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Abstract

Mapping high permeability sand occurrences in clayey till is fundamental for protecting the underlying drinking water resources.

Crosshole ground penetrating radar (GPR) amplitude data have the potential to differentiate between sand and clay, and can

provide 2D subsurface models with a decimeter-scale resolution. We develop a probabilistic straight-ray-based inversion scheme,

where we account for the forward modeling error arising from choosing a straight-ray forward solver. The forward modeling

error is described by a Gaussian probability distribution and included in the total noise model by addition of covariance models.

Due to the linear formulation, we are able to decouple the inversion of traveltime and amplitude data and obtain results fast.

We evaluate the approach through a synthetic study, where synthetic traveltime and amplitude data are inverted to obtain

slowness and attenuation tomograms using several noise model scenarios. We find that accounting for the forward modeling

error is fundamental to successfully obtain tomograms without artifacts. This is especially the case for inversion of amplitude

data since the structure of the noise model for the forward modeling error is significantly different from the other data error

models. Overall, inversion of field data confirms the results from the synthetic study; however, amplitude inversion performs

slightly better than traveltime inversion. We are able to characterize a 0.4 - 0.6 m thick sand layer as well as internal variations

in the clayey till matching observed geological information from borehole logs and excavation.
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Abstract17

Mapping high permeability sand occurrences in clayey till is fundamental for protect-18

ing the underlying drinking water resources. Crosshole ground penetrating radar (GPR)19

amplitude data have the potential to differentiate between sand and clay, and can pro-20

vide 2D subsurface models with a decimeter-scale resolution. We develop a probabilis-21

tic straight-ray-based inversion scheme, where we account for the forward modeling er-22

ror arising from choosing a straight-ray forward solver. The forward modeling error is23

described by a Gaussian probability distribution and included in the total noise model24

by addition of covariance models. Due to the linear formulation, we are able to decou-25

ple the inversion of traveltime and amplitude data and obtain results fast. We evaluate26

the approach through a synthetic study, where synthetic traveltime and amplitude data27

are inverted to obtain slowness and attenuation tomograms using several noise model28

scenarios. We find that accounting for the forward modeling error is fundamental to suc-29

cessfully obtain tomograms without artifacts. This is especially the case for inversion of30

amplitude data since the structure of the noise model for the forward modeling error is31

significantly different from the other data error models. Overall, inversion of field data32

confirms the results from the synthetic study; however, amplitude inversion performs slightly33

better than traveltime inversion. We are able to characterize a 0.4 - 0.6 m thick sand layer34

as well as internal variations in the clayey till matching observed geological information35

from borehole logs and excavation.36

Plain Language Summary37

Sand structures embedded in low permeable clayey till act as highways for water38

and contaminant transport. Detailed knowledge about these sand structures is impor-39

tant for estimation of how water and contamination moves down to the underlying drink-40

ing water reservoirs. Crosshole ground penetrating radar (GPR) can differentiate between41

sand and clay due to the contrast in electrical material properties and obtain 2D geo-42

logical models of the subsurface between boreholes. We develop a simple linear approach43
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for geophysical inversion of the recorded amplitude data. A linear model can introduce44

errors in the estimated subsurface models. We account for this modeling error by includ-45

ing a Gaussian description of the error in the inversion. We find that accounting for the46

modeling error is fundamental to successfully obtain 2D subsurface models from inver-47

sion of amplitude data. We are able to characterize a 0.4 - 0.6 m thick sand layer as well48

as internal variations in the clayey till matching observed geological information from49

borehole logs and excavation. The developed method is able to obtain subsurface mod-50

els fast and allows for estimation of uncertainty of the obtained solution.51

1 Introduction52

Heterogeneous glacial sediments, such as clayey till, dominate large parts of the near-53

surface geology of the Northern Hemisphere (Houmark-Nielsen, 2010). Sand layers and54

lenses control water and contaminant flow pathways in the otherwise low-permeable clay55

matrix. Delineation and characterization of these sand structures and bodies are nec-56

essary to determine the timing, the amount and the quality of the water percolating through57

these sediments (e.g. Gravesen et al., 2014).58

A method for mapping these sand occurrences is by using crosshole ground pen-59

etrating radar (GPR). GPR is a fast, minimally invasive, electromagnetic method, which60

provides information on subsurface electrical properties with a decimeter scale resolu-61

tion between boreholes located up to 5-7 m apart. The electrical properties of the sub-62

surface can be linked to parameters important for flow and transport processes, such as63

volumetric water content or porosity by petrophysical relations (e.g. Topp et al., 1980).64

GPR has consequently been used in numerous hydrogeological studies (e.g. Hubbard et65

al., 1997; Binley et al., 2001; Klotzsche et al., 2013; Z. Zhou et al., 2020). For a more de-66

tailed review of the crosshole GPR method and applications we refer to Annan (2005)67

and Klotzsche et al. (2018).68
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The electromagnetic (EM) wave propagation between a transmitter antenna and69

a receiver antenna is governed by the subsurface dielectric permittivity and electrical con-70

ductivity. GPR has mainly been applied in low-conductive materials, such as sand, due71

to the attenuation of the signal through the subsurface. However, Looms et al. (2018)72

showed that crosshole GPR can be applied in high-conductive clay-rich environments.73

They showed that coherent sand layers in a matrix of clayey till can be accurately char-74

acterized, i.e. defining their depth, thickness and tilt, through the use of crosshole GPR.75

The exact locations of the sand structures were more accurately delineated by the am-76

plitude information (related to the electrical conductivity) than by the traveltime infor-77

mation (related to the dielectric permittivity) of the recorded EM wave. The changes78

in measured amplitude ranged over several orders of magnitude, while changes in trav-79

eltime were at best two-fold.80

In order to obtain a tomographic image describing the 2D subsurface variation be-81

tween boreholes, geophysical inversion of the GPR data must be performed. Variations82

in the EM wave velocity are mainly governed by the water content of the formation (e.g.83

Topp et al., 1980). This means that under saturated conditions, the traveltime data may84

fall short in distinguishing between sand and clay structures, if they have similar porosi-85

ties. Instead, the attenuation field obtained from amplitude inversion are expected to86

provide a means for distinguishing between sand and clay under saturated conditions.87

This implies that there is a potential for using amplitude inversion to identify and char-88

acterize sand lenses in clayey till.89

Amplitude inversion has historically not been extensively performed as traveltime90

inversion has been considered a simpler and more robust procedure. Within the last decade,91

full-waveform inversion (FWI) schemes have been developed using both traveltime and92

amplitude information of the waveform data and yielding simultaneous estimation of rel-93

ative dielectrical permittivity and electrical conductivity at potentially high resolution.94

The steepest-descent based FWI scheme initially developed by J. Ernst et al. (2007) and95
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subsequently improved by G. A. Meles et al. (2010) and Mozaffari et al. (2020), has been96

used extensively. Klotzsche et al. (2019) provides a comprehensive overview of the method97

and its applications. However, the method has its limitations. The algorithm depends98

on the ability to accurately model the physics involved in the EM wave propagation, such99

as diffraction, refraction, interference and coupling effects near the antenna. It is at present100

not standard procedure to model antennae explicitly and it is therefore necessary to es-101

timate a source wavelet, which is typically assumed constant for a given survey. Further-102

more, the method requires a starting model that fulfills that its forward response lies within103

half a period of the observed waveform data to enable global convergence of the algo-104

rithm (G. Meles et al., 2011). The resulting dielectrical permittivity and the electrical105

conductivity tomograms do not necessarily exhibit similar spatial structures (e.g. Ke-106

skinen et al., 2019; Klotzsche et al., 2019). The estimated structures in the dielectrical107

permittivity tomograms are considered more reliable and more in line with expected ge-108

ology (Oberröhrmann et al., 2013; Klotzsche et al., 2013).109

Finally, this FWI-scheme is a deterministic inversion, hence it provides one solu-110

tion to the inverse problem, which does not allow for direct uncertainty estimates. Al-111

ternatively, probabilistic FWI schemes can be employed such as Hunziker et al. (2019)112

and Cordua et al. (2012) to obtain such statistical information about the solution. How-113

ever, both the deterministic FWI-scheme and the probabilistic FWI methods are com-114

putationally expensive, and their complexity make them inaccessible for non-experts. These115

challenges push towards the wish of revisiting simpler linear inversion schemes that are116

fast, robust and provide uncertainty estimates of the obtained subsurface models.117

Linearized amplitude inversion is considered more uncertain than traveltime tomog-118

raphy as it depends on pre-inversion estimation of radiation patterns, antenna source strength119

and geometric correction of the wavefield propagation (see e.g., Holliger et al. (2001),120

Maurer and Musil (2004), B. Zhou and Fullagar (2001)). Correspondingly, linear inver-121

sion of amplitude values has only been performed with limited success (e.g., Holliger et122
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al. (2001), Holliger and Maurer (2004)), and the resulting tomograms have been contam-123

inated with artifacts. Maurer and Musil (2004) were able to overcome some of these ob-124

stacles in amplitude inversion and showed that the attenuation tomograms were improved125

when accounting for a varying data error along the depth of the boreholes.126

The linearization of the highly non-linear EM wave propagation problem requires127

a simplified description of the underlying physical processes. Choosing such an approx-128

imate model for the forward problem will give rise to modeling errors, which will, if their129

magnitude is significant compared to the measurement errors, introduce systematic er-130

rors in the solution space. In recent years, the importance of accounting for modeling131

errors when using approximate forward solvers has been acknowledged (Hansen et al.,132

2014; Linde et al., 2017; Hansen & Cordua, 2017; Köpke et al., 2018; Levy et al., 2021,133

etc.).134

Several approaches to handle the modeling error have recently been developed. Fun-135

damental for the methods is the ability to compute the discrepancy between data cal-136

culated from a more accurate forward solver as opposed to an approximate forward solver.137

Hansen et al. (2014) presented a general method for inferring a Gaussian parameteri-138

zation of the modeling error which can be computed prior to the inversion and accounted139

for in the total noise model. The method has since been applied in Hansen and Cordua140

(2017). Other methods that do not imply a Gaussian modeling error have been devel-141

oped, for example handling the modeling error by projecting the residual term to a con-142

structed orthonormal basis for the modeling error. Köpke et al. (2018) accounted for the143

modeling error term during the inversion through occasional runs of the more-accurate144

forward solver, whereas Köpke et al. (2019) used principal component analysis on a num-145

ber of modeling error realizations and constructed a general description prior to the in-146

version. Finally, Levy et al. (2021) used a neural network approach to handle the mod-147

eling error in a Monte Carlo Markov Chain (MCMC) based inversion of GPR traveltime.148
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In this study we present a fast and simple inversion approach, where first-arrival149

traveltime data and maximum first-cycle amplitude data are inverted using a linear least-150

squares (LSQ) solution with Gaussian a priori information. We apply the methodology151

proposed by Hansen et al. (2014) and develop the method further to allow for inversion152

of amplitude data. This is to the best of our knowledge, the first study where forward153

modeling errors are included in inversion of crosshole GPR amplitude data. We quan-154

tify and account for the forward modeling error arising from choosing a straight-ray for-155

ward solver as opposed to a finite-difference-time-domain (FDTD) 2D forward solver,156

and we demonstrate how accounting for this modeling error affects the obtained inver-157

sion results. First, a synthetic study that serves as a proof-of-concept is presented, fol-158

lowed by a field study. We choose to present inversion results of both traveltime and am-159

plitude data for completeness and for the comparison of amplitude and traveltime in-160

version results. Moreover, we discuss the general implications and advantages linked to161

applying this approach for interpretation of crosshole GPR data.162

2 Field site163

The developed methodology will be applied to field data acquired at a field site lo-164

cated at the Kallerup gravel pit in Denmark, see Figure 1 for approximate location. The165

near-surface geological conditions in the area are characterized by glacial deposits. At166

the field site, a unit of clayey till is observed in the upper 10 m of the subsurface with167

a sand occurrence of 0.4 - 0.6 m thickness observed in borehole logs between 1.40 - 2.35168

m depth, and a coherent sand layer observed below 6.11 - 6.75 m depth (Looms et al.,169

2018). A detailed description of the sand structures in the field site area can be found170

in Kessler et al. (2012).171

Furthermore, the site was excavated after the crosshole GPR measurements (see172

Larsen et al. (2016) for further details). Data presented in this study were obtained be-173

tween boreholes RT1 and RT3. Two interpreted transects, Transect B and Transect C,174
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Transect C

Transect B

Transect C

Transect B

Clayey till

Sandy till

Boulders

Sand

Gravel

5 m

Transect B

Figure 1. Upper and middle: Transect C and B with projected approximate borehole lo-

cations, modified from (Larsen et al., 2016). Lower: Map of field site location in Denmark,

geological transects and borehole locations.

are seen in Figure 1, as well as their location relative to the boreholes (lowermost plot).175

The transects serve as a representative example of the geology at the field site. The lo-176

cations of boreholes RT1 and RT3, are orthogonally projected onto the transects (up-177

per and middle), but we would like to stress that this placement of the boreholes is ap-178

proximate.179
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Figure 2. a) ZOP data from the transect RT1-RT3. b) Average velocity from first-arrival

traveltime data and c) First-cycle maximum amplitude data. Borehole logs from borehole RT1

and RT3.

3 Crosshole GPR data180

The crosshole GPR data were acquired using Sensors and Software’s PulseEKKO181

system with 100 MHz antennae deployed in PEH tubes with a diameter of 0.063 m that182

were installed in the boreholes immediately after drilling. Calibration gathers in air were183

collected for absolute time zero correction of first-arrival traveltime data (Oberröhrmann184

et al., 2013). Zero-offset-profile (ZOP) data were collected in vertical increments of 12.5185

cm, and shown in Figure 2 to illustrate the field data. We also show the corresponding186

average EM wave velocity obtained from picked first-arrival traveltime data, and first-187

cycle maximum amplitude data.188

The Multi-offset-gather (MOG) dataset was collected by fixing the transmitter an-189

tenna at a given depth while lowering the receiver antenna in vertical increments of 0.25190

m. The transmitter was then moved 0.25 m down and the procedure was repeated un-191

til the transmitter had covered the entire borehole depth intervals. The MOG data were192

collected from 1.0 to 7.0 m below top of PEH tubes. The transmitter antenna was in RT1193

and the receiver antenna was in RT3 at all times. Sampling frequency was 0.4 ns, and194

the borehole distance was 3.37 m. High-angle traces with acquisition angles above 45 de-195

grees from horizontal were discarded, similar to e.g. Linde et al. (2006); Looms et al. (2010).196

Traces significantly affected by the surface wave were also discarded, and the first us-197
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able trace was obtained approximately 0.9 m below ground level. We obtain a MOG data198

set with 412 traces in total. For further information on the data set from Kallerup, see199

Looms et al. (2021) and Looms et al. (2018). First-arrival traveltime and maximum first-200

cycle amplitude data were manually picked from the obtained MOG waveform data set.201

4 Methods202

For both synthetic data and field data we apply straight-ray-based (i.e. linear) in-203

version scheme with Gaussian prior information. The important parts of the method ap-204

plied in this study are presented in the following sections. The code was written in Mat-205

Lab using the SIPPI toolbox developed by Hansen et al. (2013).206

4.1 The inverse problem207

In the geophysical forward problem, a given set of data d⃗ can be computed from

a set of subsurface model parameters m⃗ by using the possibly nonlinear forward oper-

ator g(·)

d⃗ = g(m⃗) . (1)

The physics and the geometry of the forward problem is contained in g(·). The associ-208

ated inverse problem consists of inferring information about the model parameters, m⃗,209

characterizing the subsurface from the observed data, d⃗obs.210

In a probabilistic framework, the full solution to the inverse problem is formulated

as a probability distribution, where states of information are combined to obtain the pos-

terior distribution (Tarantola & Valette, 1982)

σM (m⃗) = kρM (m⃗)L(m⃗) , (2)
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where k is a normalization factor, ρM (m⃗) describes the a priori information on the model

parameters and the likelihood function, L(m⃗), is given by

L(m⃗) =

∫
dd⃗

ρD(g(m⃗))θ(d⃗|m⃗)

µD(d⃗)
. (3)

The measurement uncertainties are described by ρD(g(m⃗)), and θ(d⃗|m⃗) contains the in-211

formation about the possibly uncertain forward relation (Tarantola & Valette, 1982). This212

can be given as θ(d⃗|m⃗) = Λ(d⃗ − g(m⃗)), where d = g(m⃗) is the forward relation, and213

the probability distribution Λ(d⃗|m⃗) is the modeling error that describes the uncertainty214

related to this forward relation. We refer to Hansen et al. (2014) for further details on215

Λ(d⃗|m⃗).216

The solution to the linear inverse problem, d⃗ = Gm⃗, with Gaussian measurement

and modeling errors is then fully described by a Gaussian posterior probability distri-

bution, σM (m⃗), characterized by the mean ⃗̃m, and model covariance matrix, C̃M (e.g.

Tarantola, 2005, eq. 3.37)

⃗̃m = m⃗0 +CMG′ (GCMG′ +CD)
−1

(
d⃗obs − d⃗D −Gm⃗0

)
C̃M = CM −CMG′ (GCMG′ +CD)

−1
GCM .

(4)

A priori information on the model parameters describing the expected subsurface vari-217

ation is incorporated through a Gaussian prior model, N (m⃗0,CM ). The observed data218

are given by d⃗obs, and the associated measurement and modeling errors are given by the219

data covariance matrix, CD. The linear kernel, G, maps the model parameters to the220

observed data. Note that the bias correction, d⃗D, is introduced according to Hansen et221

al. (2014). This general description of linear inversion can be used in inversion of var-222

ious geophysical data. Here we apply the formulation to inversion of crosshole GPR trav-223

eltime and amplitude data.224
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4.2 Traveltime and amplitude tomography225

The traveltime, t, is related to the slowness distribution, s, through the line inte-

gral for the ray path approximation of the signal sensitivty (e.g. Giroux et al., 2007; Pe-

terson, 2001)

t =

∫ r

0

s(l)dl . (5)

If velocity contrasts are small, ray-paths are approximately straight, and this expression226

can be linearized. From measurements of traveltime, t, the slowness distribution can be227

inferred by solving the inverse problem, d⃗ = Gm⃗. The forward operator, G, contains228

the ray-paths lengths. We choose to estimate the slowness distribution (inverse veloc-229

ity) rather than the velocity distribution itself to keep the problem linear.230

The measured amplitude is an exponential decay of the initial source amplitude,

proportional to the attenuation, α, along the ray path through the subsurface (Giroux

et al., 2007). Under the straight-ray assumption, the recorded amplitude can in 3D be

estimated as (e.g. Holliger et al., 2001; Giroux et al., 2007):

Am = A0 exp (−αr)ΘTxΘRx
1

L
. (6)

This equation is only valid for a homogeneous medium and in the far-field regime (B. Zhou231

& Fullagar, 2001; Maurer & Musil, 2004). Prior to inversion, the measured amplitude,232

Am, must be corrected according to equation 6. Corrections include: (1) The radiation233

patterns of the transmitter and receiver ΘTxΘRx, which is approximated with radiation234

patterns for an electric dipole: ΘTxΘRx ≈ cos2(ϕ), where ϕ is the ray-path angle to hor-235

izontal. (2) The geometrical spreading of the energy. In 3D the correction factor is 1/L,236

whereas synthetic 2D data is corrected with 1/
√
L (Mozaffari et al., 2020); And (3) The237

antenna gain effect, A0, which is a scaling factor that accounts for the transmitter strength238

(B. Zhou & Fullagar, 2001). A0 is typically unknown, but we assume that it is constant239
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for our survey, consistent with Holliger et al. (2001); B. Zhou and Fullagar (2001); Pe-240

terson (2001).241

To obtain a linear relationship between the measured amplitude and the attenu-

ation, α, we first rearrange the terms and take the natural logarithm on both sides

− ln

(
AmL

ΘRxΘTx

)
= αr − ln(A0), Ar = − ln

(
AmL

ΘRxΘTx

)
. (7)

The antenna gain effect − ln(A0) is then estimated by fitting a linear relation to the re-

duced amplitude Ar, against the ray-path length, following equation 7. The intersect at

r = 0 is − ln(A0). This is consistent with the approach suggested in B. Zhou and Ful-

lagar (2001) and Peterson (2001). Subsurface heterogeneities introduce uncertainty on

the estimate of A0, and is observed by scatter around the fitted straight line. The cor-

rection and linearization of the amplitude data leads to a linear relation between sub-

surface attenuation and the log-linearized amplitude, τ

τ = αr = − ln(AmL) + ln(ΘTxΘRx) + ln(A0) . (8)

This is formally comparable to the relation between traveltime and slowness and can be242

solved using the same linear inversion scheme, d⃗ = Gm⃗, where G contains the same243

ray-paths lengths. For a further details on linearization and pre-inversion corrections of244

amplitude data, see Holliger et al. (2001), B. Zhou and Fullagar (2001) and Giroux et245

al. (2007).246

4.3 Prior model setup (for forward simulation of waveform data)247

We define a prior model which is setup to mimic the geological field site conditions.248

All synthetic waveform data are forward simulated in realizations from this prior. A spher-249

ical covariance model is chosen, to allow for a certain amount of subsurface roughness250

(Hansen et al., 2008), and horizontal and vertical correlation lengths are set to hcorr =251

–13–
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15 m and vcorr = 1.5 m, respectively. To obtain realizations that reflect the bimodal252

geology at Kallerup, we define target distributions for the relative dielectric permittiv-253

ity, εr, and the electrical conductivity, σ. Each of the bimodal target distributions are254

constructed from two Gaussian distributions: one representative for the dominating clay255

component and one representative for the embedded sand structures. The mean param-256

eter values are set to: εr,sand = 5, εr,clay = 12.5, for the relative electrical permittiv-257

ity for sand and clay, respectively. For the electrical conductivity σsand = 10 mS/m and258

σclay = 40 mS/m. Realizations from the prior model are generated using the FFT-MA259

algorithm (Le Ravalec et al., 2000), which effectively generates unconditional realizations260

of a Gaussian random field. The Gaussian realizations are transformed by an inverse normal-261

score transformation (see e.g. Goovaerts et al., 2005) so the realizations honor the tar-262

get distributions (Hansen et al., 2013). No correlation between εr and σ is assumed. The263

parameter values are defined independently, and realizations from the prior models are264

drawn independently.265

The cell size for the bimodal prior models used in forward simulation of waveform266

data is dx = 0.03125 m = 32 cell/meter. The fine resolution is chosen to limit numer-267

ical dispersion of the forward solver used in the next step. The model area is defined from268

the outer limits of the transmitter and receiver positions.269

Realizations from the bimodal prior models for εr and σ are transformed into re-

alizations for attenuation, α, and slowness, s, using the high-frequency approximations

(Annan, 2005)

s =

√
εr
c

, α =
σ

2

√
µ0

ε
, (9)

where c is the speed of light in vacuum, and µ0 is free-space magnetic permeability. A270

sample from the bimodal prior model for both slowness and attenuation is seen in Fig-271

ure 3.272
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Figure 3. Five realizations from the bimodal prior distribution for slowness (upper row) and

for attenuation (lower row).

4.4 Forward modeling273

For realistic forward modeling of waveform data, we choose to employ a 2D finite-274

difference time-domain (FDTD) solution to Maxwell’s equations (J. R. Ernst et al., 2006).275

The FDTD algorithm provides grid-based time-domain calculations of the EM wavefield276

propagation that yields second order accuracy in both time and space (J. Ernst et al.,277

2007). The edges of the defined model area are surrounded by a generalized perfectly278

matched layer (GPML), to avoid artificial reflections from the model edges (Ernst et al.,279

2007a; Fang and Wu, 1996).280

4.5 Measurement and modeling errors281

We consider three sources of errors, where each error source is described by a mul-282

tivariate Gaussian distribution: (1) A forward modeling error arising from choosing a283

linear forward solver. This error is described by N (d⃗T ,CT ). (2) Measurement errors that284

are described by N (d⃗d,Cd). (3) Other data errors arising from physical imperfections285

–15–



manuscript submitted to JGR: Solid Earth

in the vicinity of the boreholes that not captured in our model parameterization. These286

errors are described by N (d⃗p,Cp).287

The total noise model included in the linear inversion is obtained by treating all

error sources as additive terms in the total data error covariance model and bias (Mosegaard

& Tarantola, 2002; Hansen et al., 2014).

d⃗D = d⃗T + d⃗d + d⃗p, CD = CT +Cd +Cp . (10)

The individual Gaussian noise models are described below.288

4.5.1 Forward modeling error289

The forward modeling error is estimated by comparing approximate and ’exact’ data

from forward simulation of data in a number of realizations from the bimodal prior. Ap-

proximate traveltime and amplitude data are calculated using a straight-ray forward, and

highly accurate data are obtained using a FDTD full waveform forward model, with sub-

sequent picking of traveltime and amplitude data. In this way, a sample from the (un-

known) probability distribution describing the forward modeling error, Λ(d⃗|m⃗), is ob-

tained by subtracting the approximate data (straight-ray) Dapp from the best data (full-

waveform), Dbest

DΛ = Dbest −Dapp . (11)

We use N = 800 realizations, since we experienced that above this number the obtained290

inversion tomograms did not change significantly. This is consistent with Hansen et al.291

(2014) who used N = 600 realizations as a basis for the model error characterization292

and Levy et al. (2021) who chose to use N = 800 samples.293
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If the modeling error is assumed Gaussian, N (d⃗T ,CT ), the bias, d⃗T , and the co-

variance, CT , can be estimated from the sample, DΛ (Hansen et al., 2014) as

d⃗T =
[
d1T , d

2
T , ..., d

N
T

]
where diT =

1

N

N∑
i=1

(Di,j
best −Di,j

app)

CT =
1

N
DdiffD

′
diff

where Ddiff = [DΛ −DT ]

and DT =
[
d⃗′T , d⃗

′
T , ..., d⃗

′
T

]
.

(12)

The inferred Gaussian description of the modeling error, N (d⃗T ,CT ) is then incorporated294

in the linear inverse problem according to equation 10. We are aware that the model-295

ing error is not necessarily strictly Gaussian, however, we describe the part of the mod-296

eling error that can be described by a Gaussian distribution. The same inferred Gaus-297

sian description of the forward modeling error is applied in both in the synthetic study298

and in the field data study, since the model error estimation only depends on: 1) The299

prior model, 2) Antenna geometry, 3) Choice of approximate and best forward model.300

If these are constant, the same inferred modeling error can be applied to multiple data301

sets.302

4.5.2 Measurement errors303

The measurement uncertainty is estimated to σd = 0.4 ns for traveltime and σd =304

0.12 for the log-linearized amplitude data. The measurement uncertainty on amplitude305

data is estimated from analysis of repeated horizontal traces arising from acquiring both306

a ZOP and a MOG data set. The measurement uncertainty is described by the noise model307

N (d⃗d,Cd), where d⃗d = 0 and Cd = σ2
dI.308
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4.5.3 Imperfection data errors309

Other sources of errors are also expected to be present in crosshole GPR data, as310

investigated by Cordua et al. (2008, 2009) and Peterson (2001). We account for data er-311

rors arising from unknown cavities in the borehole walls and small-scale anomalies close312

to the antenna positions following the approach presented in Cordua et al. (2008). These313

physical imperfections are not captured in our model parameterization and they are ex-314

pected to cause correlated data errors. The correlated data error covariance for trans-315

mitter and receiver positions are estimated from CTx(i, j) = CRx(i, j) = σ2
p exp(−s(i, j)/L).316

The distance between the i’th and the j’th transmitter or receiver position is denoted s(i, j)317

and L is the spatial correlation length. The data errors arising from the physical imper-318

fections are described by the total data error covariance matrix calculated as Cp = CTx+319

CRx, yielding the noise model N (d⃗p,Cp). These imperfection data errors are accounted320

for by addition of covariance matrices in the inversion, in a similar way as the forward321

modeling error. For traveltime, the standard deviation is chosen to be σp = 0.8 ns and322

the correlation length is set to L=5 m. The error parameterization is chosen based on323

values from a similar crosshole GPR survey using the same equipment (Cordua et al.,324

2008). The standard deviation in the calculation of the correlated error covariance is for325

the amplitude data chosen to be twice the measurement uncertainty, σp = 0.24, simi-326

lar to the traveltime error parameterization. This is a first approximation as correlated327

data errors in amplitude data have not yet been investigated thoroughly. Correspond-328

ingly, the correlation length is set to L=5 m.329

4.6 Prior information in LSQ inversion330

A bimodal prior model is used for estimating the forward modeling error and for331

simulating synthetic waveform data, however, only Gaussian prior information can be332

included in the linear LSQ formulation of the solution to the inverse problem in equa-333

tion 4. The mean and variance of the Gaussian prior for slowness and attenuation are334

approximated from the total mean and variance of the bimodal target distributions. The335
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Figure 4. Five realizations from the Gaussian used in the linear inversion. For slowness (up-

per row) and attenuation (lower row).

covariance models are defined as for the bimodal prior, with the same parameter values:336

A spherical covariance model and correlation lengths of hcorr = 15 m, vcorr = 1.5 m.337

A sample from the Gaussian prior is seen in Figure 4.338

4.7 Synthetic data339

A synthetic data set is computed in one selected reference model which is a real-340

ization from the bimodal prior model. This reference model serves as ground truth for341

the synthetic study. The reference model is selected so it resembles some of the promi-342

nent geological features observed at the Kallerup field site.343

Synthetic waveform data are simulated using the FDTD forward solver, followed344

by re-sampling to field data sampling frequency of Fs = 0.4 ns. Zero-mean white noise345

is added to the waveform data to obtain a reference data set. The root-mean-square of346

the noise is scaled to the mean amplitude value to ensure the same noise level on all traces,347

as often seen in field data. The used source wavelet was estimated in Looms et al. (2018),348

as part of a FWI of the data from Kallerup.349
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Synthetic traveltime data were picked automatically by using a cross-correlation350

based picking routine (Hansen et al., 2013; Molyneux & Schmitt, 1999). Maximum first351

cycle amplitudes were picked by automated picking of first peak above a defined thresh-352

old and above a minimum peak prominence. The amplitude data were corrected for an-353

tenna gain effects A0, radiation patterns and geometrical spreading in 2D, as described354

above.355

4.8 Field data pre-inversion processing356

The traveltime field data acquired were corrected for absolute time zero (ATZ). The357

correction was obtained from interpolation of ATZs of several calibration gathers. Max-358

imum first-cycle amplitude field data were linearized and corrected for geometric spread-359

ing in 3D, radiation patterns and antenna gain effects A0 prior to inversion, in the same360

manner as the synthetic data set.361

4.9 Inversion - accounting for modeling errors362

Traveltime and log-linearized amplitude field data and syntetic data, are inverted363

using equation 4. The inversion resolution is set to dx=0.125 m. To investigate the in-364

fluence of accounting for the forward modeling error, the inversion is performed account-365

ing for several scenarios for the total noise model N (d⃗D,CD):366

(a) inversion using only measurement noise CD = Cd = σ2I and d⃗D = 0.367

(b) inversion using measurement noise and imperfection data errors CD = Cd+Cp368

and d⃗D = 0.369

(c) inversion using only forward modeling errors CD = CT , and d⃗D = d⃗T .370

(d) inversion using measurement noise and forward modeling errors CD = Cd+CT371

and d⃗D = d⃗T .372

(e) inversion using measurement noise, imperfection data errors and forward model-373

ing errors CD = Cd +Cp +CT , and d⃗D = d⃗T .374
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(f) inversion using only the bias correction d⃗D = d⃗T of the forward modeling errors,375

measurement and imperfection data errors CD = Cd +Cp.376

(g) inversion using only the forward modeling error covariance model CD = Cd +377

Cp +CT but without the bias correction d⃗D = 0.378

The scenarios (f) and (g) were included to test the importance of the bias correction as379

opposed to the covariance model of the forward modeling error. The results from sce-380

narios (f) and (g) are not presented here. In summary, the results showed that the abil-381

ity to obtain meaningful tomograms are governed by the covariance model rather than382

the bias correction of the inferred forward modeling error description.383

5 Results384

5.1 Imperfection data errors and forward modeling errors385

5.1.1 Impact of forward model choice386

In Figure 5 (a) and (b), we present a random realization from the prior model for387

the relative dielectric permittivity, εr, and the electric conductivity σ, respectively. The388

corresponding forward estimated traveltime and log-linearized amplitude data are pre-389

sented in Figure 5 (c) and (d). The approximate forward solver is a straight ray model,390

and the best forward solver is a 2D FDTD full waveform model as described earlier.391

The full-waveform forward solver generally yields faster traveltimes compared to392

the straight ray forward. The fastest traveltimes are not necessarily associated with the393

shortest transmitter-receiver distance, since the scattered areas of lower permittivity val-394

ues just above 3 m allow for a faster propagation velocity. This is seen in the full-waveform395

data and in the straight-ray data, however, the first arriving energy of the waveform data396

has not traveled along a straight path, giving rise to a large forward model error. The397

computed log-linearized amplitude data values (τ) are here generally lower when com-398

puted with the full waveform forward. The amplitude data show lower τ values at depths399
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Figure 5. a) and b) A random realization from the bimodal prior model describing permittiv-

ity and conductivity, respectively. Difference in forward response computed with the approximate

forward solver (straight ray) and best forward solver (full waveform). c) Traveltime and d) log-

linearized amplitude.

with lower conductivity values, but the variations seem a bit shifted vertically, most promi-400

nent at 5.5 m depth. The τ values depend both on the waveform path but also on the401

conductivities. These effects may counteract each other, making it difficult to predict402

the resulting effect. This is particularly true in the investigated case, where we have cho-403

sen to decouple the prior models for εr and σ. The computed full waveform forward re-404

sponse can be both lower and higher than the computed straight-ray response for a given405

transmitter-receiver position. The latter is seen in Figure 5 (d) at approximately 2.3 and406

2.9 m depth. The significant difference in data obtained from the chosen best forward407

(full waveform) and the approximate forward (straight ray) shows how important it is408

to account for this forward modeling error.409

5.1.2 Modeling error sample410

A sample of the forward modeling error was obtained from the bimodal prior model,411

as described in equation 11. The difference in the forward responses computed with the412

best and approximate forward solver, respectively, is presented in Figure 6.413

The distribution for the traveltime modeling error is left skewed, whereas the dis-414

tribution for the amplitude modeling errors is nearly symmetrical. Assuming Gaussian415
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Figure 6. A sample, DΛ = Dbest − Dapp, of the forward modeling error computed in N=800

realizations from the bimodal prior model.

statistics, the mean traveltime forward modeling error is -0.98 ns with a standard de-416

viation of 1.24 ns. The mean τ modeling error is -1.72 with a standard deviation of 1.11.417

The magnitude of these modeling errors for both traveltime and τ are several times larger418

than the estimated measurement uncertainties of 0.4 ns and 0.12, respectively.419

5.1.3 Inferred Gaussian modeling error420

From the sample of the forward modeling errors, a Gaussian model, N (d⃗T ,CT ),421

is inferred for traveltime and log-linearized amplitude, τ , respectively. The inferred Gaus-422

sian covariance matrices, CT , for the forward modeling error for traveltime and log-linearized423

amplitude τ are seen in Figure 7 c) and 8 c), respectively. The assumed measurement424

noise is shown for comparison in Figure 7 a) and 8 a), while the calculated covariance425

matrices for the imperfection data errors Cp are shown in Figure 7 b) and 8 b). Finally,426

the total noise models used in the inversion of traveltime data and τ data are shown in427

Figure 7 d) and 8 d).428

The off-diagonal elements of the inferred covariance matrices for both imperfections429

data errors and forward modeling errors, describe the spatial correlation between the in-430

dividual data errors (Cordua et al., 2009). The off-diagonal covariances are significant,431

for both traveltime and τ data, indicating a strong spatial correlation as observed in Hansen432

et al. (2014) and Köpke et al. (2018). However, the spatial correlation properties for im-433

perfections data errors and forward modeling errors are not the same.434
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Figure 7. Traveltime error covariance. a) Measurement noise, Cd, b) Imperfections

data error covariance, Cp, c) Forward modeling error covariance, CT , d) Total noise model,

CD = Cd + Cp + CT . e)-h) zoomed view of the four covariance matrices, black dots indicate the

receiver position closest to transmitter (angle ≈ 0).

Figure 8. Log-linearized amplitude (τ) error covariance. a) Measurement noise, Cd, b) Im-

perfections data error covariance, Cp, c) Forward modeling error covariance, CT , d) Total noise

model, CD = Cd + Cp + CT . e)-h) zoomed view of the four covariance matrices, black dots

indicate the receiver position closest to transmitter (angle ≈ 0).
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The blocky structure of the matrices arise from the acquisition configuration, where435

each block represents the data from one transmitter and the structure within each block436

describe the correlation between errors related to the receiver positions in the given gather.437

In the traveltime forward modeling error covariance matrix, Figure 7 c), it can be seen438

that data located close to each other exhibit a high model error covariance, and those439

far from each other have a close to zero or slightly negative error covariance. This is con-440

sistent with the results in Hansen et al. (2014). Conversely, for the log-linearized am-441

plitude forward modeling error covariance, the correlation length is longer, and distant442

data points exhibit high error covariance.443

To further investigate the spatial correlation between receiver positions in one gather,444

a zoomed view of the covariance matrices is shown in Figure 7 e-h) and 8 e-h). The black445

dot represents the receiver position closest to the transmitter (i.e. with the shortest ray-446

path). The highest amplitude error covariance is observed in the corners of the block,447

close to the diagonal, which represents receiver positions with high-angle ray-paths. Off-448

diagonals represent the error covariance between receiver positions further away. The449

error generally decreases with distance from a given position, but the error correlation450

seems to rebound for distant data locations.451

The inferred bias correction, d⃗T , computed from equation 12, represents the mean452

forward modeling error in each transmitter/receiver position. The bias correction for trav-453

eltime and log-linearized amplitude, τ , is shown in Figure 9 and Figure 10, respectively.454

The traveltime bias has a prominent angular dependence, with the highest bias associ-455

ated with near-horizontal traces. Hence, the largest bias coincides with the direction of456

dominating correlation length in the prior model. For the log-linearized amplitude data,457

the bias also depends on the ray-path angle, but the highest biases are associated with458

higher angle rays.459
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Figure 9. The inferred bias correction of the forward modeling error for traveltime. The bias

correction is shown as a function of a) Data number and b) ray-path angle from horizontal.

Figure 10. The inferred bias correction of the forward modeling error for log-linearized am-

plitude (τ). The bias correction is shown as a function of a) Data number and b) ray-path angle

from horizontal.
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5.2 Inversion results460

In the following section, slowness and attenuation tomograms are presented. The461

data (both synthetic data and field data) were inverted accounting for several noise model462

scenarios as described earlier.463

5.2.1 Synthetic data464

The slowness tomograms obtained from inversion of synthetic traveltime data are465

seen in Figure 11. The attenuation tomograms obtained from inversion of synthetic log-466

linearized amplitude data, τ , are seen in Figure 12.467

The reference models used as basis for simulating the synthetic data are displayed468

in the leftmost subplots, 5 realizations from the posterior distribution are displayed in469

subplots 1) - 5) and the LSQ estimates, i.e. the mean models, are presented with its cor-470

responding uncertainty. The standard deviation is obtained from the diagonal of the es-471

timated posterior model covariance C̃M .472

For both the slowness and attenuation tomograms in Figure 11 (a) and Figure 12 (a),473

it is evident that when only measurement errors are accounted for, all tomograms are474

severely contaminated by artifacts. Features seem well-resolved, as they appear in all re-475

alizations, but the structures are not consistent with the reference models.476

When imperfections data errors are included in the inversion (Figure 11 (b) and477

Figure 12 (b)), the artifacts are diminished, however still present, and the lateral struc-478

tures are smeared. When the forward modeling errors are accounted for (Figure 11 (c),479

(d), (e) and Figure 12 (c), (d), (e)), the structures present in the tomograms become con-480

sistent with the reference models, and the coherence of the larger-scale lateral structures481

is recovered. The small high-attenuation structure at 6 m depth in Figure 12 (e), extend-482

ing from x=0 m to x=2 m with a thickness of 15 - 20 cm, can be identified in some of483

the attenuation realizations, although it is not well resolved.484
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Figure 11. Slowness tomograms. Synthetic data. Reference model, 5 realizations from the

posterior distribution, the LSQ estimate and its associated standard deviation. The total noise

model used in the inversion is: (a) Measurement uncertainty accounted for, CD = σ2I (b) Mea-

surement uncertainty + imperfections data errors accounted for. CD = σ2I + Cp. (c) Only

forward modeling errors accounted for. CD = CT . (d) Measurement uncertainty + modeling

errors accounted for. CD = σ2I + CT . (e) Measurement uncertainty + imperfections data errors

+ forward modeling errors accounted for. CD = σ2I+Cp +CT .
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Figure 12. Attenuation tomograms. Synthetic data. Reference model, 5 realizations from

the posterior distribution, the LSQ estimate and its associated standard deviation. The total

noise model used in the inversion is: (a) Measurement uncertainty accounted for, CD = σ2I (b)

Measurement uncertainty + imperfections data errors accounted for. CD = σ2I + Cp. (c) Only

forward modeling errors accounted for. CD = CT . (d) Measurement uncertainty + modeling

errors accounted for. CD = σ2I + CT . (e) Measurement uncertainty + imperfections data errors

+ forward modeling errors accounted for. CD = σ2I+Cp +CT .
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In general, the range of the parameter values for attenuation and slowness are not485

recovered in the LSQ estimates, since a LSQ solution will produces smooth results. This486

is also observed in the realizations as they are drawn from a Gaussian posterior distri-487

bution and not the correct bimodal distribution, i.e. compare realizations in Figure 3488

with Figure 11 and 12.489

5.2.2 Field data490

The methodology used for inversion of synthetic data is also applied to the field491

data from Kallerup. Figure 13 and 14 show the results from inversion of traveltime and492

log-linearized amplitude data, respectively. Interpreted borehole logs from boreholes RT1493

and RT3, are shown for comparison.494

Overall, we obtain similar results when inverting field data as in the synthetic study,495

as we see that accounting for the forward modeling errors greatly improve the ability to496

obtain tomograms with geologically reasonable structures.497

In the traveltime inversion results in Figure 13 (b), apparently well-resolved fea-498

tures show up in a checkerboard pattern in both the LSQ estimate and the realizations499

from the posterior distribution. The artifacts are still present when both forward mod-500

eling errors and imperfection data errors are accounted for as seen in Figure 13 (e). The501

estimated slowness of the sand layer is approximately 6.4 ns/m in the LSQ estimate, which502

corresponds to a radar velocity of 0.16 m/ns. Overall, it is seen that the contrast between503

the high and low slowness structures is higher in the field inversion results than for the504

synthetic results.505

In the amplitude inversion results in Figure 13 (a) and (b), low-attenuation fea-506

tures show up above and below the expected sand layer at 1.5 m depth. However, a co-507

herent sand layer at 1.4 - 2.3 m depth is identified when accounting for the forward mod-508

eling errors (Figure 14(c), (d), (e)). Within the clayey till, a layer with lower attenua-509

tion values is observed at 3.5 - 5.5 m depth. This observation is consistent with the ge-510
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Figure 13. Slowness tomograms. Field data. Borehole logs, 5 realizations from the posterior

distribution, the LSQ estimate and its associated standard deviation. The total noise model used

in the inversion is: (a) Measurement uncertainty accounted for, CD = σ2I (b) Measurement un-

certainty + imperfections data errors accounted for. CD = σ2I + Cp. (c) Only forward modeling

errors accounted for. CD = CT . (d) Measurement uncertainty + modeling errors accounted for.

CD = σ2I + CT . (e) Measurement uncertainty + imperfections data errors + forward modeling

errors accounted for. CD = σ2I+Cp +CT .

–31–



manuscript submitted to JGR: Solid Earth

Figure 14. Attenuation tomograms. Field data. Borehole logs, 5 realizations from the poste-

rior distribution, the LSQ estimate and its associated standard deviation. The total noise model

used in the inversion is: (a) Measurement uncertainty accounted for, CD = σ2I (b) Measurement

uncertainty + imperfections data errors accounted for. CD = σ2I + Cp. (c) Only forward model-

ing errors accounted for. CD = CT . (d) Measurement uncertainty + modeling errors accounted

for. CD = σ2I + CT . (e) Measurement uncertainty + imperfections data errors + forward

modeling errors accounted for. CD = σ2I+Cp +CT .
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ological description in Figure 1, where larger boulders and a more sandy till were iden-511

tified at those depths.512

The sand structure at ≈1.5 m depth is delineated narrower in the amplitude in-513

version results than in the traveltime inversion results. However, the Hedeland forma-514

tion are better identified in the slowness tomograms than in the attenuation tomograms.515

Note that the last antenna position is 6.375 m in RT1 m and 6.335 m in RT3, which means516

there is only one source position located in the sand unit.517

6 Discussion518

The obtained tomograms from synthetic traveltime inversion in general show the519

same behavior as presented in Hansen et al. (2014). If the modeling error is not prop-520

erly accounted for, well-resolved features are present in the estimated tomograms that521

are not part of the reference model. This is a consequence of mapping modeling errors522

into the posterior distribution. When accounting for the forward modeling error, the noise523

level increases but the features in the tomograms are consistent with the reference mod-524

els.525

For the linear inversion of synthetic and field amplitude data, we have shown that526

accounting for the modeling error is a crucial component in order to recreate the refer-527

ence model or to obtain geologically reasonable attenuation tomograms, respectively. Nu-528

merous assumptions are violated in this strongly bimodal and heterogeneous subsurface,529

and yet we obtain successful results when accounting for the modeling error.530

6.1 Forward modeling error531

The magnitude of our estimated modeling error for traveltime is comparable to the532

results presented in Hansen et al. (2014) for similar subsurface prior models. Further-533

more, the spatial structure of our inferred traveltime covariance model show the same534

tendencies as the previously published covariance matrices. Though Hansen et al. (2014)535
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used another data geometry than in this study, they also observed an angular dependency536

in the bias correction. We find, that the largest modeling error is associated with the di-537

rection of the dominant correlation length of the prior model, as also observed in Köpke538

et al. (2018). This direction coincides with the shortest ray-path length.539

For the log-linearized amplitude case, we obtain a modeling error estimate of sur-540

prisingly high magnitude. The magnitude of the forward modeling error is comparable541

to the magnitude of the data itself and significantly larger than both the estimated mea-542

surement uncertainty and imperfections data errors. The structure of the inferred co-543

variance matrix is different from what we see for traveltime. The spatial correlation lengths544

are longer and the covariance is positive for all transmitter-receiver positions. The mod-545

eling error itself is symmetric and yields both positive and negative values, as seen in Fig-546

ure 6. This illustrates that the underlying physical processes that give rise to modeling547

errors in the amplitude data are more complex than for traveltime.548

6.2 Tomograms549

Solely accounting for imperfections data errors in the inversion of synthetic trav-550

eltime data, brings us far in terms of minimizing artifacts. However, from the prominent551

checkerboard artifacts in the slowness tomograms obtained from field data, it is evident552

that there are error sources that we do not successfully describe. Small uncertainties re-553

lated to the borehole distances may cause this type of artifacts (Peterson, 2001), as well554

as the inclination of the boreholes that was not measured in this study. The ATZ cor-555

rections were estimated from measurements in air (Oberröhrmann et al., 2013), and these556

ATZ values may not be representative due to coupling effects associated with the ma-557

terial property of the clayey till formation as well as the heterogeneity along the bore-558

hole.559

We observe prominent artifacts in the field attenuation tomograms near the up-560

per and lower edges of the sand structure when modeling errors are not accounted for.561
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Holliger et al. (2001) and Holliger and Maurer (2004) observed similar artifacts near the562

edges of an anomaly. They attributed this type of artifacts to the diffractions associated563

with the edges of the anomaly and the inability of a ray-based inversion scheme to ac-564

count for these diffractions. The inferred forward modeling error encompasses the statis-565

tics of these scattering and diffraction effects given a correct simulation of these effects566

in our best forward solver. This enables us to successfully obtain attenuation tomograms567

when the modeling error is accounted for.568

Even though amplitude tomography is considered less robust than traveltime to-569

mography due to the many approximations applied in the pre-inversion processing (Giroux570

et al., 2007), the field amplitude tomography in this study yields more convincing results571

than the field traveltime tomography. The sand layer at approximately 1.5 m depth is572

better delineated with amplitude data than with traveltime data. Furthermore internal573

variations in the clayey till unit are only apparent when inverting amplitude data. This574

may be due to the much larger range in amplitude data and the correspondingly larger575

contrast in the response from clay and sand. In Looms et al. (2018) this was accredited576

to the sensitivity of the amplitude data to even small amounts of clay and Holm-Jensen577

and Hansen (2020) observed a more narrow sensitivity kernel for the amplitude. This578

may also explain why the sand formation below 6 m depth is barely detected by ampli-579

tude data, while it is captured by traveltime data. The assertion about a more narrow580

sensitivity kernel for amplitude data is consistent with the ZOP data observed at the field581

site. The uncertainty related to borehole distance and inclination also affects amplitude582

data, furthermore one A0 value was estimated before inversion of amplitude data. As583

for the ATZ correction, this assumption may be too crude in a heterogeneous environ-584

ment, which may give rise to additional correlated data errors in amplitude data ana-585

logue to the uncertain ATZ correction. Finally, the correction for geometric attenuation586

is strictly only valid in a homogeneous medium (Peterson, 2001). Nonetheless, the mag-587

nitude of all these uncertainties may be insignificant relative to the prominent forward588

modeling error already accounted for in amplitude inversion.589
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6.3 Gaussian model description590

We chose a Gaussian model to describe the forward modeling error. This allows591

us to account for the modeling error by simply adding the modeling error to the data592

errors. However, the subsurfaces studied here are bimodal with high velocity contrasts,593

and the Gaussian description of the forward modeling error may likely be inadequate.594

The incomplete noise model description may cause errors to be mapped into the solu-595

tion space and introduce artifacts and this could be the main cause of the persistent ar-596

tifacts in the field traveltime tomograms.597

6.4 Practical aspects and perspectives598

The computation time for estimating the forward model error based on N = 800599

prior realizations was 8 hours on a standard workstation with 8 cores. The following lin-600

ear inversion itself required only 1.5 seconds. The modeling error estimation can be car-601

ried out before field data acquisition, which enables obtaining field tomograms shortly602

after the field work has been conducted. The observed structure in the covariance mod-603

els inferred for both traveltime and amplitude could indicate that analytical estimation604

of CT and d⃗T is possible in similar way as the estimation of Ccorr (Cordua et al., 2008),605

hence reducing computation time even further.606

Even though there are advantages of a linear probabilistic method, we see a po-607

tential for improving the method further without sacrificing the simplicity in applica-608

tion. Our choice for the best forward model is a 2D FDTD full-waveform forward solver609

and hence some model discrepancy relative to the underlying process persists. The model610

discrepancy could be reduced by implementing a 3D forward solver as gprMax3D (Giannopoulos,611

2005; Warren & Giannopoulos, 2017). The gprMax software is able to model the anten-612

nae explicitly, which would decrease the uncertainties related to varying coupling effects613

along the boreholes. Furthermore, gprMax is able to model the dispersive characteris-614

tics of clayey tills.615
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The structure of the modeling error covariance models could be improved by 3D616

forward simulation of data. However, the computational time required for inferring a 3D617

Gaussian model would increase significantly. Instead, the potentially increased magni-618

tude of the 3D modeling error compared to 2D, could be quantified and used to correct619

the 2D forward modeling error parameterization. Out of plane effects could also be stud-620

ied and possibly accounted for in a similar way.621

7 Conclusion622

We inverted crosshole GPR traveltime and amplitude data using a linear least-squares623

approach with included Gaussian a priori information. We accounted for the forward mod-624

eling errors arising from choosing a straight-ray forward model. Including the modeling625

error was fundamental in order to recover our synthetic reference model, but also to ob-626

tain geologically reasonable tomograms for field data. From the field data, we were able627

to delineate sand occurrences within a high-loss clayey till environment.628

The estimated thickness and tilt of the upper sand layer correlate better to obser-629

vations from borehole logs when inverting amplitude data rather than traveltime data.630

Furthermore, the attenuation tomograms exhibit internal variations within the clayey631

till that are in line with observations from the subsequent excavation and geological in-632

terpretation of the area.633

In a complex subsurface as studied here, non-linear inversion schemes are expected634

to perform better. However, one important advantage of the linear formulation is that635

it enables independent inversion of amplitude and traveltime data, which is important636

for the use of crosshole GPR under fully saturated conditions. Furthermore, the prob-637

abilistic formulation allows for estimation of realistic measures of error of the inverse es-638

timate.639
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