Encoder maps each moment
into a hidden state, and a corresponding hidden state matrix is obtained. Then,
temporal and spatial attention layer captures spatiotemporal information from
the matrix, respectively, which produce temporal and spatial context vector. At
last, two context vectors are concatenated with current decoding hidden state,
which is sent to nonlinear layer to get current prediction. More details can be
seen in Figure S1.

2.2 Dataset

In this paper, we utilized both air quality and meteorological data of nine mon-
itoring stations in Nanjing from January 2017 to December 2020. The nine
stations are ATZX (Aotizhongxin station), CCM (Caochangmen station), MGQ
(Maigaoqiao station), PK (Pukou station), RJL (Ruijinlu station), SXL (Shanx-
ilu station), XLDXC (Xianlindaxuecheng station), XWH (Xuanwuhu station)
and ZHM (Zhonghuamen station). The longitude and latitude of each station is
illustrated in Table S1, and their geographical locations is shown in Figure 2a.
In Figure 2a, those 9 stations are distributed in different regions of Nanjing,
like teaching area, downtown area and industrial area, etc.
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Figure 2. (a) the geographical locations of nine stations. (b) the wind rose
map of the monitoring stations area in July 2019. (Unit: frequency). Hourly
data contains wind direction and speed of nine stations.

Air quality data includes hourly PM2.5, PM10, NO2, O3, CO, SO2 concentra-
tions and the air quality index (AQI). The fifth generation of atmospheric reanal-
ysis from European Centre for Medium-Range Weather Forecasts (ECMWF)
(ERA5)(Hersbach et al., 2020) is used as meteorological inputs. ERA5 near-
surface wind speed, wind direction, and temperature records are interpolated
to the geolocations of the 9 stations in using ordinary kriging interpolation,
where the variogram model is linear. We took the data from January 2017 to
July 2019 as training data, August 2019 to March 2020 as validating data, and
April 2020 to December 2020 as testing data. Validating data serves as an eval-
uator of the model to prevent over fitting in training. Testing data is used to
evaluate the performance of final trained model.

Linear interpolation (Benesty et al., 2004) is used to fulfill the missing data.
Normalization was applied to air quality data, wind speed, and temperature to
achieve fast convergence, and one-hot encoding was applied to wind direction
to gain corresponding binary code for training convenience. We transform raw
dataset to supervised dataset which is consisted of input-output pairs based on
sliding window. For the details of data flow, we took the past 24 hours air
quality data and meteorological data of all stations as the input. 24-hour O3
forecasts of the target station will be obtained via STAGRU.

2.3 Evaluation metric

In this study, the Root Mean Squared Error (RMSE), R2, and the Symmetric
Mean Absolute Percentage Error (SMAPE) are used as performance metrics.
The formular of RMSE is shown below
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𝑅𝑀𝑆𝐸 = √∑𝑛
𝑖=1 (𝑦𝑖 − ̂𝑦𝑖)

2

𝑛 ,

where 𝑦𝑖 represents the observation of item 𝑖; ̂𝑦𝑖 represents the prediction of
item 𝑖; 𝑛 represents the number of items.

R2 measures the fitting degree between the model and the true state. The
formular is defined as follows

𝑅2 = 1 − ∑𝑛
𝑖=1 (𝑦𝑖 − ̂𝑦𝑖)

2

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2 ,

where 𝑦 = ∑𝑛
𝑖=1 𝑦𝑖.

SMAPE measures the accuracy of predictions based on percentage errors, which
is defined as follows

𝑆𝑀𝐴𝑃𝐸 = 100%
𝑛 ∑𝑛

𝑖=0
| ̂𝑦𝑖−𝑦𝑖|

(| ̂𝑦𝑖|+|𝑦𝑖|)/2 .

Note that each evaluating metric above have their own advantages and disad-
vantages, thus we integrate different perspectives to measure the effectiveness
of the model.

2.4 Experiment design

In order to evaluate the capability of STAGRU, we compare it with Seq2Seq
based and Seq2Seq+Attention based models. Further, we also consider that
adopting LSTM to replace GRU in STAGRU, producing the STALSTM, be-
cause these two RNN methods are frequently used in many time series prediction
tasks (Mehtab et al., 2020; Rajagukguk et al., 2020). The details of experiment
design are shown in Table S2. The number of hidden units is 256, hidden layer
is 1, batch size is 48, optimizer is Adam (Kingma & Ba, 2014), learning rate is
0.0001. Early stopping was applied to get a fine model, and schedule sampling
was also used. Further, all experiments are conducted on NVIDIA GeForce
GTX 1050Ti 4G for GPU and Intel i5-7300HQ 2.50GHz for CPU.

1. Results

We execute six models mentioned above on each monitoring station to predict
future 24 hours ozone. In each station, all models are trained on the same
training dataset and are tested on the same testing dataset. The RMSE, R2,
and SMAPE of each model in nine stations are shown in Figure 3. Model
detailed results are illustrated in Table S3 in Support information.
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Figure 3. The performance of each model in nine monitoring stations. The hor-
izontal axis represents predicting step, and the vertical axis represents specific
metric. The solid line is the mean of performance for each model in nine sta-
tions. The undertint area represents the variation range of performance, where
the upper bound is the maximum and the lower bound is the minimum.

As shown in Figure 3, the performance of all these models gets worse in the
early stage, and then become stable after the 8th hour. Seq2Seq based models
perform worst and unstable. Seq2Seq+Attention based methods can achieve a
better prediction than Seq2Seq. Concretely, there is a 27% improvement from
Seq2Seq to Seq2Seq+Attention. Spatiotemporal attentive based methods are
the best of all experiment categories in both accuracy and stability. There is a
7% improvement from Seq2Seq+Attention to spatiotemporal attentive. Further,
STAGRU achieves the best performance and better than STALSTM.

Generally, the error of RNN based models, especially under Encoder-Decoder
framework, accumulate as forecast lead time increase because the relevant be-
tween past observation values and predicting values is getting weak and the
property of Encoder-Decoder framework, recursivity, makes error broadcast.
The prediction of Seq2Seq based methods are generally adequate at the first
forecast lead hour, but deteriorate at a much faster rate than the other meth-
ods as forecast lead time increases. The reason is that the only connection
between prediction and the past sequence is the last decoding hidden state,
which cannot afford enough information to support forecasting due to the fixed
length of the hidden state and make the error accumulate rapidly. Therefore,
the fitting ability of the Seq2Seq based model is unsatisfied. Seq2Seq+Attention
based methods introduce attention mechanism to relate each prediction with all
past moments, which complement the shortage of Seq2Seq based methods and
generate a better model with advanced performance. With the support of tem-
poral information, Seq2Seq+Attention based methods can significantly improve
forecasting skills. However, Seq2Seq+Attention based methods fluctuate as fore-
casting goes on. It is because the attention mechanism in Seq2Seq+Attention
based models tends to learn periodicity from past sequence and the periodicity
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can be vulnerable to error accumulation that make the model vigorless. Spa-
tiotemporal attentive based methods further bring in an extra attention layer
comparing to Seq2Seq+Attention to make a connection between observations
of spatially distributed stations.

In summary, Seq2Seq based models are only sufficient to solve short-term se-
quence prediction due to its limited representation capability and fast error
accumulation. Attention mechanisms can reinforce Seq2Seq, but the informa-
tion they capture is still insufficient. Spatiotemporal attentive based methods
have the most satisfactory performance due to the spatiotemporal information
learned, which improve the fitting ability and robustness. Moreover, to demon-
strate the adaptability of GRU and LSTM to spatiotemporal attention mecha-
nism, we compare the STAGRU and the STALSTM. The results showed that
GRU is a better choice than LSTM for our proposed model.

1. Discussion

4.1 Interpretability discussion

Another important issue in O3 prediction is how to interpret the results. For
this purpose, July 2019 was chosen for interpretability discussion because of the
generally consistent wind direction of the selected monitoring stations during
this period. We formed the hourly data into supervised dataset and 697 samples
were obtained. The wind speed (classified basing on Beaufort wind scale) and
wind direction distribution in all stations during this period are shown in Figure
2b. From Figure 2b, it can be seen that the dominant wind direction in July
2019 is ESE and the wind speed is between 1.3m s-1 to 3.1m s-1.

For the interpretability discussion of temporality, we review that how the
temporal-attention layer assigns weights to each past moment, some statistical
procedures were conducted. The statistical process can be concluded into
two steps: 1) We compute the summation of the temporal attention weight
using all samples in July 2019. A 24 × 24 matrix representing the sum of
attention weight for each forecast lead time and past moment is constructed; 2)
The min-max normalization is applied to the matrix to highlight the relative
importance of each past moment to the prediction of the target

station at each forecast lead time (the closer the value is to 1, the more important
the past moment is to the corresponding predicting step and vice versa).
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Figure 4. (a) Weights that were assigned to each past moment by temporal
attention layer in PK. (b) Heatmap of the relative importance of other stations
respect to CCM at each predicting step. The x axis represents the number of
each past moment in (a) and represents surrounding stations in (b), and the y
axis represents the predicting step (Specifically, while the present moment is 0,
+1 to +24 represents forecasting moment and -1 to -24 represents the history to
current moment). Note that the weight 0 does not mean totally unrelated which
truly means relatively unimportant because of the min-max normalization.

As shown in Figure 4a, the temporal-attention layer tends to learn the short-
term dependency in the prediction of first several hours. Specifically, in the
prediction of the 1st to the 4th hour, the temporal-attention assigns the largest
weight to the -4th to -1st past moment, and the Pearson correlation coefficient
between predicting steps and the most important moments is 0.9439 (Figure
4a). As the forecast lead time increases, the short-term dependency shifts to
periodical dependency gradually. According to Figure 4a, the periodical depen-
dency dominates from the 8th to the last prediction step, and the corresponding
most important past moment is from the -18th to the -4th. Thire Pearson corre-
lation coefficient is 0.9959, which means high positive correlation (Figure 4a).
In summary, the temporal information learned involved in short-term and pe-
riodical dependency, and the temporal-attention finely captured the tradeoff of
these two kinds of dependency.

For the interpretability discussion of how the predictions of the target station
is affected by stations nearby in STAGRU, same statistical procedures were
conducted. We compute the summation of the attention weight for each pre-
dicting step of each surrounding monitoring station in July 2019. A 24 × 8
matrix representing the relation between each forecast lead time and surround-
ing stations is created. The statistical results of the station CCM (located at
the middle of the study area) are depicted in Figure 4b. According to the
heat map, it is obvious that the RJL is the most important surrounding mon-
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itoring station to the CCM for the whole predicting, which is in consistence
with their relative geolocations and the dominant wind direction. XWH, SXL,
ZHM and ATZX are also important because there exist a certain number of
NE, ENE, ESE and SW winds according to Figure 2b. According to the Fig-
ure 2a, it can be found that a mountain stands on the upwind position of the
station MGQ, which weaken the airflow and reduce the wind blowing. Further,
the relative humidity of the Xuanwu Lake is significant, which bring negative
fluence to ozone formation (Dueñas et al., 2002). Meanwhile, MGQ is located
at the downwind direction. Consequently, the station MGQ becomes the most
unimportant neighbor. Empirically, we take off the data of station MGQ and
evaluate the performance. Before eliminating station MGQ, the average RMSE,
R2 and SMAPE in station CCM are 34.83, 0.590 and 48.55 respectively. After
removing station MGQ, the average RMSE, R2 and SMAPE are 35.18, 0.593
and 49.09. The performance attenuation is slight.

In summary, on the one hand, the interpretable results are consistent with the
actual cognition, which investigate the reliability of our proposed model, on the
other hand, analyzing the inner mechanism of model continuously deepen and
strengthen the acknowledgement of spatiality. Concretely, the distance is not
the only important factor influencing pollutant transmission in here, the results
show that the wind direction matters either. Thus, future works about spatial
prediction can pay more attention to the utilizing of other spatial information,
like wind direction etc.

4.2 Derivative model discussion

In this study, we designed the model that learns spatial information from the
encoding hidden states (Figure 1). However, spatial information can be also
captured during decoding. Basing on the STAGRU, we move the spatial in-
formation learning process from the encoding hidden states of past sequence
of each monitoring station to the decoding hidden states of each station that
in the same predicting step (namely STAGRU-Decoding). The details of this
model are shown in Figure S2. Firstly, it is clear that the spatial attention
layer of STAGRU-Decoding receives the decoding hidden states of all monitoring
stations in the same predicting step. Then, all stations make predictions simul-
taneously in decoding. In this manner, STAGRU-Decoding is able to achieve
synchronous prediction for multiple monitoring stations, which reduce model
training overhead.

We investigate the effectiveness of STAGRU-Decoding by compare it with STA-
GRU in nine monitoring stations. The results are shown in Figure S3. Ac-
cording to the results, the mean performance of STAGRU-Decoding is similar
to STAGRU, but it becomes unstable as the forecast lead time increases, af-
ter 8th hour in specific, according to the undertint area. We consider that the
predictions STAGRU-Decoding made for a monitoring station are built on the
prediction of others, which causes error superposition. Thus, the stability of
STAGRU-Decoding deteriorate as forecasting goes on. Also, we note that the
applicable scope of the spatial information learning in STAGRU and STAGRU-
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Decoding is limited by the wind-force, while the air pollutant transmits more
widely along with the wind becoming stronger.

1. Conclusion

In this paper, we proposed a novel model, Spatiotemporal Gate Recurrent Unit
(STAGRU), which capture spatiotemporal information using two kinds of atten-
tion mechanisms: temporal-attention and spatial-attention. Temporal-attention
captures temporal information from the past sequence and spatial-attention
captures spatial information from the surrounding monitoring stations. We il-
lustrate the effectiveness of STAGRU in comparing with Seq2Seq based and
Seq2Seq+Attention based models. Furthermore, we proposed another model
that captures spatial information in decoding. This model is able to apply fore-
cast to multi-stations synchronously at the expense of stability. In addition, to
give an insight to our proposed model, we make interpretability discussion in
the perspective of temporality and spatiality statistically. For the future works,
we are going to extend the prediction to the whole of China and further improve
the accuracy of our model.

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province
(No. BK20210574)

Data Availability

Data related to the meteorological inputs, including wind speed, wind angle
and temperature records, are from the fifth generation of atmospheric reanal-
ysis from European Centre for Medium-Range Weather Forecasts (ECMWF)
(ERA5) (Hersbach et al., 2020), available at https://doi.org/10.24381/cds.adb
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Monitoring station Longitude Latitude 

ATZX 118.737 32.009 

CCM 118.749 32.057 

MGQ 118.803 32.108 

PK 118.626 32.088 

RJL 118.803 32.031 

SXL 118.778 32.072 

XLDXC 118.907 32.105 

XWH 118.795 32.078 

ZHM 118.777 32.014 

Table S1. The longitude and latitude of each monitoring station (unit: degree).  
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Experiment category Experiment name 

Seq2Seq 

Seq2Seq_LSTM 

Seq2Seq_GRU 

Seq2Seq+Attention 

Seq2Seq_LSTM+Attention 

Seq2Seq_GRU+Attention 

Spatiotemporal 

attentive 

STAGRU 

STALSTM 

Table S2. Experimental design. Seq2Seq based models are the combination of Encoder-

Decoder framework and LSTM or GRU, and Seq2Seq+Attention applies single attention 

mechanism on the basis of Seq2Seq based models. Spatiotemporal attentive based 

method includes STAGRU and STALSTM. The settings of all models are consistent. 

  



 

 

4 

 

Table S3. Specific results of testing RMSE, R2 and SMAPE in all monitoring stations. 
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Figure S1. The structure of STAGRU. target represents the past sequence of target 

station, and 𝑿𝒊 represents the past sequence of surrounding station 𝒊. Sending those 

data to encoder, the GRU component encodes each moment into hidden state, and a 

hidden state matrix is produced, named 𝑯(𝒌,𝒏𝒊𝒏)
𝒆 . Note that the row and column of 

𝑯(𝒌,𝒏𝒊𝒏)
𝒆  depends on the number of stations and the length of past sequence. The last 

encoding hidden state of target sequence is fed into decoder. With that hidden state, 

decoder produces decoding hidden state for each predicting step. In each predicting 

step, temporal-context vector that derive from the encoding hidden states of target 

station and spatial-context vector that derive from the encoding hidden states with the 

highest attention weight in each monitor station are applied to make a prediction. 

Specifically, the temporal-context vector 𝒄𝒕𝒆𝒎𝒑 and the spatial-context vector 𝒄𝒔𝒑𝒂 are 

concatenated with current decoding hidden state 𝒉𝒅, then the concatenation is sent to a 

linear layer to forecast 𝒀. 
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Figure S2. The structure of STAGRU-Decoding. The main difference is in the spatial 

information learning. STAGRU-Decoding learn the spatiality from the decoding hidden 

states of other surrounding stations. This operation will be applied for each predicting 

step of each station. In this manner, there are no target station here. All stations are 

forecasted synchronously. 
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Figure S3. Comparison of STAGRU and STAGRU-Decoding. 



Table S3. Specific results of testing RMSE, R2 and SMAPE in all monitoring stations. 

Zhonghuamen (ZHM) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 15.44 23.46 28.94 32.79 35.49 37.36 38.71 39.75 40.65 41.54 42.46 43.39 

Seq2Seq_GRU 18.59 24.26 28.33 31.48 33.96 35.94 37.57 38.94 40.11 41.23 42.26 43.19 

Seq2Seq+Attention_LSTM 19.88 25.31 29.33 32.33 36.10 37.19 37.95 38.44 38.82 39.12 39.39 39.67 

Seq2Seq+Attention_GRU 18.71 22.98 26.49 29.31 31.56 33.33 34.73 35.84 36.71 37.46 38.12 38.69 

STALSTM 19.89 24.30 27.93 30.67 32.66 34.10 35.11 35.80 36.29 36.67 37.02 37.35 

STAGRU 18.81 23.09 26.61 29.40 31.56 33.18 34.40 35.31 35.97 36.50 36.95 37.31 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 44.28 45.09 45.79 46.35 46.75 46.99 47.06 46.98 46.74 46.38 45.94 45.51 

Seq2Seq_GRU 44.03 44.71 45.23 45.58 45.79 45.86 45.78 45.58 45.27 44.87 44.44 44.04 

Seq2Seq+Attention_LSTM 39.94 40.21 40.49 40.77 41.03 41.24 41.35 41.37 41.32 41.31 41.25 41.27 

Seq2Seq+Attention_GRU 39.18 39.61 39.97 40.29 40.59 40.78 40.92 40.95 40.85 40.63 40.30 39.96 

STALSTM 37.66 37.97 38.28 38.59 38.86 39.11 39.34 39.48 39.52 39.51 39.41 39.33 

STAGRU 37.62 37.87 38.05 38.17 38.25 38.29 38.36 38.46 38.55 38.51 38.46 38.45 

R2 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 0.916 0.806 0.705 0.621 0.556 0.508 0.473 0.444 0.418 0.392 0.365 0.337 

Seq2Seq_GRU 0.878 0.793 0.718 0.652 0.595 0.546 0.504 0.467 0.434 0.403 0.372 0.343 

Seq2Seq+Attention_LSTM 0.860 0.774 0.697 0.632 0.580 0.541 0.513 0.493 0.480 0.470 0.461 0.454 

Seq2Seq+Attention_GRU 0.876 0.814 0.753 0.697 0.649 0.609 0.575 0.548 0.525 0.506 0.488 0.473 

STALSTM 0.860 0.792 0.725 0.669 0.624 0.591 0.566 0.549 0.536 0.527 0.517 0.509 

STAGRU 0.875 0.812 0.750 0.695 0.649 0.612 0.583 0.561 0.544 0.531 0.519 0.510 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.310 0.284 0.262 0.243 0.230 0.222 0.220 0.223 0.231 0.243 0.257 0.271 

Seq2Seq_GRU 0.319 0.298 0.281 0.269 0.262 0.260 0.262 0.268 0.279 0.292 0.306 0.319 

Seq2Seq+Attention_LSTM 0.446 0.438 0.431 0.423 0.415 0.407 0.401 0.398 0.397 0.399 0.401 0.401 

Seq2Seq+Attention_GRU 0.459 0.447 0.437 0.428 0.420 0.414 0.410 0.409 0.412 0.419 0.428 0.438 

STALSTM 0.501 0.492 0.484 0.475 0.468 0.461 0.455 0.451 0.450 0.450 0.453 0.453 

STAGRU 0.502 0.495 0.490 0.487 0.484 0.483 0.482 0.479 0.476 0.478 0.479 0.480 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 30.84 40.86 46.35 49.83 52.30 54.03 55.24 56.21 57.14 58.05 58.93 59.71 

Seq2Seq_GRU 36.47 42.75 46.52 49.10 51.11 52.75 54.14 55.43 56.63 57.79 58.79 59.64 

Seq2Seq+Attention_LSTM 33.74 39.19 43.25 46.28 48.35 49.92 51.05 51.79 52.23 52.42 52.71 53.02 

Seq2Seq+Attention_GRU 35.59 40.91 44.57 47.07 48.80 49.98 50.76 51.31 51.77 52.28 52.83 53.39 



 

STALSTM 35.33 39.84 43.23 45.89 47.73 49.01 49.96 50.72 51.39 52.07 52.68 53.20 

STAGRU 33.95 38.35 42.00 44.95 47.13 48.77 50.06 51.11 51.90 52.59 53.12 53.58 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 60.35 60.85 61.29 61.66 61.97 62.23 62.38 62.44 62.43 62.31 62.11 61.89 

Seq2Seq_GRU 60.31 60.76 61.04 61.21 61.33 61.43 61.46 61.45 61.35 61.15 60.92 60.71 

Seq2Seq+Attention_LSTM 53.31 53.57 53.86 54.26 54.64 55.10 55.39 55.57 55.62 55.56 55.51 55.51 

Seq2Seq+Attention_GRU 53.88 54.40 54.94 55.46 55.90 56.27 56.60 56.89 57.07 57.15 57.12 57.04 

STALSTM 53.68 54.15 54.57 54.91 55.24 55.58 55.90 56.14 56.30 56.37 56.29 56.18 

STAGRU 53.99 54.35 54.61 54.78 54.96 55.14 55.46 55.75 55.94 55.95 55.87 55.81 

Xianlindaxuecheng (XLDXC) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 27.33 33.25 38.18 42.36 45.63 47.93 49.31 50.01 50.24 50.25 50.23 50.26 

Seq2Seq_GRU 21.17 28.80 34.66 39.41 43.22 46.13 48.20 49.55 50.34 50.75 50.95 51.06 

Seq2Seq+Attention_LSTM 18.44 24.12 28.41 31.59 33.89 35.45 36.42 36.97 37.22 37.29 37.27 37.22 

Seq2Seq+Attention_GRU 25.51 30.19 34.02 37.21 39.79 41.75 43.18 44.19 44.88 45.34 45.63 45.78 

STALSTM 18.35 24.01 27.88 30.65 32.69 34.19 35.25 36.00 36.50 36.83 37.08 37.29 

STAGRU 17.32 22.75 26.74 29.69 31.86 33.44 34.55 35.35 35.88 36.25 36.48 36.58 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 50.35 50.53 50.77 51.02 51.27 51.49 51.68 51.82 51.92 51.96 51.95 51.91 

Seq2Seq_GRU 51.14 51.25 51.41 51.62 51.81 51.90 51.84 51.55 51.06 50.44 49.84 49.38 

Seq2Seq+Attention_LSTM 37.22 37.31 37.52 37.81 38.16 38.49 38.74 38.89 38.91 38.84 38.76 38.79 

Seq2Seq+Attention_GRU 45.76 45.61 45.34 44.97 44.54 44.06 43.56 43.10 42.75 42.55 42.57 42.87 

STALSTM 37.51 37.79 38.15 38.58 39.07 39.52 39.88 40.12 40.17 40.05 39.79 39.54 

STAGRU 36.59 36.61 36.68 36.83 37.02 37.20 37.33 37.39 37.37 37.32 37.36 37.59 

R2 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 0.758 0.641 0.527 0.418 0.325 0.256 0.212 0.190 0.182 0.182 0.182 0.181 

Seq2Seq_GRU 0.854 0.731 0.611 0.497 0.394 0.310 0.247 0.204 0.179 0.166 0.159 0.155 

Seq2Seq+Attention_LSTM 0.889 0.811 0.738 0.676 0.627 0.593 0.570 0.557 0.551 0.549 0.550 0.551 

Seq2Seq+Attention_GRU 0.789 0.704 0.625 0.551 0.487 0.435 0.396 0.367 0.347 0.334 0.325 0.321 

STALSTM 0.890 0.813 0.748 0.695 0.653 0.621 0.597 0.580 0.568 0.560 0.554 0.549 

STAGRU 0.902 0.832 0.768 0.714 0.671 0.637 0.613 0.595 0.583 0.574 0.568 0.566 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.178 0.172 0.164 0.156 0.148 0.140 0.133 0.129 0.126 0.124 0.125 0.126 

Seq2Seq_GRU 0.153 0.149 0.143 0.136 0.130 0.126 0.128 0.138 0.154 0.174 0.194 0.209 



 

Seq2Seq+Attention_LSTM 0.551 0.548 0.543 0.536 0.527 0.519 0.513 0.509 0.509 0.510 0.512 0.512 

Seq2Seq+Attention_GRU 0.321 0.325 0.333 0.344 0.356 0.370 0.384 0.397 0.407 0.412 0.412 0.404 

STALSTM 0.544 0.537 0.528 0.517 0.505 0.493 0.484 0.478 0.476 0.479 0.486 0.493 

STAGRU 0.566 0.565 0.563 0.560 0.555 0.551 0.547 0.546 0.546 0.548 0.547 0.541 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 41.06

9 

48.17 53.37 57.32 60.17 62.04 62.97 63.30 63.40 63.48 63.43 63.43 

Seq2Seq_GRU 36.46 44.14 49.62 53.73 56.84 59.09 60.63 61.57 62.12 62.62 63.18 63.70 

Seq2Seq+Attention_LSTM 31.81 38.09 42.40 45.45 47.70 49.17 50.09 50.69 50.92 50.99 51.02 51.02 

Seq2Seq+Attention_GRU 36.43 41.91 45.95 49.09 51.51 53.45 54.86 55.78 56.43 56.95 57.35 57.63 

STALSTM 32.58 38.68 42.61 45.19 47.20 48.54 49.56 50.28 50.76 51.12 51.40 51.64 

STAGRU 30.12 36.63 41.18 44.26 46.44 48.08 49.32 50.24 50.86 51.31 51.62 51.80 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 63.45 63.51 63.72 64.04 64.40 64.76 65.03 65.19 65.25 65.23 65.12 65.04 

Seq2Seq_GRU 64.13 65.58 65.03 65.38 65.58 65.70 65.56 65.18 64.64 63.99 63.41 63.00 

Seq2Seq+Attention_LSTM 50.98 51.08 51.30 51.54 51.85 52.22 52.57 52.85 53.04 53.13 53.16 53.26 

Seq2Seq+Attention_GRU 57.73 57.68 57.51 57.23 56.84 56.41 55.99 55.59 55.29 55.11 55.02 55.12 

STALSTM 51.89 52.17 52.50 52.90 53.34 53.72 54.09 54.41 54.55 54.52 54.41 54.22 

STAGRU 51.79 51.79 51.85 51.92 51.96 51.99 52.05 52.12 52.13 52.08 52.08 52.23 

Aotizhongxin (ATZX) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 19.36 25.20 30.26 34.46 37.87 40.56 42.68 44.31 45.57 46.58 47.42 48.12 

Seq2Seq_GRU 14.73 23.23 28.78 32.59 35.24 37.10 38.45 39.49 40.36 41.18 41.99 42.78 

Seq2Seq+Attention_LSTM 18.16 24.14 28.41 31.62 34.04 35.81 37.08 37.99 38.68 39.23 39.71 40.14 

Seq2Seq+Attention_GRU 18.55 23.51 27.11 30.00 32.33 34.11 35.39 36.27 36.82 37.21 37.51 37.75 

STALSTM 18.63 23.88 27.82 30.81 33.05 34.72 36.01 37.01 37.81 38.46 39.02 39.50 

STAGRU 18.78 23.93 27.78 30.71 32.91 34.50 35.62 36.37 36.77 36.98 37.11 37.18 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 48.68 49.09 49.33 49.42 49.37 49.25 49.05 48.80 48.56 48.40 48.42 48.72 

Seq2Seq_GRU 43.52 44.14 44.59 44.85 44.94 44.88 44.69 44.41 44.09 43.80 43.59 43.54 

Seq2Seq+Attention_LSTM 40.49 40.76 40.88 40.93 40.92 40.86 40.74 40.52 40.18 39.73 39.27 38.92 

Seq2Seq+Attention_GRU 37.99 38.22 38.45 38.69 38.96 39.25 39.48 39.58 39.51 39.28 38.97 38.76 

STALSTM 39.85 40.11 40.28 40.41 40.47 40.45 40.33 40.14 39.81 39.38 38.94 38.66 

STAGRU 37.26 37.36 37.42 37.52 37.69 37.93 38.19 38.42 38.55 38.56 38.50 38.47 

R2 methods 1 2 3 4 5 6 7 8 9 10 11 12 



 

Seq2Seq_LSTM 0.880 0.796 0.707 0.620 0.541 0.473 0.417 0.372

0 

0.335 0.306 0.280 0.258 

Seq2Seq_GRU 0.930 0.827 0.734 0.660 0.602 0.559 0.527 0.501 0.478 0.457 0.435 0.414 

Seq2Seq+Attention_LSTM 0.894 0.813 0.741 0.680 0.629 0.589 0.560 0.538 0.521 0.507 0.495 0.484 

Seq2Seq+Attention_GRU 0.890 0.823 0.765 0.712 0.666 0.628 0.599 0.579 0.566 0.557 0.550 0.544 

STALSTM 0.888 0.817 0.752 0.696 0.650 0.614 0.585 0.561 0.542 0.526 0.512 0.500 

STAGRU 0.887 0.816 0.753 0.698 0.653 0.619 0.594 0.576 0.567 0.562 0.559 0.557 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.241 0.228 0.220 0.217 0.219 0.222 0.229 0.236 0.244 0.249 0.248 0.239 

Seq2Seq_GRU 0.393 0.375 0.363 0.355 0.352 0.354 0.359 0.367 0.376 0.385 0.391 0.392 

Seq2Seq+Attention_LSTM 0.475 0.468 0.464 0.463 0.463 0.465 0.468 0.473 0.482 0.494 0.506 0.514 

Seq2Seq+Attention_GRU 0.538 0.532 0.526 0.520 0.514 0.506 0.501 0.498 0.500 0.506 0.513 0.519 

STALSTM 0.491 0.484 0.480 0.476 0.475 0.475 0.478 0.483 0.492 0.503 0.514 0.521 

STAGRU 0.555 0.553 0.551 0.548 0.544 0.539 0.532 0.526 0.523 0.523 0.525 0.525 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 31.54 37.17 41.68 45.18 47.93 50.59 52.64 54.23 55.53 56.70 57.63 58.31 

Seq2Seq_GRU 24.82 35.64 41.71 45.47 48.12 49.98 51.29 52.25 52.95 53.61 54.26 54.87 

Seq2Seq+Attention_LSTM 29.12 35.23 39.14 41.90 44.23 45.99 47.27 48.25 49.05 49.95 50.81 51.46 

Seq2Seq+Attention_GRU 31.83 36.99 40.37 42.89 44.77 46.28 47.35 48.10 48.64 49.12 49.55 49.85 

STALSTM 29.01 34.54 38.49 41.41 43.70 45.28 46.50 47.51 48.55 49.50 50.30 50.91 

STAGRU 31.69 36.58 40.30 42.56 44.52 46.05 47.19 47.93 48.50 48.77 49.02 49.15 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 58.75 59.02 59.11 59.08 59.00 58.89 58.79 58.64 58.49 58.43 58.48 58.71 

Seq2Seq_GRU 55.42 55.86 56.15 56.31 56.41 56.43 56.42 56.37 56.28 56.18 56.05 55.98 

Seq2Seq+Attention_LSTM 51.91 52.20 52.33 52.39 52.45 52.59 52.71 52.71 52.53 52.18 51.69 51.26 

Seq2Seq+Attention_GRU 50.10 50.31 50.52 50.73 51.09 51.54 51.90 52.17 52.25 52.08 51.77 51.55 

STALSTM 51.30 51.51 51.70 51.84 51.98 52.15 52.26 52.27 52.07 51.70 51.31 50.95 

STAGRU 49.27 49.41 49.46 49.56 49.75 50.08 50.57 50.95 51.20 51.22 51.05 50.91 

Shanxilu (SXL) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 20.69 29.01 36.45 42.26 46.38 49.07 50.61 51.32 51.45 51.24 50.84 50.34 

Seq2Seq_GRU 22.54 29.88 35.71 40.56 44.53 47.67 50.05 51.73 52.81 53.40 53.59 53.43 

Seq2Seq+Attention_LSTM 19.13 24.12 28.53 31.60 33.94 35.49 36.46 37.04 37.37 37.61 37.80 37.99 

Seq2Seq+Attention_GRU 20.83 26.16 30.33 33.55 36.02 37.92 39.39 40.53 41.43 42.16 42.70 43.00 

STALSTM 17.36 22.94 27.07 29.98 32.03 33.50 34.55 35.32 35.87 36.30 36.64 36.93 



STAGRU 17.66 23.00 27.05 30.09 32.20 33.87 34.92 35.56 35.93 36.12 36.23 36.27 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 49.82 49.31 48.83 48.40 48.03 47.71 47.45 47.22 47.01 46.85 46.78 46.92 

Seq2Seq_GRU 52.97 52.24 51.35 50.38 49.45 48.67 48.10 47.73 47.49 47.34 47.29 47.40 

Seq2Seq+Attention_LSTM 38.20 38.44 38.74 39.12 39.57 40.08 40.58 40.99 41.31 41.47 41.50 41.44 

Seq2Seq+Attention_GRU 43.05 42.86 42.50 42.01 41.47 40.92 40.39 39.91 39.51 39.24 39.15 39.28 

STALSTM 37.19 37.45 37.78 38.17 38.64 39.12 39.47 39.66 39.74 39.74 39.68 39.61 

STAGRU 36.28 36.29 36.32 36.41 36.61 36.92 37.26 37.59 37.90 38.16 38.36 38.58 

R2 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 0.841 0.689 0.509 0.340 0.205 0.110 0.053 0.027 0.022 0.030 0.045 0.063 

Seq2Seq_GRU 0.812 0.670 0.528 0.392 0.267 0.160 0.074 0.011 0.030 0.053 0.061 0.055 

Seq2Seq+Attention_LSTM 0.864 0.784 0.702 0.630 0.574 0.534 0.508 0.493 0.483 0.477 0.472 0.466 

Seq2Seq+Attention_GRU 0.839 0.746 0.659 0.583 0.520 0.468 0.426 0.393 0.365 0.343

4 

0.326 0.316 

STALSTM 0.888 0.805 0.729 0.667 0.620 0.585 0.558 0.539 0.524 0.513 0.503 0.496 

STAGRU 0.884 0.804 0.729 0.665 0.614 0.576 0.549 0.532 0.523 0.517 0.514 0.513 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.083 0.101 0.118 0.133 0.147 0.158 0.167 0.175 0.182 0.188 0.190 0.186 

Seq2Seq_GRU 0.036 0.009 0.024 0.061 0.095 0.123 0.144 0.157 0.166 0.171 0.173 0.169 

Seq2Seq+Attention_LSTM 0.460 0.453 0.445 0.434 0.420 0.405 0.391 0.378 0.369 0.364 0.363 0.365 

Seq2Seq+Attention_GRU 0.314 0.320 0.332 0.347 0.364 0.380 0.396 0.411 0.422 0.430 0.433 0.429 

STALSTM 0.488 0.481 0.472 0.461 0.447 0.434 0.423 0.418 0.416 0.415 0.417 0.420 

STAGRU 0.513 0.513 0.512 0.509 0.504 0.495 0.486 0.477 0.468 0.461 0.455 0.449 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 30.99 39.36 46.94

49.48 

52.85 56.72 58.95 60.09 60.54 60.57 60.35 59.95 59.37 

Seq2Seq_GRU 35.26 43.01 49.48 54.68 59.04 62.14 64.41 65.99 67.00 67.42 67.44 66.99 

Seq2Seq+Attention_LSTM 28.47 34.26 38.39 41.39 43.50 44.83 45.66 46.15 46.45 46.61 46.76 46.89 

Seq2Seq+Attention_GRU 31.30 36.73 40.32 42.92 44.95 46.59 47.85 48.79 49.60 50.34 50.98 51.40 

STALSTM 25.90 32.28 36.74 39.78 41.75 43.02 43.89 44.57 45.03 45.41 45.69 45.91 

STAGRU 27.39 33.59 37.17 39.93 41.99 43.47 44.47 45.04 45.32 45.48 45.61 45.72 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 58.69 58.00 57.36 56.79 56.32 55.98 55.79 55.70 55.64 55.59 55.60 55.77 

Seq2Seq_GRU 66.15 64.95 63.48 61.86 60.25 58.93 57.93 57.26 56.77 56.39 56.18 56.21 

Seq2Seq+Attention_LSTM 47.03 47.16 47.33 47.33 47.81 48.17 48.60 49.05 49.48 49.80 49.98 50.12 

Seq2Seq+Attention_GRU 51.55 51.46 51.10 50.56 50.00 49.49 49.05 48.68 48.39 48.18 48.11 48.24 

STALSTM 46.04 46.18 46.41 46.67 47.03 47.40 47.73 48.00 48.20 48.34 48.48 48.68 



 

STAGRU 45.82 45.86 45.90 45.93 46.05 46.32 46.69 47.03 47.33 47.54 47.71 47.96 

Pukou (PK) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 15.56 23.70 28.87 32.37 34.77 36.38 37.45 38.19 38.80 39.46 40.28 41.25 

Seq2Seq_GRU 18.32 26.64 32.66 37.15 40.37 42.53 43.81 44.40 44.50 44.30 43.94 43.50 

Seq2Seq+Attention_LSTM 19.54 24.14 27.93 30.94 33.24 34.90 36.02 36.71 37.14 37.47 37.79 38.14 

Seq2Seq+Attention_GRU 18.84 23.58 28.06 32.03 35.22 37.57 39.13 40.00 40.29 40.19 39.86 39.39 

STALSTM 20.54 24.86 28.31 30.96 32.81 33.97 34.66 35.03 35.25 35.45 35.73 36.07 

STAGRU 20.67 25.36 28.70 31.12 32.87 34.11 34.96 35.55 35.87 36.13 36.44 36.84 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 42.35 43.51 44.69 45.82 46.86 47.76 48.43 48.86 49.03 48.93 48.61 48.11 

Seq2Seq_GRU 43.01 42.50 41.99 41.56 41.24 41.04 40.92 40.89 40.97 41.19 41.62 42.32 

Seq2Seq+Attention_LSTM 38.47 38.79 39.10 39.38 39.64 39.84 39.94 39.94 39.84 39.68 39.53 39.46 

Seq2Seq+Attention_GRU 38.88 38.40 38.00 37.73 37.60 37.57 37.54 37.52 37.51 37.55 37.75 38.21 

STALSTM 36.46 36.87 37.29 37.68 38.01 38.24 38.33 38.30 38.19 38.10 38.07 38.14 

STAGRU 37.25 37.65 37.98 38.24 38.43 38.51 38.48 38.37 38.24 38.14 38.16 38.31 

R2 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 0.913 0.799 0.702 0.626 0.568 0.527 0.499 0.479 0.463 0.444 0.421 0.392 

Seq2Seq_GRU 0.880 0.746 0.619 0.507 0.418 0.354 0.315 0.296 0.293 0.300 0.311 0.325 

Seq2Seq+Attention_LSTM 0.863 0.792 0.721 0.658 0.606 0.565 0.537 0.519 0.508 0.499 0.490 0.481 

Seq2Seq+Attention_GRU 0.873 0.801 0.719 0.633 0.557 0.496 0.453 0.429 0.420 0.423 0.433 0.446 

STALSTM 0.849 0.779 0.714 0.658 0.615 0.588 0.571 0.562 0.556 0.551 0.544 0.535 

STAGRU 0.847 0.770 0.706 0.654 0.614 0.584 0.563 0.549 0.541 0.534 0.526 0.515 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.360 0.324 0.287 0.250 0.216 0.185 0.162 0.147 0.142 0.145 0.157 0.174 

Seq2Seq_GRU 0.339 0.355 0.370 0.383 0.393 0.398 0.402 0.403 0.401 0.394 0.382 0.361 

Seq2Seq+Attention_LSTM 0.472 0.463 0.454 0.446 0.439 0.433 0.430 0.430 0.433 0.438 0.442 0.445 

Seq2Seq+Attention_GRU 0.460 0.473 0.484 0.491 0.495 0.496 0.496 0.497 0.497 0.496 0.491 0.479 

STALSTM 0.525 0.514 0.503 0.493 0.484 0.477 0.475 0.476 0.479 0.482 0.483 0.481 

STAGRU 0.505 0.494 0.485 0.478 0.472 0.470 0.471 0.474 0.478 0.480 0.480 0.476 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 23.34 32.83 37.85 40.79 42.36 43.96 44.89 45.55 46.15 46.82 47.58 48.39 

Seq2Seq_GRU 25.13 33.88 39.71 43.70 46.24 47.78 48.45 48.45 48.22 48.03 47.78 47.52 

Seq2Seq+Attention_LSTM 26.07 31.01 34.71 37.46 39.52 40.97 41.98 42.78 43.28 43.68 44.07 44.49 



 

Seq2Seq+Attention_GRU 29.75 33.16 36.11 38.8 41.02 42.75 44.00 44.80 45.24 45.47 45.46 45.39 

STALSTM 28.92 32.63 35.54 37.74 39.33 40.43 41.2 41.76 42.12 42.44 42.82 43.25 

STAGRU 29.54 33.61 36.44 38.5 40.12 41.36 42.28 43.07 43.43 43.75 44.13 44.62 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 49.20 50.00 50.72 51.37 51.94 52.49 52.94 53.31 53.55 53.67 53.71 53.70 

Seq2Seq_GRU 47.26 47.06 46.87 46.66 46.53 46.46 46.39 46.32 46.3 46.4 46.64 47.15 

Seq2Seq+Attention_LSTM 44.93 45.33 45.75 46.14 46.42 46.62 46.72 46.75 46.71 46.61 46.51 46.46 

Seq2Seq+Attention_GRU 45.33 45.35 45.38 45.49 45.66 45.81 45.88 45.89 45.85 45.83 45.93 46.19 

STALSTM 43.76 44.32 44.87 45.33 45.69 45.94 46.07 46.15 46.17 46.22 46.3 46.39 

STAGRU 45.09 45.57 45.92 46.17 46.31 46.38 46.35 46.31 46.31 46.37 46.53 46.79 

Xuanwuhu (XWH) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 21.25 26.44 30.78 34.23 36.9 38.91 40.46 41.73 42.81 43.8 44.73 45.55 

Seq2Seq_GRU 23.31 28.45 33.37 37.47 40.67 42.99 44.59 45.63 46.25 46.65 46.93 47.12 

Seq2Seq+Attention_LSTM 18.25 23.97 28.29 31.59 34.03 35.63 36.55 36.98 37.09 37.07 37.02 37.00 

Seq2Seq+Attention_GRU 19.69 24.81 28.31 30.84 32.72 34.08 35.03 35.68 36.15 36.58 37.07 37.61 

STALSTM 18.42 24.22 28.15 30.90 32.85 34.13 34.91 35.34 35.55 35.67 35.83 36.02 

STAGRU 18.14 23.31 26.93 29.53 31.36 32.62 33.46 33.99 34.36 34.61 34.85 35.10 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 46.24 46.76 47.08 47.22 47.22 47.15 47.06 46.99 46.95 46.95 46.97 47.02 

Seq2Seq_GRU 47.21 47.25 47.23 47.14 47.04 46.97 46.92 46.88 46.82 46.78 46.75 46.76 

Seq2Seq+Attention_LSTM 37.02 37.13 37.32 37.59 37.96 38.41 38.88 39.29 39.56 39.74 39.85 39.99 

Seq2Seq+Attention_GRU 38.18 38.78 39.39 39.98 40.53 41.04 41.47 41.75 41.85 41.79 41.61 41.37 

STALSTM 36.27 36.60 37.01 37.50 38.06 38.68 39.29 39.76 40.07 40.27 40.39 40.48 

STAGRU 35.36 35.64 35.92 36.19 36.45 36.73 37.02 37.28 37.51 37.74 37.96 38.21 

R2 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 0.833 0.742 0.650 0.568 0.498 0.441 0.396 0.358 0.324 0.292 0.262 0.235 

Seq2Seq_GRU 0.799 0.701 0.589 0.482 0.390 0.318 0.267 0.232 0.211 0.197 0.188 0.181 

Seq2Seq+Attention_LSTM 0.877 0.788 0.705 0.632 0.573 0.532 0.507 0.496 0.493 0.493 0.494 0.495 

Seq2Seq+Attention_GRU 0.856 0.772 0.704 0.649 0.605 0.571 0.547 0.530 0.518 0.506 0.493 0.478 

STALSTM 0.874 0.783 0.707 0.647 0.602 0.570 0.550 0.539 0.534 0.530 0.526 0.521 

STAGRU 0.878 0.799 0.732 0.678 0.637 0.607 0.587 0.574 0.564 0.558 0.552 0.545 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.211 0.193 0.182 0.177 0.177 0.18 0.183 0.185 0.187 0.187 0.186 0.185 



 

Seq2Seq_GRU 0.178 0.176 0.177 0.18 0.183 0.186 0.187 0.189 0.191 0.193 0.193 0.194 

Seq2Seq+Attention_LSTM 0.494 0.491 0.486 0.478 0.468 0.455 0.442 0.430 0.423 0.418 0.414 0.410 

Seq2Seq+Attention_GRU 0.462 0.445 0.427 0.410 0.394 0.378 0.365 0.357 0.354 0.355 0.361 0.369 

STALSTM 0.514 0.505 0.494 0.481 0.465 0.447 0.430 0.416 0.407 0.402 0.398 0.395 

STAGRU 0.538 0.531 0.524 0.516 0.509 0.502 0.494 0.487 0.481 0.474 0.468 0.461 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 33.71 39.74 44.68 48.30 50.91 52.84 54.24 55.45 56.39 57.19 57.92 58.59 

Seq2Seq_GRU 38.79 45.16 51.22 56.12 59.46 61.59 62.67 63.07 63.01 62.77 62.51 62.20 

Seq2Seq+Attention_LSTM 31.68 38.25 42.88 46.13 48.52 50.05 50.88 51.26 51.36 51.38 51.42 51.43 

Seq2Seq+Attention_GRU 35.59 40.91 44.57 47.07 48.80 49.98 50.76 51.31 51.77 52.28 52.83 53.39 

STALSTM 32.29 39.04 43.29 46.08 47.98 49.09 49.76 50.10 50.24 50.39 50.52 50.75 

STAGRU 32.07 37.78 41.64 44.48 46.37 47.59 48.39 49.02 49.47 49.84 50.25 50.57 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 59.12 59.55 59.86 60.02 60.13 60.18 60.21 60.25 60.32 60.39 60.45 60.51 

Seq2Seq_GRU 61.87 61.55 61.30 61.05 60.87 60.72 60.63 60.51 60.37 60.25 60.19 60.27 

Seq2Seq+Attention_LSTM 51.48 51.55 51.72 51.95 52.26 52.67 53.18 53.69 54.10 54.40 54.59 54.79 

Seq2Seq+Attention_GRU 53.88 54.40 54.94 55.46 55.90 56.27 56.60 56.89 57.07 57.15 57.12 57.04 

STALSTM 50.96 51.27 51.66 52.15 52.67 53.27 53.86 54.40 54.88 55.26 55.50 55.70 

STAGRU 50.83 51.02 51.27 51.52 51.7 51.92 52.20 52.53 52.82 53.09 53.36 53.58 

Ruijinlu (RJL) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 25.53 33.91 41.54 47.11 50.76 52.86 53.82 54.01 53.68 53.08 52.38 51.72 

Seq2Seq_GRU 17.52 23.45 28.98 33.80 37.90 41.26 43.87 45.75 46.87 47.34 47.31 46.95 

Seq2Seq+Attention_LSTM 18.13 23.94 27.75 30.50 32.53 33.99 35.06 35.83 36.41 36.93 37.45 37.98 

Seq2Seq+Attention_GRU 16.46 22.16 27.08 30.83 33.60 35.65 37.14 38.22 38.94 39.41 39.72 39.95 

STALSTM 18.51 23.38 26.86 29.50 31.53 33.13 34.24 35.10 35.71 36.26 36.80 37.36 

STAGRU 17.98 22.32 25.63 28.15 30.07 31.51 32.59 33.39 33.99 34.51 34.98 35.44 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 51.19 50.82 50.62 50.56 50.59 50.68 50.76 50.81 50.85 50.93 51.12 51.52 

Seq2Seq_GRU 46.45 45.99 45.69 45.59 45.64 45.77 45.89 45.87 45.67 45.33 45.00 44.87 

Seq2Seq+Attention_LSTM 38.53 39.07 39.56 39.97 40.29 40.49 40.57 40.52 40.34 40.06 39.72 39.42 

Seq2Seq+Attention_GRU 40.16 40.38 40.60 40.87 41.14 41.39 41.60 41.71 41.76 41.83 42.00 42.35 

STALSTM 37.93 38.50 39.03 39.49 39.79 39.98 40.02 39.90 39.61 39.26 38.87 38.58 

STAGRU 35.91 36.43 36.74 37.05 37.31 37.49 37.59 37.63 37.59 37.49 37.38 37.31 



 

R2 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 0.780 0.612 0.419 0.253 0.133 0.059 0.025 0.018 0.03 0.051 0.076 0.099 

Seq2Seq_GRU 0.896 0.814 0.717 0.615 0.516 0.426 0.352 0.295 0.260 0.245 0.246 0.257 

Seq2Seq+Attention_LSTM 0.889 0.807 0.740 0.687 0.644 0.611 0.586 0.568 0.553 0.541 0.528 0.514 

Seq2Seq+Attention_GRU 0.908 0.834 0.753 0.680 0.619 0.572 0.535 0.508 0.489 0.477 0.468 0.462 

STALSTM 0.884 0.815 0.757 0.707 0.665 0.63 0.605 0.585 0.570 0.557 0.543 0.530 

STAGRU 0.891 0.832 0.778 0.733 0.695 0.665 0.642 0.624 0.611 0.599 0.587 0.576 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.117 0.130 0.136 0.138 0.137 0.134 0.131 0.129 0.128 0.125 0.119 0.105 

Seq2Seq_GRU 0.273 0.287 0.296 0.299 0.297 0.293 0.289 0.290 0.296 0.307 0.317 0.321 

Seq2Seq+Attention_LSTM 0.500 0.486 0.472 0.461 0.453 0.447 0.445 0.446 0.451 0.459 0.468 0.476 

Seq2Seq+Attention_GRU 0.456 0.450 0.444 0.437 0.429 0.422 0.416 0.413 0.411 0.410 0.405 0.395 

STALSTM 0.515 0.500 0.486 0.474 0.466 0.460 0.459 0.463 0.471 0.480 0.490 0.498 

STAGRU 0.565 0.555 0.545 0.537 0.530 0.526 0.523 0.522 0.523 0.526 0.529 0.530 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 35.57 46.85 58.25 66.10 70.06 71.09 70.66 69.89 68.75 67.52 66.41 65.52 

Seq2Seq_GRU 29.54 35.35 41.19 46.28 50.84 54.65 57.64 59.7 60.64 60.82 60.55 60.10 

Seq2Seq+Attention_LSTM 30.78 37.60 40.89 42.93 44.76 46.03 47.02 47.84 48.73 49.39 50.17 51.10 

Seq2Seq+Attention_GRU 29.37 34.96 40.34 44.29 46.85 48.70 49.98 50.82 51.51 52.25 53.00 53.51 

STALSTM 31.52 36.81 39.92 42.14 44.12 45.79 46.82 47.55 48.19 48.82 49.65 50.54 

STAGRU 32.83 36.95 39.86 41.97 43.62 44.83 45.86 46.65 47.50 48.03 48.59 49.22 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 64.83 64.34 64.03 63.83 63.79 63.86 63.94 64.01 64.07 64.18 64.39 64.8 

Seq2Seq_GRU 59.73 59.36 59.09 58.91 58.87 58.92 59.05 59.09 58.94 58.65 58.34 58.21 

Seq2Seq+Attention_LSTM 51.89 52.52 53.02 53.42 53.87 54.35 54.77 55.01 55.12 55.05 54.79 54.49 

Seq2Seq+Attention_GRU 53.91 54.20 54.36 54.45 54.57 54.78 55.05 55.32 55.57 55.85 56.18 56.58 

STALSTM 51.37 52.09 52.55 53.07 53.44 53.82 54.14 54.25 54.14 53.85 53.41 52.99 

STAGRU 49.84 50.47 50.88 51.28 51.67 51.95 52.17 52.29 52.34 52.19 51.94 51.86 

Caochangmen (CCM) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 24.55 32.99 39.51 44.06 47.07 48.97 50.1 50.71 50.99 51.04 50.94 50.72 

Seq2Seq_GRU 24.99 28.86 32.79 36.29 39.22 41.59 43.54 45.17 46.6 47.89 49.06 50.09 

Seq2Seq+Attention_LSTM 17.66 22.87 26.76 29.68 31.85 33.42 34.57 35.46 36.22 36.95 37.70 38.43 

Seq2Seq+Attention_GRU 23.17 27.81 31.78 34.93 37.29 38.97 40.13 40.93 41.53 42.01 42.45 42.80 



STALSTM 17.74 22.71 26.62 29.64 31.92 33.55 34.71 35.53 36.15 36.70 37.25 37.77 

STAGRU 17.74 22.63 26.19 28.80 30.71 32.10 33.14 33.95 34.58 35.14 35.72 36.34 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 50.39 50.00 49.56 49.17 48.90 48.83 49.01 49.45 50.15 51.06 52.13 53.31 

Seq2Seq_GRU 50.91 51.49 51.84 51.96 51.89 51.66 51.29 50.80 50.24 49.68 49.24 49.06 

Seq2Seq+Attention_LSTM 39.09 39.65 40.08 40.40 40.59 40.66 40.60 40.40 40.05 39.62 39.18 38.84 

Seq2Seq+Attention_GRU 43.04 43.17 43.22 43.23 43.21 43.18 43.10 43.00 42.90 42.84 42.86 43.05 

STALSTM 38.23 38.64 39.01 39.35 39.64 39.89 40.05 40.09 39.99 39.80 39.59 39.44 

STAGRU 37.00 37.62 38.21 38.72 39.17 39.51 39.76 39.90 39.92 39.83 39.68 39.52 

R2 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 0.802 0.642 0.487 0.362 0.272 0.212 0.175 0.155 0.146 0.145 0.148 0.155 

Seq2Seq_GRU 0.794 0.726 0.646 0.567 0.494 0.431 0.377 0.33 0.287 0.247 0.209 0.176 

Seq2Seq+Attention_LSTM 0.897 0.828 0.764 0.710 0.666 0.633 0.607 0.587 0.569 0.551 0.533 0.515 

Seq2Seq+Attention_GRU 0.823 0.746 0.668 0.599 0.543 0.501 0.471 0.449 0.433 0.420 0.408 0.398 

STALSTM 0.896 0.830 0.767 0.711 0.665 0.630 0.604 0.585 0.571 0.557 0.544 0.531 

STAGRU 0.896 0.831 0.774 0.727 0.690 0.661 0.639 0.621 0.607 0.594 0.581 0.566 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.166 0.179 0.193 0.205 0.214 0.216 0.210 0.196 0.173 0.143 0.107 0.066 

Seq2Seq_GRU 0.149 0.129 0.117 0.112 0.115 0.122 0.135 0.151 0.170 0.189 0.203 0.209 

Seq2Seq+Attention_LSTM 0.498 0.483 0.472 0.463 0.458 0.456 0.458 0.463 0.473 0.484 0.495 0.504 

Seq2Seq+Attention_GRU 0.391 0.387 0.386 0.386 0.386 0.387 0.389 0.392 0.395 0.397 0.396 0.391 

STALSTM 0.520 0.509 0.499 0.491 0.483 0.477 0.472 0.471 0.474 0.479 0.485 0.489 

STAGRU 0.550 0.535 0.520 0.507 0.495 0.486 0.480 0.476 0.476 0.478 0.482 0.487 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 36.99 45.75 52.12 56.34 58.90 60.32 61.21 61.68 61.89 61.83 61.58 61.20 

Seq2Seq_GRU 42.53 43.85 46.38 49.38 51.99 53.95 55.57 57.07 58.68 60.24 61.54 62.64 

Seq2Seq+Attention_LSTM 29.59 35.25 39.35 42.24 44.32 45.83 46.93 47.87 48.80 49.70 50.54 51.24 

Seq2Seq+Attention_GRU 39.76 43.41 45.88 47.73 49.38 50.49 51.19 51.74 52.16 52.61 53.08 53.44 

STALSTM 29.68 35.56 39.58 42.55 44.66 46.12 47.16 48.01 48.83 49.60 50.33 50.96 

STAGRU 30.08 35.50 39.32 42.11 44.31 45.83 46.84 47.68 48.45 49.07 49.73 50.46 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 60.70 60.19 59.70 59.31 59.13 59.20 59.51 60.01 60.70 61.59 62.64 63.83 

Seq2Seq_GRU 63.43 64.09 64.52 64.58 64.38 63.96 63.38 62.60 61.77 61.01 60.35 60.05 

Seq2Seq+Attention_LSTM 51.81 52.30 52.70 53.00 53.21 53.36 53.45 53.42 53.25 52.98 52.68 52.43 

Seq2Seq+Attention_GRU 53.47 53.57 53.68 53.69 53.67 53.59 53.52 53.42 53.32 53.31 53.32 53.47 



 

STALSTM 51.43 51.85 52.22 52.51 52.72 52.95 53.14 53.25 53.25 53.20 53.13 53.05 

STAGRU 51.10 51.69 52.17 52.54 52.83 53.13 53.46 53.69 53.88 53.90 53.82 53.71 

Maigaoqiao (MGQ) 

indicator methods 1 2 3 4 5 6 7 8 9 10 11 12 

RMSE 

Seq2Seq_LSTM 14.46 22.08 27.94 32.54 36.03 38.57 40.35 41.61 42.56 43.37 44.08 44.66 

Seq2Seq_GRU 18.84 24.40 28.85 32.27 34.82 36.64 37.92 38.89 39.71 40.49 41.29 42.10 

Seq2Seq+Attention_LSTM 20.42 26.98 30.97 33.44 34.99 35.92 36.45 36.81 37.15 37.59 38.16 38.80 

Seq2Seq+Attention_GRU 19.77 25.67 30.11 33.13 35.12 36.34 37.08 37.57 38.06 38.66 39.39 40.18 

STALSTM 19.32 24.35 28.32 31.27 33.45 35.09 36.35 37.35 38.26 39.13 39.98 40.79 

STAGRU 19.40 24.40 28.07 30.77 32.81 34.25 35.23 35.9 36.4 36.84 37.28 37.71 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 45.08 45.31 45.30 45.06 44.63 44.07 43.44 42.81 42.25 41.78 41.43 41.34 

Seq2Seq_GRU 42.87 43.59 44.20 44.66 44.95 45.06 45.03 44.83 44.51 44.13 43.74 43.51 

Seq2Seq+Attention_LSTM 39.45 40.07 40.62 41.11 41.48 41.71 41.74 41.62 41.35 40.99 40.66 40.45 

Seq2Seq+Attention_GRU 40.94 41.56 42.24 42.71 43.01 43.11 43.03 42.78 42.41 41.99 41.56 41.21 

STALSTM 41.50 42.09 42.51 42.74 42.77 42.64 42.38 41.98 41.51 40.99 40.46 40.09 

STAGRU 38.11 38.46 38.71 38.89 38.97 38.98 38.97 38.90 38.8 38.7 38.63 38.71 

R2 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 0.927 0.831 0.730 0.634 0.552 0.487 0.438 0.403 0.375 0.351 0.330 0.312 

Seq2Seq_GRU 0.877 0.794 0.712 0.640 0.581 0.537 0.504 0.478 0.456 0.434 0.412 0.388 

Seq2Seq+Attention_LSTM 0.856 0.748 0.669 0.614 0.577 0.555 0.542 0.533 0.524 0.512 0.498 0.480 

Seq2Seq+Attention_GRU 0.865 0.772 0.687 0.621 0.574 0.544 0.526 0.513 0.500 0.484 0.464 0.443 

STALSTM 0.871 0.795 0.723 0.662 0.614 0.575 0.544 0.518 0.495 0.471 0.448 0.426 

STAGRU 0.870 0.794 0.728 0.673 0.628 0.595 0.571 0.555 0.543 0.532 0.520 0.509 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 0.299 0.291 0.291 0.299 0.312 0.329 0.348 0.367 0.384 0.397 0.407 0.410 

Seq2Seq_GRU 0.365 0.344 0.325 0.311 0.302 0.299 0.300 0.306 0.316 0.327 0.339 0.347 

Seq2Seq+Attention_LSTM 0.463 0.446 0.430 0.416 0.406 0.400 0.398 0.402 0.410 0.420 0.429 0.435 

Seq2Seq+Attention_GRU 0.421 0.401 0.384 0.370 0.361 0.358 0.360 0.368 0.379 0.391 0.404 0.414 

STALSTM 0.405 0.388 0.376 0.369 0.368 0.372 0.380 0.391 0.405 0.420 0.435 0.445 

STAGRU 0.498 0.489 0.482 0.478 0.475 0.475 0.475 0.477 0.480 0.483 0.485 0.483 

SMAPE 

methods 1 2 3 4 5 6 7 8 9 10 11 12 

Seq2Seq_LSTM 31.57 40.83 48.5 53.04 56.51 58.80 60.33 61.48 62.47 63.32 64.06 64.68 

Seq2Seq_GRU 36.98 43.54 47.92 51.22 53.39 55.36 56.56 57.76 58.78 59.71 60.74 61.74 



 

Seq2Seq+Attention_LSTM 42.79 51.07 54.18 55.40 56.10 56.64 57.00 57.24 57.47 57.85 58.37 58.92 

Seq2Seq+Attention_GRU 39.93 46.24 50.85 53.94 55.75 56.76 57.41 57.92 58.44 58.95 59.52 60.19 

STALSTM 36.71 43.45 47.91 50.60 52.70 54.24 55.67 56.99 58.21 59.26 60.16 60.99 

STAGRU 38.07 44.92 48.75 51.34 53.19 54.55 55.46 55.98 56.45 56.88 57.41 57.98 

methods 13 14 15 16 17 18 19 20 21 22 23 24 

Seq2Seq_LSTM 65.07 65.28 65.24 64.98 64.62 64.24 63.80 63.4 63.09 62.81 62.54 62.46 

Seq2Seq_GRU 62.68 63.49 64.01 64.35 64.50 64.55 64.50 64.35 64.13 63.85 63.61 63.56 

Seq2Seq+Attention_LSTM 59.48 60.05 60.53 60.95 61.27 61.53 61.70 61.73 61.54 61.25 61.02 60.90 

Seq2Seq+Attention_GRU 60.81 61.35 61.69 61.92 62.10 62.25 62.37 62.38 62.24 62.00 61.69 61.47 

STALSTM 61.56 62.20 62.54 62.60 62.49 62.30 62.14 61.96 61.60 61.11 60.72 60.49 

STAGRU 58.51 58.97 59.25 59.32 59.19 59.08 59.07 59.07 59.00 58.89 58.81 58.91 




