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Abstract13

In this study we construct and compare three different deep learning (DL) models for14

estimating daily snow water equivalent (SWE) from high-resolution gridded meteoro-15

logical fields over the Rocky Mountain region. To train the DL models, Snow Teleme-16

try (SNOTEL) station-based SWE observations are used as the prediction target. All17

DL models produce higher median Nash-Sutcliffe Efficiency (NSE) values than a con-18

ceptual SWE model and interpolated gridded datasets, although mean squared errors19

also tend to be higher. Sensitivity of the SWE prediction to the model’s input variables20

is analyzed using an explainable artificial intelligence (XAI) method, yielding insight into21

the physical relationships learned by the models. This method reveals the dominant role22

precipitation and temperature play in snowpack dynamics. In applying our models to23

estimate SWE throughout the Rocky Mountains, an extrapolation problem arises since24

the statistical properties of SWE (e.g., annual maximum) and geographical properties25

of individual grid points (e.g., elevation) differ from the training data. This problem is26

solved by normalizing the SWE with its historical maximum value to alleviate extrap-27

olation for all tested DL models. Our work shows that the DL models are promising tools28

for estimating SWE, and sufficiently capture relevant physical relationships to make them29

useful for spatial and temporal extrapolation of SWE values.30

1 Introduction31

Snowpack is a central component of the hydrologic cycle in montane regions, and32

its capacity to act as a reservoir for seasonal water storage is of vital importance to down-33

stream communities. This is especially true for watersheds in mid-to-high latitudes and34

at altitudes where streamflow is derived largely from snowmelt (Berghuijs et al., 2019).35

Snow water equivalent (SWE), defined as the equivalent amount of liquid water stored36

in the snowpack if it were to be instantaneously melted, is the metric most commonly37

employed by water managers to estimate and evenly compare water content of the snow-38

pack across regions. Climate change has already and will continue to significantly reduce39

both mean and maximum annual SWE, which will have repercussions for both stream-40

flow and groundwater dynamics, and in turn pose major challenges on water managers41

(Rhoades, Ullrich, & Zarzycki, 2018; Livneh & Badger, 2020; X. Chen et al., 2021; Hatch-42

ett et al., 2022; Rhoades et al., 2022). However, estimating the exact magnitude, tim-43

ing and persistence of SWE across various mountain ranges remains a scientific grand44

challenge (Siirila-Woodburn et al., 2021). Thus, there is considerable value for both sci-45

ence and society in the development of novel methods that can more precisely estimate46

spatiotemporally continuous SWE values over mountainous regions, both historically and47

into the future.48

Substantial and rapid progress in the development of machine learning (ML) and49

deep learning (DL) methods, and corresponding hardware advancements related to graph-50

ical processing units (GPUs), has stimulated promising research in the use of ML and51

DL-based models for problems in Earth system science (Feng et al., 2022). ML models52

have also been employed and have proven valuable for estimating SWE, although the53

majority of this research has focused on historical SWE estimation from existing snow54

and snow-related datasets. For instance, Snauffer et al. (2018) used an artificial neural55

network (ANN) model to estimate SWE from several reanalysis products. Their ML-56

generated SWE estimation exhibited better agreement with station observations, com-57

pared to those derived from the Variable Infiltration Capacity (VIC) hydrological model58

simulation. Odry et al. (2020) and Ntokas et al. (2021) designed an ANN model to pre-59

dict SWE and demonstrated that their ML model outperformed the benchmark regres-60

sion model. Their input variables included snow depth, temperature, accumulated pre-61

cipitation and several indices such as the number of snow-free days and the number of62

layers in the snowpack. Random forest methods have also been adopted to bias correct63

gridded SWE products (King et al., 2020).64
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To date, ML-based SWE estimation has largely relied on inference or emulation65

of existing snow-related products, rather than accounting for physical processes that shape66

snow accumulation. However, recent work by Manepalli et al. (2019) used a conditional67

generative adversarial network (cGAN) to emulate VIC-based estimates of SWE devel-68

oped by Livneh et al. (2015). They formulated this task as an image-to-image transla-69

tion problem, where the cGAN model translates gridded relationships between the in-70

put meteorological fields to the target SWE field without the need for snow-related prod-71

ucts. Although the cGAN model is demonstrably powerful, this type of image transla-72

tion task does not allow time dependency to be incorporated into the model. Namely,73

it assumes the SWE at time t can be expressed as a function of meteorological variables74

at the concurrent time t. Under such an architecture, the model cannot capture tem-75

poral features from the input predictors, (i.e., the snow accumulation process is ignored),76

which is vital for time series prediction.77

There have also been recent efforts to estimate SWE based on precipitation (P ),78

temperature (T ) and other factors that leverage physical causation and a process-based79

understanding of the system. These new DL models have modeled SWE as an accumu-80

lation process by relating SWE to a historic time series of meteorological variables, with81

the inputs from previous time steps:82

SWEt = f(Pt, Pt−1, ..., Pt−N+1, Tt, Tt−1, ..., Tt−N+1) (1)

where t denotes the time step and N is the length of the look-back window size. Using83

the above formula, Meyal et al. (2020) inputted precipitation, temperature, snow depth84

and SWE from previous days into a long-short-term memory (LSTM) model for SWE85

prediction at five observational stations. They found that the LSTM model can capture86

the temporal features of snow accumulation and perform well at the selected stations.87

Similarly, in Y.-H. Wang et al. (2022) an LSTM model is trained to emulate a gridded88

SWE dataset, demonstrating the superior ability of LSTM to capture snowpack dynam-89

ics over the western US. In these studies, both Manepalli et al. (2019) and Y.-H. Wang90

et al. (2022) emulated existing SWE products, while Meyal et al. (2020) used observa-91

tional records and thus did not assume the quality of any existing model or dataset.92

Although ML and DL models can achieve satisfying results for in-situ SWE, mod-93

els generally struggle with poor performance under extrapolation. Although the LSTM94

model in Meyal et al. (2020) performed well at the selected observational sites, it was95

not tested in out-of-sample areas, especially where the statistical properties of SWE ac-96

cumulation are different from the training sites. This poses a major challenge, partic-97

ularly if we want to generate a gridded SWE dataset with ML or DL models trained on98

in-situ observations. Given that in-situ estimates of SWE are generally located in those99

mountainous areas that are easily accessible and found at mid-elevation, they do not fully100

represent the areal heterogeneity of SWE at higher or lower elevations that surround the101

stations (Blöschl, 1999). Biases can also arise due to slope, canopy cover, and other fea-102

tures of the measurement sites. Therefore, a significant extrapolation problem may arise,103

particularly when applying the ML or DL models to low-elevation plains/valleys or high-104

elevation peaks. This issue also makes it difficult to validate or calibrate process-based105

models, suggesting a need for more observations at both low- and high-elevation. In the106

case of ML-based models, efforts to address the extrapolation problem include a trans-107

formation of the output target for climate emulation or by evaluating model performance108

using (extreme) out-of-sample scenarios for streamflow projection (S. Duan et al., 2020;109

Beucler, Pritchard, Rasp, et al., 2021).110

In our study, we investigate the viability of DL models for modeling SWE at point-111

wise locations and as a gridded product. Such datasets would have significant value to112

both researchers and practitioners, particularly those invested in water resource avail-113

ability and management. We first build three DL models based on equation (1), only us-114

ing the meteorological forcings from 581 observational stations in the western United States115
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(WUS). These models are compared against a conceptual snow model and two reference116

gridded datasets. The model behavior and input sensitivity are subsequently analyzed117

using an explainable artificial intelligence (XAI) method. With these trained DL mod-118

els, we then address the spatial extrapolation problem and generate a gridded SWE prod-119

uct over the Rocky Mountains with 4km grid spacing. This work further sets the stage120

for a successive effort to leverage our DL model for predicting the response of mountain121

snowpack to climate change.122

The structure of this paper is as follows. Section 2 describes the models employed,123

the data sources used in our study, and methods for analysis. Section 3 provides a com-124

parative assessment of model performance, including model behavior under cross-validation,125

and a permutation-based analysis of the DL model to understand which variables are126

deemed most relevant for SWE prediction. The DL model is then extended to generate127

a gridded SWE product, which is described and analyzed in section 4. A discussion of128

DL model performance in contrast with a conceptual model are in section 5, followed129

by conclusions in section 6.130

2 Models, Data and Methods131

2.1 Deep Learning Models132

Three different DL models applicable to time series problems are investigated and133

compared, following the general framework depicted in Figure 1. Under this design, the134

temporal block extracts temporal features from the input data, while the dense layer gen-135

erates a single-step prediction. The DL models are trained to minimize an objective func-136

tion (i.e., the loss function), which in this study is chosen to be the mean squared error137

(MSE). The number of training periods (epochs) is set to 50. The optimization algorithm138

is Adam with a learning rate of 1e-4 (Kingma & Ba, 2014). Since a gradient-based method139

is used to optimize the DL model, the converged model will be sensitive to the choice140

of initial weights. This effect is mitigated by training models 10 times with different ini-141

tial weights to generate an ensemble of predictions and use the ensemble mean, follow-142

ing X. Wang et al. (2021). The remaining hyperparameters for each model architecture143

are determined by a coarse grid search (more details in Table A1). Hyperparameters are144

not further fine-tuned in this study due to the steep computational cost and the min-145

imal benefit awarded by such an approach. All DL models are implemented using Py-146

Torch (Paszke et al., 2019). Specific details on the three DL models, along with our de-147

sign choices, are as follows.148

2.1.1 Long-Short Term Memory (LSTM)149

Long-Short Term Memory models (LSTMs) (Hochreiter & Schmidhuber, 1997) are150

a type of recurrent neural network that has commonly been used in hydrological predic-151

tion (Kratzert et al., 2019a; Feng et al., 2020; Lees et al., 2021). LSTMs have demon-152

strated considerable success for problems of this type, since they are designed to cap-153

ture temporal dependencies that are common in time-series data.154

Details on the mathematical structure of the LSTM are provided in Text S1. The155

gated design of LSTM enables it to keep and drop information from the previous time156

steps, which is naturally suited for time series tasks. A detailed figure representing the157

gates and outputs is depicted in Figure S1. Theoretically, there can be multiple LSTM158

layers stacked in a single LSTM model. However, the majority of past hydrological ap-159

plication studies adopt a one-layer LSTM model (Kratzert et al., 2019a; Xiang et al., 2020;160

Feng et al., 2020; Wunsch et al., 2021). In this study, we also utilize a one-layer LSTM161

model with the number of hidden units (i.e., the dimension of cell state) selected by hy-162

perparameter search.163
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Figure 1. The general framework employed in this study for all ML models.

2.1.2 Temporal Convolutional Neural Network (TCNN)164

Historically, convolutional models have been used for image-related tasks because165

of their ability to extract features with 2- or 3-dimensional convolutional kernels (i.e.,166

weighted inner products that are marched across the input image). Two well-known image-167

related models built with convolution layers are VGG-16 (Simonyan & Zisserman, 2014)168

and GoogLeNet (Szegedy et al., 2015). Temporal convolutional neural networks (TC-169

NNs) (Lea et al., 2017), where kernels are instead applied over the time dimension, have170

also been developed for time-series problems. Bai et al. (2018) tested these models for171

a variety of standard time series tasks and showed that convolutional models can often172

outperform LSTMs. TCNNs have also been used in Earth system modelling for predic-173

tions of streamflow and the El Niño Southern Oscillation (ENSO) (S. Duan et al., 2020;174

Yan et al., 2020).175

To mimic the inherent time dependencies built into LSTMs, TCNNs use dilated176

causal convolutions and residual connections (Bai et al., 2018). This architecture is de-177

picted in Figure S2. The causal convolution ensures that outputs at a given time step178

are only dependent on previous time steps, in contrast to a traditional convolution which179

could involve future information. The dilated convolution enlarges the receptive field by180

regularly skipping input time steps; consequently, with stacked deep CNN layers, the re-181

ceptive field at the final layer can cover the whole input time series. Residual connec-182

tions are needed along with the stacked layers since the model can be too deep to con-183

verge, and residual connections can avoid vanishing or exploding gradients (K. He et al.,184

2016).185

In this study, we use a stacked TCNN model analogous to those employed in Bai186

et al. (2018) and S. Duan et al. (2020), where each TCNN block consists of two CNN187

layers and one residual connection (Figure S2). The number of CNN kernels, TCNN blocks188

and kernel sizes are determined by hyperparameter search.189
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2.1.3 Self-Attention Model190

Vaswani et al. (2017) introduced the Transformer, a self-attention based encoder-191

decoder model (Bahdanau et al., 2014) for natural language processing (NLP). Since then,192

many self-attention-based models have been designed and investigated for application193

to time series problems (Devlin et al., 2018). In Earth system modeling applications, self-194

attention-based models have been used to predict the ENSO index (Ye et al., 2021) and195

forecast seasonal precipitation (Civitarese et al., 2021). In recent years, significant ef-196

fort has been made to optimize the original Transformer architecture and make it more197

computationally and memory efficient (Tay et al., 2020; Lin et al., 2021). These variants198

of Transformer models could provide more choices for Earth system applications.199

The equations governing the self-attention model are provided in Text S1. In the200

encoder portion of Transformer, the input vectors are embedded in a dense layer (also201

called an embedding layer). The self-attention layer takes the embedded inputs and ex-202

tracts the temporal features, which are then used as input for the decoder (depicted in203

Figure S3). It can be viewed as a fully connected layer but with dynamical weights rep-204

resenting the pairwise relationships of the input time steps (Lin et al., 2021).205

In this study, the encoder of the original Transformer model from Vaswani et al.206

(2017) is used, featuring a multi-head self-attention mechanism. The number of Trans-207

former encoder layers, number of heads, embedding size and feedforward dimensions are208

tuned using a hyperparameter search.209

2.2 Input and Output Variables210

Snow Telemetry (SNOTEL) stations provide daily SWE measurements and are used211

as the prediction target for the ML model. From the 829 stations with available data212

(including Alaska), we select 581 stations across the WUS with at least one year of com-213

plete observations over the training period from 1980 to 1999. Meteorological fields are214

from the 1/24th-degree (∼4-km) gridMET dataset, including daily precipitation, max-215

imum and minimum temperature, solar radiation, maximum and minimum relative hu-216

midity, specific humidity, vapor deficit and wind speed (Abatzoglou, John T, 2013). Since217

SNOTEL stations do not coincide with gridMET grid points, the data point nearest to218

each SNOTEL station provides the corresponding forcing.219

Static features at each station include latitude, longitude, elevation, diurnal anisotropic220

heat index (DAH) (Böhner & Antonić, 2009) and topographic solar radiation aspect in-221

dex (TRASP) (Roberts & Cooper, 1989). DAH and TRASP are used to account for sur-222

face solar radiation loading (i.e., shading) (Cristea et al., 2017). DAH is given by223

DAH = cos(αmax − α)× arctan(β) (2)

where αmax is the aspect receiving the maximum amount of solar radiation (for the WUS,224

we use αmax = 1.125π, following Böhner and Antonić (2009)), α is the aspect (in ra-225

dians), and β is the topographic slope (also in radians). DAH ranges between −1 and226

+1, with zero corresponding to flat terrain; for the WUS, DAH is largest on steep southwest-227

facing slopes that have higher afternoon solar radiation loading and lowest on steep north-228

facing slopes. TRASP is given by229

TRASP =
1

2

[
1− cos

(
α− π

6

)]
. (3)

TRASP is only a function of topographic aspect and accounts for daily solar radiation230

angles and ranges between 0 (for the coolest slopes) and +1 (for the warmest slopes).231

Both TRASP and DAH were calculated using the United States Geological Survey (USGS)232

Digital Elevation Model (DEM) dataset at 30-meter horizontal resolution. As with grid-233

MET, the nearest grid cell to the SNOTEL station is used as the corresponding input234

to the DL model.235

–6–



manuscript submitted to Water Resources Research

2.3 Splitting the Data236

For purposes of constructing the primary DL models, the data are split into train-237

ing, validation and testing sets. Several such splittings are used throughout our paper238

in order to test the robustness of the DL method for capturing snowpack dynamics among239

different time periods and in different regions. For all splittings, we calculate the mean240

x and standard deviation σ of both the input and output variables in the training pe-241

riod and so normalize the data via242

Xnormalized =
xi − x̄

σ
. (4)

The splittings employed are as follows:243

(1) For the temporal train-test split, we use 1980 Oct 1st to 1999 Sep 30th as the train-244

ing period, 1999 Oct 1st to 2008 Sep 30th as the validation period and 2008 Oct245

1st to 2018 Sep 30th as the testing period. All SNOTEL stations are included in246

this splitting. Since validation is only used to determine hyper-parameters (which247

are fixed thereafter), this is the only splitting that includes a validation period.248

(2a) For the first spatial train-test split, SNOTEL stations are split into eight moun-249

tainous areas, including the Pacific Northwest, the Sierra Nevada, the Blue Moun-250

tains, Idaho/Western Montana, Northwestern Wyoming, Utah, Colorado, and Ari-251

zona/New Mexico. This division follows Serreze et al. (1999) and M. He et al. (2011b),252

where it was shown that these eight areas exhibited distinct snow dynamics. This253

splitting includes eight experiments, in each case using seven mountainous regions254

for training and one for testing.255

(2b) For the second spatial train-test split, all SNOTEL stations are randomly split into256

eight subsets or folds. Each time this splitting is performed, seven folds are used257

for training and the rest for testing. Unlike the spatial splitting in (2a), this spa-258

tial splitting still allows the model to comprehensively learn snow dynamics from259

stations throughout the western US.260

2.4 Gridded SWE Reference Products261

Spatiotemporally complete observations of SWE in mountain areas remain elusive,262

requiring us to instead employ reconstructions that meld models and observations. Of263

course, such products inevitably inherit biases from incomplete observations and uncer-264

tainties in the model design, particularly in regions where observations are sparse. To265

better quantify these structural uncertainties, two model products are employed in this266

study. These two products were chosen because they are modern, high-quality data prod-267

ucts that are widely used in the snow modeling community. Other such SWE products268

can be found in McCrary et al. (2017) and Snauffer et al. (2018).269

The primary product employed is the daily 4km gridded SWE data from Zeng et270

al. (2018) (hereafter referred to as the University of Arizona or UA dataset), which uses271

PRISM precipitation and temperature data and assimilates SNOTEL observations. In272

the UA product, rainfall and snowfall are partitioned using daily 2m air temperature thresh-273

olds derived from station observations. When interpolating point measurements to a grid,274

the ratio of SWE observations to net snowfall is used instead of the absolute SWE mea-275

surements since the ratio exhibits lower spatial variability and is less susceptible to rep-276

resentative errors. Further details on the methodology employed and corresponding anal-277

ysis can be found in Broxton et al. (2016) and Zeng et al. (2018).278

The second product adopted in this study is an independent SWE dataset devel-279

oped at the University of California, Los Angeles, (referred to as the UCLA dataset). The280

UCLA dataset takes three Landsat sensors as input, along with meteorological forcings,281

topographical features and landcover data. The snow estimates are then updated with282

MODIS remote sensing estimates of snow cover too. Within a Bayesian framework, this283
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dataset provides ensemble statistics of SWE estimates (e.g., mean, standard deviation,284

median) (Y. Fang et al., 2022). Details about the processing algorithm can be found at285

Margulis et al. (2019). The horizontal resolution of the UCLA product is 16 arc seconds,286

which varies from 350m to 500m. For the purposes of this study we use the ensemble mean287

SWE estimate, which is regridded to the same 4km resolution grid as the UA dataset.288

2.5 The SNOW-17 Model289

One issue with the use of gridded products is that they do not provide SWE data290

at the precise SNOTEL station locations. Interpolating meteorological and SWE data291

from gridded data points to SNOTEL stations can introduce potentially significant er-292

rors, particularly in regions of complex topography (Meromy et al., 2013; Grünewald &293

Lehning, 2015; Herbert et al., 2023). Consequently, we further compare our DL-based294

SWE estimates to those from the SNOW-17 snow accumulation and ablation model. SNOW-295

17 is a conceptual snow index model that explicitly represents most of the important snow296

processes. Notably, it uses air temperature as an index to determine energy exchange297

across the snow-air interface. We refer readers to E. A. Anderson (1976) and E. Ander-298

son (2006) for the detailed processes and equations used in the SNOW-17 model.299

The SNOW-17 model is calibrated with the selected SNOTEL stations and the same300

gridMET forcings. The calibration period is the same as the training data range, i.e.,301

1980 Oct 1st to 1999 Sep 30th. The model is then used to generate SWE estimates over302

the testing period (2008 Oct 1st to 2018 Sep 30th) for comparison. Candidate tuning303

parameters are determined based on previous studies on model sensitivities (e.g., E. A. An-304

derson, 1973; M. He et al., 2011a; Raleigh & Lundquist, 2012) and listed in Table B1.305

The shuffled complex evolution approach (SCE-UA) is used to optimize the parameters,306

with details in Q. Duan et al. (1993, 1994).307

2.6 Performance Metrics308

Model performance is quantified using the Nash-Sutcliffe model efficiency coeffi-309

cient (NSE), a widely used metric for hydrological model evaluation (Nash & Sutcliffe,310

1970). It is defined via311

NSE(Ot, Pt) = 1−
∑

(Ot − Pt)
2∑

(Ot −Ot)2
, (5)

where O and P denote observations and predictions, respectively. Index t denotes the312

time and Ot is the observation mean. NSE is in the range (−∞, 1], with larger values313

indicating better performance and a score of 1 indicating a perfect match between model314

and observations. Note that the NSE score is not symmetric, i.e., NSE(A,B) ̸= NSE(B,A);315

in this study the first NSE argument consistently refers to the reference product.316

In this study, we employ NSE in two ways. First, the NSE of absolute SWE is cal-317

culated as318

NSEabsolute = NSE(SWEREF,SWEDL), (6)

where SWEREF denotes the SWE from the reference dataset and SWEDL denotes the319

SWE prediction from the deep learning model. Second, the NSE values utilize the SWE320

fraction, which is defined as the ratio of absolute SWE values to the historical maximum321

SWE. The NSE of the SWE fraction is given by322

NSEfraction = NSE

(
SWEREF

max(SWEREF)
,

SWEDL

max(SWEDL))

)
, (7)

= NSE

(
SWEREF,

SWEDL

max(SWEDL)
×max(SWEREF)

)
(8)
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where max(SWEREF) represents the historical maximum SWE from the reference dataset,323

and max(SWEDL) denotes the historical maximum SWE from the DL models. Equa-324

tions 7 and 8 are equivalent since the NSE value is unaffected when the predictions and325

observations are multiplied or divided by the same constant. As opposed to the NSE of326

absolute SWE, the NSE of SWE fraction emphasizes the temporal features and de-emphasizes327

errors in magnitude.328

Model performance is further quantified using root mean squared error (RMSE)329

and mean absolute error (MAE),330

RMSE(Ot, Pt) =
√∑

(Ot−Pt)2

nsamples
, (9)

MAE(Ot, Pt) =
1

nsamples

∑
|Ot − Pt|. (10)

where nsamples is the number of evaluated samples. RMSE and MAE are in the range331

[0,+∞) with lower values indicating a closer match, and a score of 0 indicating a per-332

fect match between the model and observations.333

2.7 Feature Permutation334

Although DL models generate accurate predictions, they are frequently referred to335

as ‘black box’ models since it is often unclear why and how the model produces its re-336

sults. Recent advances in explainable AI (XAI) have enabled better interpretation of DL337

model results, especially in Earth system modeling (McGovern et al., 2019; Gagne II et338

al., 2019; Barnes et al., 2020; Toms et al., 2020). Such techniques are further useful for339

building credibility in DL models by demonstrating that they are mimicking physical un-340

derstanding and principles.341

Permutation-based XAI methods are commonly used to quantify the relative im-342

portance of input variables in the DL models (Breiman, 1996). The permutation method343

evaluates the DL model by first obtaining a baseline performance score. Then each fea-344

ture is permuted to generate a shuffled dataset, and a new performance score is calcu-345

lated. The change in the performance score represents the importance of a given feature.346

A greater decrease in model skill corresponds to higher feature importance. This approach347

follows previous work addressing model interpretation (Gagne II et al., 2019). However,348

care should be taken in the interpretation of these results, as the quantified performance349

is potentially confounded by correlation among input features. For example, a model that350

uses both mean and maximum daily temperature as input may see minimal performance351

loss from the removal of either of these features while the removal of both would be sig-352

nificant. Efforts to address correlation issues include the use of multi-pass permutation,353

as discussed in a review by McGovern et al. (2019).354

In this study, we permute both the training and the testing set and train a reduced355

model. By permuting the training set and retraining the model, the permuted variable356

is blocked and the reduced model only receives the information from the remaining non-357

permuted variables. The importance of the permuted variable will be quantified by ex-358

amining the ratio of the new median NSE value against the baseline score. The permu-359

tation is performed separately for dynamic inputs and static variables. For dynamic in-360

puts, the time series from each grid point is used for re-sampling so that the statistical361

properties of these variables are preserved (i.e., only the time steps are shuffled). For static362

features, the permutation is performed among all stations.363

2.8 Switching the Model Target for Spatial Extrapolation364

DL models generally yield accurate predictions when interpolating between unseen365

samples in the training set range, but can struggle when extrapolating beyond this range.366

With that said, Balestriero et al. (2021) showed that in high-dimensional data with the367

training range defined by the convex hull of the training set (i.e., the minimal convex poly-368
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gon that encompasses all the training points), samples almost always fall in the extrap-369

olation regime. This is particularly true for time series problems, where the dimension370

is the product of input time window size and a number of input features. For the prob-371

lem investigated here, extrapolation is particularly evident when the SNOTEL-trained372

model is applied to the whole Rocky Mountains, since these stations are largely found373

only in high-elevation regions. To mitigate some of the effects of extrapolation, an al-374

ternate model target is considered in this work.375

To alleviate problems with extrapolation, a second set of DL models are trained376

with SWE fraction as the target, which is defined as the SWE normalized by the his-377

torical maximum SWE at each station. In this case, the model output is generally less378

than 1, though exceedance of maximum historical SWE is allowed and would produce379

values greater than 1. Consequently, for the SWE fraction, the data normalization is not380

needed (i.e., equation 4). In the process of generating the spatially contiguous dataset,381

the DL models are driven by the forcings at each grid point, producing SWE fractions382

for the corresponding grid point as direct outputs. To obtain the absolute SWE values,383

the SWE fractions from DL models are multiplied by the historical maximum SWE value384

associated with each grid point, which is derived from a reference dataset. In this case,385

the NSE formula can be written as386

NSEextrapolation = NSE(SWEREF,SWE′
DL ×max(SWEREF)) (11)

= NSE

(
SWEREF

maxSWEREF
,SWE′

DL

)
, (12)

where SWE′ denotes the SWE fraction and SWE′
DL for the DL predicted SWE fraction.387

It is worth noting that the DL model outputs in equation 8 are actual SWE values, while388

DL models predict SWE fractions in equation 12. So these two equations are not equiv-389

alent and they represent two different assessments: In equation 8, both the SWEDL and390

max(SWEDL) are from the original DL models, which predicts absolute SWE; whereas391

the maximum SWE in equation 12 is from reference datasets and the DL models are pre-392

dicting SWE fractions.393

3 Model Performance at SNOTEL stations394

3.1 Computational Performance395

The training time for each DL model on a single RTX 2080TI GPU is 5 hours for396

the LSTM model, 10 hours for the TCNN model, and 26 hours for the Attention model.397

The variance in computational expense can be primarily attributed to the inherent dif-398

ferences in the DL models. Although the training time varies among different DL mod-399

els, all DL models only need to be trained once, and inference time is much shorter. In-400

ference time at SNOTEL stations is on the order of a few minutes. For our application401

over the Rocky Mountains, it takes approximately 35 minutes to generate a 10-year pre-402

diction of SWE on the 168 × 108 grid cells covering the Rocky Mountains with paral-403

lel execution on a single RTX 2080TI GPU for either the LSTM and TCNN. The At-404

tention model takes longer than the other DL models to generate a prediction – approx-405

imately 2.5 hours without parallel execution – and is limited by the GPU memory. Faster406

performance is anticipated using GPUs with larger memory. Meanwhile, the SNOW-17407

model’s simplicity allows for rapid generation of SWE predictions, but the parameter408

tuning process typically takes around 1 hour for each SNOTEL station, a duration largely409

influenced by the choice of optimization algorithm. Given the much faster inference time,410

the training time is not used for model selection or intercomparison.411

3.2 Temporal Prediction412

DL model performance is evaluated over the testing period (2008-10-01 to 2018-413

09-30) at all SNOTEL stations. Since summertime SWE is zero at most SNOTEL sta-414
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Table 1. Tabulated model performance for prediction of SWE at SNOTEL stations. The top

table shows performance scores on dates when observed SWE is greater than zero, while the

bottom table shows the whole evaluation period (from 2008 to 2018). The best scores for each

metric are shown in bold font.

Nonzero SWE Median NSE Median MAE (mm) Median RMSE (mm)

LSTM 0.823 42.97 63.14
TCNN 0.792 52.58 73.14

Attention 0.779 52.03 72.06
UA 0.755 49.77 73.02

UCLA 0.482 77.31 104.51
SNOW-17 0.488 80.34 102.39

Whole period Median NSE Median MAE (mm) Median RMSE (mm)

LSTM 0.901 25.76 49.03
TCNN 0.879 31.07 55.76

Attention 0.871 29.93 54.08
UA 0.861 26.69 53.61

UCLA 0.708 47.16 81.19
SNOW-17 0.722 44.69 77.45

tions, daily information for both the entire testing period and only those days in the test-415

ing period when observed SWE is nonzero are examined separately. As discussed in sec-416

tion 2.1, the mean from a 10-member ensemble SWE prediction for each DL model and417

SNOTEL station is used for analysis. Table 1 shows the median NSE, MAE and MSE418

across all SNOTEL stations. Among the DL models, the LSTM has the highest median419

NSE value, followed by the TCNN and then the Attention model. The distributions of420

NSE and RMSE values are further shown in Figure 2. The cumulative distribution func-421

tion (CDF) of NSE values for the LSTM model lies above that of the TCNN and At-422

tention models, indicating that the LSTM produces more station SWE predictions with423

higher NSE values. When only comparing the TCNN and Attention models, the TCNN424

has a slightly higher median performance, although the Attention model shows better425

overall performance. An example of SWE prediction for a single SNOTEL station is given426

in Figure S5.427

Prediction accuracy is also computed for the UA and the UCLA dataset over the428

same testing period using the nearest grid point to the SNOTEL station (further dis-429

cussion of the potential impact of this choice on accuracy is provided in the supplement).430

Notably, both gridded datasets are optimized toward their grid cells, and not toward SNO-431

TEL sites. Errors arising from interpolation from grid cells to SNOTEL stations are po-432

tentially large, particularly in regions of rough topography as illustrated in Meromy et433

al. (2013), and so this comparison is not indicative of the skill of these datasets but rather434

provides a context for reference. The median NSE values over the whole testing period435

are 0.861 and 0.482 for the UA and UCLA dataset, respectively. For those days when436

observed SWE is nonzero, the NSE score is 0.755 for the UA dataset and 0.708 for the437

UCLA dataset. Under this metric, all DL models achieve better results than these two438

datasets. Moreover, when comparing the distribution of NSE values in Figure 2, we see439

that the DL models produce more stations with higher NSE values. As for MAE and MSE440

metrics, the UA dataset achieves a lower median MAE than the TCNN and Attention441

for both the whole testing period and the nonzero-SWE period. Examining Figure 2, the442

UA dataset also attains the lowest MSE and MAE across 20% to 30% of SNOTEL sta-443

tions.444
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Figure 2. Cumulative distribution functions across three model performance metrics for pre-

dicting SWE across SNOTEL stations in the western US. NSE values are truncated at 0. RMSE

and MAE are shown in millimeters. The upper row shows model performance when only those

SWE observations larger than zero are used. The lower row shows model performance for all zero

and nonzero SWE observations. Higher scores in the first column, and lower scores in the second

and third columns, are indicative of higher performance.

Finally, prediction accuracy from the DL models is compared with the SNOW-17445

model. Under all three metrics, all DL models attain higher NSE scores and lower MAE446

and MSE values than SNOW-17. Since we used the same training period to calibrate447

the SNOW-17 model, missing values may affect model parameters at some locations. This448

is because SNOW-17 is calibrated individually for each station, whereas the DL mod-449

els trained on data from all stations are less affected by missing data from individual sta-450

tions. In fact, the median NSE score for the SNOW-17 model increases to 0.778 when451

only those stations with less than one year of missing values are taken into considera-452

tion. Nonetheless, this score is still lower than the DL models. This difference could be453

due to the fact that SNOW-17 uses fewer input variables than the DL models. An ad-454

ditional test is carried out only using precipitation, temperature, latitude and elevation,455

which are the same input variables as the SNOW-17 model. This reduced LSTM model456

yields a median NSE score as 0.846, still higher than that from the SNOW-17 model.457

This result suggests substantial room for improvement in the SNOW-17 model, although458

we do acknowledge that more modern process-based models are likely to yield better per-459

formance.460
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To better understand the drivers of model performance, we examine relationships461

between NSE, elevation, and maximum SWE. Figure 3 shows the NSE distribution with462

respect to elevation. In general, all DL models and reference model/datasets perform bet-463

ter at higher elevation. For the DL models, performance improvements are also positively464

correlated with maximum SWE (as shown in Figure 4). This relationship is not obvi-465

ous among the reference model/datasets, and seems to only hold for maximum SWE be-466

low 1500mm (1000mm for UCLA). However, sharp variations in performance can be par-467

tially attributed to low sample size for high maximum SWE. This result appears to be468

a common theme in our study: at higher elevations and in regions of deeper maximum469

SWE, snowpack is easier to predict. We hypothesize that this is because there is less un-470

certainty in rain-snow partitioning at higher elevation, and because the processes that471

occur at the interface between land surface and snowpack are strongly nonlinear, but be-472

come less important when a deep snowpack is present.473

Although the three DL models exhibit differences in performance, the spatial dis-474

tribution of their performance tends to be similar – that is, stations with lower (higher)475

NSE values in one model tend to have lower (higher) NSE values in other models. Across476

DL models, the Pearson correlation of NSE is 0.856 and 0.660 for TCNN and Attention477

versus LSTM (Figure S6). As shown in Figure 5, all DL models exhibit relatively poor478

performance (i.e., negative NSE values) in Western Washington, Northern Nevada, South-479

ern and Northwestern Oregon, and Northern Montana. In general, these stations tend480

to have a lower maximum SWE than other stations, which is consistent with our ear-481

lier attribution of model performance (Figure 4). These also tend to be regions where482

the UCLA product performs poorest, while the SNOW-17 and UA datasets have more483

variable performance.484

In general, for western US SNOTEL stations, DL models can produce improved485

results with the selected conceptual model and gridded datasets, and share a similar re-486

lationship between performance and elevation. Among all models, the LSTM model pro-487

vides the most accurate predictions across the three DL models assessed. Importantly,488

these results should not be taken as being indicative of the UA product being higher qual-489

ity than the UCLA product. While the UA dataset assimilates SNOTEL observations,490

the UCLA dataset relies almost exclusively on remote sensing, as outlined in Section 2.4.491

Consequently, the relatively strong performance of the UA dataset is unsurprising when492

evaluated against SNOTEL observations. A more thorough comparison between the UA493

and UCLA datasets (and, more generally, observational spread) would require an inde-494

pendent data source with similar horizontal resolution, which lies beyond the scope of495

this study.496

3.3 Spatial Cross-Validation497

The ability of the model to transfer its understanding of physical processes from498

one region to another is now assessed, as we build towards the development of a grid-499

ded SWE product. Hereafter, our study will focus exclusively on the LSTM because of500

its superior performance compared with other DL models and its strong correlation with501

those models across stations. Among 581 SNOTEL stations, 530 are located inside the502

mountain range boundaries in Serreze et al. (1999) and M. He et al. (2011b). The two503

spatial splittings employed here are described in section 2.3, and are referred to as ‘moun-504

tain cross-validation’ for splitting (2a) and ‘8-fold cross-validation’ for splitting (2b). The505

‘time-split’ experiment which was analyzed in section 3.2 is used as a reference. Results506

from this experiment are given in Figure 6 and Table 2. Overall, the ‘time-split’ LSTM507

yields the best prediction accuracy, with a median NSE score of 0.899, followed by the508

‘8-fold cross-validation’ and ‘mountain cross-validation’ LSTMs, with the NSE scores of509

0.888 and 0.844, respectively. Compared with our full model that trained with 581 SNO-510

TEL stations, we do see a tendency of better performance with more training stations.511
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Figure 3. NSE value distribution with respect to elevation. The left y-axis and lines denote

the fraction of stations with NSE values higher than 0.5 for each elevation bin. The right y-axis

and bars show the number of SNOTEL stations in each elevation bin.

Figure 4. NSE value distribution with respect to maximum SWE measurement. The left y-

axis and lines denote the fraction of stations with NSE values higher than 0.5 for each SWE bin.

The right y-axis and bars show the number of SNOTEL stations in each SWE bin.

This suggests the benefit of a large and diverse training set, which was also argued in512

K. Fang et al. (2022).513

Grouped by mountain ranges, Idaho/Western Montana and northwestern Wyoming514

areas exhibit stronger performance, while the Cascades produces the lowest median NSE515

score, which is especially pronounced for the ‘mountain cross-validation.’ This suggests516

there are unique snow dynamics in the Cascades that other mountain ranges appear un-517

able to capture. In addition, predictability is limited in Arizona/New Mexico (AZ/NM),518

the southernmost of our selected mountain ranges. These results are not surprising given519

the distinct topographical features of these regions: the elevation is much lower in the520

Cascades compared with other mountain ranges (shown in Figure 6), while the AZ/NM521
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Figure 5. SWE prediction performance from the DL models, the SNOW-17 model, and the

UA and UCLA datasets. Dots represent individual SNOTEL stations, with the color of the dot

representing the NSE value (negative values are masked).

Table 2. Median NSE values for SNOTEL stations in major mountain ranges. Northwestern

Wyoming is abbreviated to NW Wyoming and Arizona/New Mexico to AZ/NM. Numbers in

parenthesis denote the number of SNOTEL stations in each mountain range.

Cascades (78) Sierra Nevada (24) Blue Mountains (26) Idaho/Western Montana (95)

Time-split 0.853 0.878 0.862 0.923
Cross-validation 0.812 0.845 0.879 0.914
Mountain-based 0.741 0.846 0.852 0.894

NW Wyoming (110) Utah (74) Colorado (109) AZ/NM (19) Overall (530)

Time-split 0.921 0.911 0.907 0.856 0.899
Cross-validation 0.901 0.891 0.892 0.792 0.888
Mountain-based 0.877 0.867 0.833 0.758 0.844

mountains experience relatively warm temperatures and lower maximum SWE. Indeed,522

when the AZ/NM mountains are used for testing, elevation and latitude are completely523

out of the training range. This is an obvious example of model extrapolation, the likely524

explanation for this range’s relatively poor performance, and suggests a need for more525

observational data from a variety of snow regimes. Nonetheless, the DL model perfor-526

mance in this test exceeds NSE scores derived from SNOW-17 and the UCLA product,527

similar with the result in Figure 5.528

3.4 Permutation-Based Analysis529

The variables that are most important for the LSTM model are now studied us-530

ing a permutation-based analysis. As described in section 2.7, a new set of LSTM mod-531

els are trained and tested with the shuffled datasets. The importance of each input vari-532

able is quantified by comparing the ratio of the permuted LSTM model whole period NSE533

prediction to the LSTM model baseline NSE prediction, which is trained and tested with534

the non-permuted dataset. The permuted LSTM models are also trained 10 times to build535
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Figure 6. SWE prediction performance from the LSTM with spatial cross-validation. Eleva-

tion is shown on the left as a reference. Dots represent individual SNOTEL stations, with the

color of the dot representing the NSE value (negative values are masked). Mountain-based cross-

validation is depicted on the top left, random 8-fold cross-validation on the bottom left, and the

time-split result is shown on the bottom right for reference. Black boxes represent the mountain

region boundaries.

an ensemble of predictions. To quantify model uncertainty, we use bootstrap sampling536

to provide results with a 90% confidence interval.537

The input variable with the most influence on model performance was precipita-538

tion, followed by elevation, while the rest of the input variables had comparable influ-539

ence. This result agrees with the intuition that precipitation provides water mass to build540

snowpack, and precipitation type is determined by temperature (and humidity), which541

is shaped by elevation via the lapse rate (Jennings et al., 2018). Although this result seems542

like common sense and may be affected by the collinearity between input variables, it543

helps build trust in the LSTM model and provides evidence that it follows basic phys-544

ical principles. The combined effect of static features is also demonstrated to be criti-545

cal, as the LSTM model accuracy would drop approximately 7% without their inclusion,546

which is more than half the influence of precipitation. Clearly, these features are use-547

ful for modulating snowpack dynamics at each SNOTEL station and in out-of-sample548

locations during extrapolation. The utility of static variables was also reported in Kratzert549

et al. (2019b), where LSTM models were used to predict streamflow.550

Among all static variables, there are three categories: location (latitude and lon-551

gitude), aspect and slope (DAH and TRASP), and elevation. We combined each static552

variable into these categories during the permutation process to compare their relative553

importance. Relative to the baseline LSTM model with a median NSE of 0.901, the LSTM554
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Figure 7. SWE prediction performance drop (%) quantified using the NSE values among the

permuted estimates. Error bars represent the 90% confidence interval from bootstrap sampling.

Precipitation is abbreviated to ‘precip’, ‘sph’ stands for specific humidity, ‘srad’ for solar radia-

tion, ‘vpd’ for vapor deficit, and ‘vs for wind speed. ‘Tmin’, ‘tmax’, ‘rmin’, and ‘rmax’ refer to

minimum and maximum temperature and relative humidity. ‘Dah’ represents diurnal anisotropic

heat index and topographic solar radiation aspect index as ‘trasp’. The green bars represent the

performance decline for each static variable, the blue bars represent the performance decline from

individual meteorological variables, and the orange bar represents the combined effect of all static

variables.

model that did not include location information had the highest median NSE score (0.878),555

followed by aspect and slope (0.874), and elevation (0.870). Despite being rather mod-556

est drops, this result again emphasizes that elevation information is the most important557

in SWE prediction since it can determine the temperature and rain-snow partitioning558

of precipitation. Although the local temperature is also affected by latitude through dif-559

ferences in solar loading, the LSTM model benefited more from information related to560

aspect and slope, which have more localized effects on temperature.561

Because many of these variables are correlated, care should be taken in attribut-562

ing the relative importance of variables other than precipitation under the permutation563

test. This is especially true for temperature, since vapor deficit is a function of temper-564

ature and relative humidity and consequently, temperature can be inferred from vapor565

deficit and relative humidity even if we permute temperature. To better compare their566

relative influence on SWE predictability, several reduced-order LSTM models are trained.567

In each reduced-order model, precipitation and one of the other meteorological variables568

are used, and the remaining variables are permuted. The baseline for comparison was569

an LSTM model with only precipitation and the reference was a model with the full set570

of meteorological variables. The model using precipitation plus relative humidity was not571

included in this analysis because it did not converge to a reasonably performant model.572

As shown in Table 3, among the reduced-order models, precipitation and wind speed give573

–17–



manuscript submitted to Water Resources Research

Table 3. First quantile, median and third quantile whole period NSE from several reduced-

order LSTMs for predicting total SWE. Precipitation is abbreviated to Precip.

First Quantile NSE Median NSE Third Quantile NSE

Precipitation Only 0.149 0.380 0.576

Precip+Wind Speed 0.432 0.620 0.740
Precip+Specific Humidity 0.686 0.826 0.896
Precip+Solar Radiation 0.709 0.836 0.905
Precip+Vapor Deficit 0.740 0.843 0.894
Precip+Temperature 0.793 0.874 0.924

Precip+Temperature+Relative Humidity 0.784 0.875 0.919
Precip+Temperature+Vapor Deficit 0.818 0.881 0.927

Precip+Temperature+Specific Humidity 0.799 0.882 0.927
Precip+Temperature+Wind Speed 0.803 0.884 0.926

Precip+Temperature+Solar Radiation 0.813 0.886 0.931

Full Model 0.831 0.901 0.938

the lowest NSE value, although even this combination does improve skill tremendously574

compared with the baseline model. The median NSE scores across the rest of the reduced-575

order models are all above 0.8, and the combination of temperature and precipitation576

produces the closest performance to the reference model. This indicates that vapor pres-577

sure deficit, solar radiation, and specific humidity contain influential information for SWE578

prediction, while temperature is the most critical variable for model skill besides precip-579

itation.580

To determine the best third variable in the model, five additional models were trained:581

each model consists of precipitation, temperature, and one other variable. The results582

are shown in Table 3. The model with precipitation, temperature and relative humid-583

ity attains the lowest NSE value and is very close to the model with only precipitation584

and temperature, which is consistent with previously observed anomalous low performance585

with precipitation and relative humidity. The inclusion of vapor deficit, specific humid-586

ity and wind speed all increase the model performance and yield similar NSE scores, prob-587

ably because these variables cannot be inferred from precipitation and temperature. The588

model with precipitation, temperature and solar radiation obtained the highest median589

NSE value of 0.886, or 98% of the full model performance. Clearly, with far fewer input590

variables, the model with precipitation, temperature and solar radiation was capable of591

capturing the temporal features necessary for SWE prediction. This again highlights the592

important roles that these three variables have in affecting the water cycle (S. Duan et593

al., 2020). Additionally, this result suggests that good estimates of snowpack can be ob-594

tained from datasets providing these quantities in high quality, such as CAMELS (Addor595

et al., 2017).596

One additional model was trained to capture some of the diurnal cycle of temper-597

ature through inclusion of both minimum and maximum temperature (as opposed to daily598

average temperature). The improvement in median NSE was only 0.002, suggesting min-599

imal value to the inclusion of both variables (more information in Table S1 and Text S2).600

4 Spatial Extrapolation of DL Models to the Rocky Mountains601

Our earlier analysis indicates that DL models are capable of predicting daily SWE602

at individual SNOTEL stations and can even achieve satisfactory performance when ex-603
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Figure 8. Elevation (left) along with NSE scores between gridded datasets with UA as ref-

erence (middle) and UCLA as reference (right) over the Rocky mountain area. Colors represent

elevation in the first column and NSE values in the middle and right columns. Negative NSE

values are masked.

trapolating to stations out of the training set. In this section, a gridded SWE product604

similar to the UA and UCLA datasets is developed by applying these models out-of-sample605

across the Rocky Mountains at 4km grid spacing (Figure 8). It is shown that the result-606

ing product is reasonable, even when there are out-of-sample differences in the statis-607

tical properties of the DL models’ input and output variables. The use of these models608

outside of their training range is a common problem referred to within the machine learn-609

ing community as concept drift or extrapolation (Tsymbal, 2004). In this case, extrap-610

olation is expected to be common since, in addition to other differences, many grid points611

have elevations lower or higher than the lowest or highest SNOTEL station (this was also612

hypothesized to have impacted model performance over the Cascades and AZ/NM in Ta-613

ble 2).614

The 4km grid used in this application is inherited from the gridMET forcing data615

(section 2.2). A similar approach could also be used to produce an even higher resolu-616

tion product given the availability of forcing datasets with higher spatial resolution. The617

simulation period is 2008-10-01 to 2018-09-30, the same as the SNOTEL testing set. For618

better comparison across different spatial resolutions, the gridMET data is also regrid-619

ded to the UA and UCLA grid points using the nearest neighbor method. When applied620

over the Rocky Mountains, the gridMET forcing variables are normalized with the mean621

and standard deviation from the training SNOTEL stations (equation 4). Two griddeed622

datasets have been derived here: the first originates directly from the original DL mod-623

els, employing SWE as the target variable (denoted as ‘orig-SWE’). Meanwhile, the sec-624

ond dataset is derived from the SWE fraction models, with the SWE fraction as the tar-625

get (abbreviated to ‘frac-SWE’). When assessed against reference datasets, the ‘orig-SWE’626

dataset is transformed back to its original units with the normalization equation (Eqn627

4). Conversely, the ‘frac-SWE’ dataset is converted to SWE quantity by multiplication628

with the historical maximum SWE values derived from the reference datasets, as elab-629

orated in Section 2.8.630

The NSE values for the ‘orig-SWE’ dataset are depicted in the top rows of Figure631

9 and 10 when utilizing the UA and UCLA datasets as reference sources, respectively,632

following equation 6. The DL model estimates largely agree with the reference estimates633

in high-elevation areas, while performance is relatively poor in low-elevation areas. Given634
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that much of the domain is covered by low-elevation areas, it is useful to investigate the635

reasons for this poor performance and develop models which can mitigate these errors.636

One obvious driver of poor performance is the uncertainty over the low-elevation areas,637

which is illustrated by comparing the UA and UCLA datasets (middle and right figures638

in Figure 8). Negative NSE values abound in low-elevation areas (e.g., the northwest-639

ern Rockies), suggesting significant disagreement between these two products in this re-640

gion. This difference also appears in Figure 3, where both DL models and the UA and641

UCLA datasets exhibit poor performance at lower elevations and when SWE amounts642

are low – indeed, the ground truth in these regions is poorly constrained given a dearth643

of relevant measurements. The discrepancy between UA and UCLA in this region is likely644

exacerbated by the employ of different algorithms and data sources: UA is not informed645

by remote sensing estimates, but is informed by SNOTEL stations, while the opposite646

is true for the UCLA product. These factors make it difficult to quantify how much er-647

ror may be attributed to the out-of-sample application of the DL model.648

To better understand the reasons for poor performance in low-elevation areas, er-649

rors in this region are decomposed into errors in magnitude estimation (i.e., too little650

or too much SWE) and errors in temporal dependency (i.e., too slow/rapid accumula-651

tion/melt). To mitigate issues related to magnitude estimation, the ‘orig-SWE’ is assessed652

using the SWE fraction (i.e., the ratio of SWE to the max SWE), where the maximum653

is with respect to the historical/training period. Notably, the historical maximum SWE654

is derived from the ‘orig-SWE’ dataset, rather than the reference datasets, as can be seen655

in equation 7. By using the SWE fraction and equation 7, differences in SWE magni-656

tude between the reference datasets and DL models are mitigated and so the evaluation657

emphasizes the temporal character of the SWE (e.g., the timing of accumulation and melt).658

The middle rows in Figure 9 and 10 show the assessment with SWE fraction. Under this659

metric, the DL model appears significantly better when evaluated against the UA dataset660

in Figure 9, with higher NSE values almost everywhere and a larger portion of positive661

NSEs. This difference indicates that while the DL models can capture the temporal de-662

pendence of SWE, magnitude biases can be relatively large over low-elevation areas. Al-663

though the fractional SWE metric does not always lead to improvements when using the664

UCLA dataset and overall the performance of the LSTM and Attention models can be665

lower (i.e., the drop in the positive NSE percentages as shown in the middle row of Fig-666

ure 9), there are indeed improvements over the mountains in northern New Mexico. This667

pattern of improvement is consistent across all the DL models and independent of the668

reference dataset, as similar patterns are also observed in Figure 9.669

Given the improvement in model performance when using SWE fraction, the ‘frac-670

SWE’ dataset is employed and NSE values are computed using equation 12. The bot-671

tom rows in Figure 9 and 10 show the corresponding NSE results. When compared to672

the ‘orig-SWE’ dataset, the ‘frac-SWE’ dataset exhibits a clear and significant improve-673

ment almost everywhere in the domain, but particularly in low-elevation regions. This674

result shows that normalization by maximum SWE is effective for all the DL models with675

both reference datasets. Among all the DL models, the LSTM-based model again pro-676

vides the best overall SWE prediction, determined by the largest fraction of positive NSE677

values. Of course, to transform the fraction of maximum SWE back to an absolute SWE678

value, the historical maximum SWE is needed within each grid cell. Since SNOTEL ob-679

servations are unevenly distributed throughout the Rocky Mountains, we must rely on680

an alternative estimate of maximum SWE at each grid point; in this case, we use the his-681

torical maximum SWE values from the reference dataset, either the UA or UCLA dataset,682

at each grid point over the training period to estimate maximum SWE. Although this683

method is dependent upon the reference dataset, it is important to clarify that our in-684

tention is not to build a dataset that outperforms the selected reference datasets, a task685

that necessitates an independent evaluation dataset. Rather, this analysis serves to show-686

case the efficacy of such a transformation in mitigating the extrapolation challenge for687
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Figure 9. NSE values for DL model extrapolation estimates over the Rocky Mountains with

the UA dataset as reference. The top row shows the NSE score of the original DL model SWE

predictions. The middle row is the SWE fraction evaluation from the original models, computed

via equation (7). The bottom row represents the new set of DL models that predict SWE frac-

tion, computed via equation (12). Colors represent NSE values, with negative values masked in

all figure subpanels. The black line is the 2300-meter contour. The percentage value given in the

title is the fraction of grid points with positive NSE values.
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Figure 10. Same as Figure 9, but with the UCLA dataset as reference.

–22–



manuscript submitted to Water Resources Research

DL models. This transformation stands as a practical solution when a spatiotemporal688

dataset is needed when only in-situ observations are available.689

Figure 11. Area-averaged SWE climatology over the Rocky Mountain area. The first row

depicts results from the whole region, while the second row depicts only the area above 2300m.

‘UCLA’ and ‘UA’ stand for the results from the reference datasets. SWE fraction from LSTM

is transformed back to SWE depth and the results are denoted with the corresponding reference

datasets. The title for each subfigure denotes the L1 norm between the two climatology estima-

tions.

The ‘frac-SWE’ dataset is further examined by comparing the annual SWE clima-690

tology over the Rocky mountains. The SWE estimation in millimeters, which is derived691

from the ‘frac-SWE’ dataset and reference datasets as in equation 11, is averaged over692

the Rocky Mountain area and compared against the reference dataset. In Figure 11, ‘LSTM-693

UCLA’ is derived from the LSTM estimation and historical maximum SWE from the694

UCLA dataset, whereas ‘LSTM-UA’ uses the UA dataset to derive the historical max-695

imum SWE. The L1 norm serves as a metric for quantifying the disparity between cli-696

matologies, calculated through the mean absolute difference between them. In general,697

the ‘frac-SWE’ dataset from LSTM model matches the reference dataset, with correla-698

tion coefficients exceeding 0.99. These notably high correlation coefficients underscore699

the promise of employing the LSTM model in climate projection applications. The LSTM700

model does, however, have a tendency to underestimate the snowpack peaks, but this701

bias decreases in higher-elevation areas. The magnitude difference between these two ref-702

erence datasets is also worth noting. Averaged over the whole area, a higher peak SWE703

is observed in the UCLA dataset, which again tends to diminish with elevation. This sug-704

gests that both the reference datasets and DL models have significant uncertainties in705

their SWE estimations over the low-elevation areas. Comparing the L1 norm between706

climatology estimations (the subtitles in Figure 11), the LSTM L1 norm is smaller than707

those for the reference datasets, i.e., L1(UCLA,UA) is the largest for both whole-area708

and high-elevation climatology estimations. This suggests the LSTM model is always in709

the uncertainty range of the selected gridded datasets, which provides evidence of its cred-710

ibility.711

In addition to differences in peak SWE, these models/datasets yield different ac-712

cumulation and melt dates. Both the UA dataset and the LSTM model exhibit earlier713

accumulation (melt) dates when the SWE starts increasing (hits zero) in comparison to714

the UCLA dataset. Unlike the magnitude bias, this difference persists as elevation in-715

creases. We do not determine which model/dataset generates the more precise melt date.716

A further evaluation is needed to draw such conclusions, which is out of our scope here.717
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5 Discussion718

In this study, three DL models have been built using in-situ SNOTEL observations719

and corresponding forcings. One of the key findings is the enhanced performance of a720

spatiotemporal dataset when combining the SWE fraction model with historical max-721

imum SWE data from reference datasets. While the reliance on historical maximum SWE722

data from a reference dataset for estimating SWE magnitude may initially raise concerns,723

this approach holds significant promise for future climate projection studies. Previous724

efforts to assess climate change’s impact on snowpack relied on climate model simula-725

tions. However, these models, often with coarse grid resolutions (e.g., 28 km as seen in726

Rhoades, Ullrich, and Zarzycki (2018)), struggle to capture intricate topographical fea-727

tures and local meteorological characteristics. Thus, the need for high-resolution snow-728

pack projections becomes crucial for comprehensive climate impact analysis. Currently,729

statistically downscaled datasets primarily focus on variables like precipitation and tem-730

perature (e.g., Localized Constructed Analogs (LOCA) dataset by (Pierce et al., 2014)731

and Multivariate Adaptive Constructed Analogs (MACA) dataset by Abatzoglou and732

Brown (2012)), with limited capacity to retain essential ‘memory’ features for variables733

such as SWE. Moreover, the reference datasets utilized in this study encounter inher-734

ent challenges when applied to future climate projections. The reliance on SNOTEL ob-735

servations and remote sensing data for the UA and UCLA datasets, respectively, intro-736

duces constraints for future scenarios. In contrast, our SWE fraction model can be driven737

by statistically downscaled datasets and generate SWE ensemble projections in high spa-738

tial resolution. The projected SWE fraction can provide valuable insights via some met-739

rics, such as snow onset and melt date (Rhoades, Jones, & Ullrich, 2018), which are di-740

rectly derivable and independent of the reference datasets. While the projected SWE mag-741

nitude remains contingent on the reference dataset, it can augment the downscaled datasets742

and highlight projection uncertainties. It should be noted that although DL models can743

be used to emulate these reference datasets (as demonstrated by Y.-H. Wang et al. (2022))744

and then applied for climate change analysis, such an approach inevitably implies the745

reference dataset quality, whereas our SWE fraction model still uses SNOTEL observa-746

tions as the target, making it less dependent.747

When evaluating the performance of in-situ SWE predictions, it becomes evident748

that the LSTM model outperforms other DL models and the reference model/datasets.749

Interestingly, it maintains its superior performance even when using the same input vari-750

ables as the SNOW-17 model, implying the potential for enhancements in the SNOW-751

17 model through the incorporation of DL models (Bennett & Nijssen, 2021). Beyond752

the conventional DL models mentioned, recent efforts have explored hybrid models that753

combine different types of sequential layers or blocks, as demonstrated in Xu et al. (2020)754

and Y. Chen et al. (2020). While these alternative DL model architectures hold promise755

for further improvements, they remain subjects for investigation in future research en-756

deavors.757

It’s important to acknowledge that the evaluation of gridded reference datasets against758

in-situ observations is influenced by their horizontal scales. Obviously, higher resolution759

alone should not be conflated with higher performance, as evidenced in the previous stud-760

ies (Bacmeister et al., 2014; Rhoades, Ullrich, Zarzycki, Johansen, et al., 2018) – but in761

mountainous regions, where topography and solar insolation can vary rapidly over short762

distances, resolution is important to properly capture SWE daily-to-seasonal cycles. How-763

ever, significant uncertainties in snow products persist over short distances, which are764

exemplified by a relative performance at SNOTEL station locations. In table 1, the UCLA765

product was first regridded to the 4km UA grid, then interpolated to SNOTEL station766

locations for comparison, yielding a median NSE of 0.708. However, directly regridding767

the UCLA product to the SNOTEL station location, which one might expect would be768

far more accurate because of the finer grid spacing of the UCLA product, yields an even769

lower median NSE of 0.641 when assessed over the whole period. While this difference770
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is likely to be primarily driven by observational uncertainty in SWE and precisions in771

reported SNOTEL locations, we postulate that there may be another factor in play: specif-772

ically, given the significant differences in snow dynamics over relatively short spatial dis-773

tances, it may be the case that accumulating SWE over a coarse grid cell may mute sharp774

variations in the spatial character of SWE and so could match more closely to the SNO-775

TEL station. This is also corroborated by the spatial variability of UCLA SWE estima-776

tions within the UA grid boxes, as illustrated in Figure S8.777

Because of the relatively fine scale of mountainous features, it is also the case that778

high-resolution static inputs do not necessarily yield better performance. To explore the779

effects of static input resolutions, the PRISM 800-meter topographic dataset (Daly et780

al., 2008) is used in conjunction with the coarsened 30-meter USGS DEM data. For this781

purpose, the 30-meter USGS DEM data is aggregated into coarser resolutions of 600 me-782

ters and 1500 meters by calculating the average elevation values. These coarser datasets783

are subsequently employed to derive elevation, TRASP, and DAH inputs for the LSTM784

models, which are compared with the model with inputs from the 30-m USGS DEM data.785

At 600-m and higher spatial resolution, the derived slope and aspect are unlikely to rep-786

resent the slope and aspect at the SNOTEL station, and consequently may be invalid787

for use in DL models of SWE. However, compared with the 30-m DEM (median NSE788

as 0.901), the performance of the LSTM model with coarse elevation, TRASP and DAH789

would not always decrease: the median NSE score for 600-m coarsened DEM is 0.899,790

0.902 for 1500-m coarsened DEM and 0.911 for 800-m PRISM DEM. This test suggests791

that, at least for these features, DL models do not explicitly require precise topograph-792

ical features for SWE prediction. This result is again likely because the precision in re-793

ported SNOTEL locations are limited, and significant spatial heterogeneity of mountain-794

ous regions at finer spatial scale makes it difficult to extract a clear signal from the noise.795

Notably, only the 800-m PRISM DEM yield a significant difference under Mood’s me-796

dian test (p-value equals 0.019). This difference could arise from systematic dissimilar-797

ities between the PRISM and USGS DEM data, a question that could be addressed in798

future investigations.799

6 Conclusions800

Previous studies have investigated and demonstrated that DL models are useful801

for Earth system applications. The present work investigates three DL models for SWE802

prediction over the Western US, with a focus on the Rocky Mountain region. All the DL803

models surpasses the SNOW-17 conceptual model for in-situ SWE prediction, and the804

LSTM model achieves the highest prediction skill score. A permutation-based method805

is used to better interpret the proposed LSTM model. Precipitation and elevation are806

shown to be the two dominant variables for SWE prediction, consistent with our phys-807

ical understanding of snowpack dynamics. Although this result is intuitive, this anal-808

ysis is useful for building trust in the ‘black box’ ML-based model before employing it809

for real applications. Additionally, the interpretation result reveals the precipitation and810

temperature as the necessary set of variables for snowpack prediction, which would po-811

tentially guide the development of future snowpack models.812

Although in-situ estimates of SWE are useful for particular applications, spatiotem-813

porally continuous SWE predictions are needed for a wider range of applications. As a814

proof of concept, we apply the trained DL model to generate a gridded SWE estimation815

across the Rocky Mountains. A major constraint for our DL model is that most in-situ816

estimates of SWE are provided at mid-to-high elevations at discrete points throughout817

the Rocky Mountains. Therefore, the extrapolation problem for our DL model is par-818

ticularly pronounced when we apply our model to a wider spatial area where the sta-819

tistical properties learned from the in-situ measurements might not hold (especially for820

lower elevations). Without additional training data, our extrapolation results prove that821

we can generalize the DL models by altering the prediction from an absolute SWE depth822
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to its fraction. With this transformation, the target prediction becomes an elevation-invariant823

quantity that can be generalized to low-elevation areas, an approach also used for cli-824

mate model emulation in Beucler, Pritchard, Yuval, et al. (2021). To overcome the ex-825

trapolation problem without any loss of information (or transformation), the DL mod-826

els would either need more training data in low-elevation areas (e.g., satellite images)827

or incorporate physical constraints into their architectures (Kashinath et al., 2021).828

A limitation of our study is that it mainly focuses on the use of data-driven mod-829

els and does not incorporate physical constraints. One opportunity for future work would830

be to add mass balance into the model, as with the model described in Hoedt et al. (2021).831

These physical constraints could improve the physical interpretability of these models,832

as well. It should be noted that although we used the UA and UCLA datasets as ref-833

erences for extrapolation, their accuracy cannot be directly evaluated. Indeed, differences834

between these two datasets are observed from both grid point-wise NSE values and area-835

mean climatology time series over the Rocky Mountains, indicative of the uncertainties836

in these datasets. A further assessment of the snow products are introduced in Y. Fang837

et al. (2023). Additionally, the UCLA dataset provides not only the mean SWE estima-838

tions, but also other statistics (such as median and quantiles). With DL models, such839

distributions could be generated along with point estimations, which would allow for the840

quantification of uncertainty and variability, which is useful for applications such as Earth841

system model development. Finally, it is clear that the mean squared error-based loss842

function employed in DL model training often underestimates extreme values. Gener-843

ative adversarial models now being explored for Earth system modeling (Manepalli et844

al., 2019; Pan et al., 2021) could allow for extremes to be better captured using both se-845

quential models and adversarial loss.846

7 Open Research847

Our predictions for SNOTEL stations, extrapolation over the Rocky Mountains along848

with the necessary code can be accessed at S. Duan et al. (2022). SNOTEL SWE ob-849

servations can be accessed at https://data.nal.usda.gov/dataset/snowpack-telemetry850

-network-snotel (USDA Natural Resources Conservation Service, 2022) and https://851

www.pnnl.gov/data-products. GridMET atmospheric data is available at https://852

www.climatologylab.org/gridmet.html Abatzoglou, John T (2013). PRISM dataset853

is provided by PRISM Climate Group at: https://prism.oregonstate.edu (PRISM854

Climate Group, Oregon State University, 2020). DEM data is available through Microsoft855

Planetary Computer at https://planetarycomputer.microsoft.com/dataset/group/856

copernicus-dem (European Space Agency, 2021).857

Appendix A Hyperparameter search858

Hyperparameters are set based on a grid search over a range of parameter values.859

The search space for these values is provided here. Each candidate model is trained with860

the training data and evaluated with the validation period. The model results in the best861

NSE value is taken as the optimal hyperparameter setting. For the Attention model, it862

is required that the embedding size should be divisible by the number of heads. So in863

the following grid search, embedding size is the product of embedding size ratio and num-864

ber of heads.865

We further tested several Attention models with 32 heads. The models generally866

have similar performance to the 16-head models, but take a much longer time for train-867

ing. With such a small increment in performance, we decided to stop searching at 16 heads.868
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Table A1. Hyperparameter search candidates for all DL models.

LSTM

Hidden states 64 128 256 512

TCNN

Blocks 4 5 6
Kernel size 7 9
Number of kernels 16 32 64

Attention

Heads 8 16
Embedding size ratio 1 2
Attention layers 2 3 4
Forward dimension 16 32 64

Appendix B SNOW-17 Parameters869

The following parameters are tuned for the SNOW-17 model. The snow-rain par-870

tition uses a linear transition scheme, which involves PXTEMP1 and PXTEMP2, while871

PXTEMP is only used for the rain temperature for the energy budget.872

Table B1. SNOW-17 parameters

Parameter Description Unit Range

SCF Gage catch deficit multiplying factor 0.9-1.2

MFMAX Maximum melt factor during non-rain periods mm ·◦C · 6hr−1 0.5-1.3

MFMIN Minimum melt factor during non-rain periods mm ·◦C · 6hr−1 0.1-0.6

UADJ Average wind function during rain-on-snow periods mm ·mb−1 0.05-0.2
PXTEMP Temperature that separates rain and snow ◦C 0.0-2.0
PXTEMP1 Lower limit temperature dividing transition from snow ◦C -2.0-0.0
PXTEMP2 Upper limit temperature dividing rain from transition ◦C 0.0-4.0
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Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information process-1102

ing systems 32 (pp. 8024–8035). Curran Associates, Inc. Retrieved from1103

–31–



manuscript submitted to Water Resources Research

http://papers .neurips .cc/paper/9015 -pytorch -an -imperative -style1104

-high-performance-deep-learning-library.pdf1105

Pierce, D. W., Cayan, D. R., & Thrasher, B. L. (2014). Statistical downscaling us-1106

ing localized constructed analogs (loca). Journal of Hydrometeorology , 15 (6),1107

2558–2585.1108

PRISM Climate Group, Oregon State University. (2020, December). Parameter-1109

elevation Regressions on Independent Slopes Model [Dataset]. Retrieved from1110

https://prism.oregonstate.edu1111

Raleigh, M. S., & Lundquist, J. D. (2012). Comparing and combining swe estimates1112

from the snow-17 model using prism and swe reconstruction. Water Resources1113

Research, 48 (1).1114

Rhoades, A. M., Hatchett, B. J., Risser, M. D., Collins, W. D., Bambach, N. E.,1115

Huning, L. S., . . . others (2022). Asymmetric emergence of low-to-no snow in1116

the midlatitudes of the american cordillera. Nature Climate Change, 1–9.1117

Rhoades, A. M., Jones, A. D., & Ullrich, P. A. (2018). Assessing mountains as natu-1118

ral reservoirs with a multimetric framework. Earth’s Future, 6 (9), 1221–1241.1119

Rhoades, A. M., Ullrich, P. A., & Zarzycki, C. M. (2018). Projecting 21st century1120

snowpack trends in western usa mountains using variable-resolution cesm. Cli-1121

mate Dynamics, 50 (1), 261–288.1122

Rhoades, A. M., Ullrich, P. A., Zarzycki, C. M., Johansen, H., Margulis, S. A., Mor-1123

rison, H., . . . Collins, W. D. (2018). Sensitivity of mountain hydroclimate1124

simulations in variable-resolution cesm to microphysics and horizontal resolu-1125

tion. Journal of Advances in Modeling Earth Systems, 10 (6), 1357–1380.1126

Roberts, D. W., & Cooper, S. V. (1989). Concepts and techniques of vegetation1127

mapping. Land classifications based on vegetation: applications for resource1128

management , 90–96.1129

Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A., & Pulwarty, R. S.1130

(1999). Characteristics of the western united states snowpack from snowpack1131

telemetry (snotel) data. Water Resources Research, 35 (7), 2145–2160.1132

Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J.,1133

Tague, C., . . . others (2021). A low-to-no snow future and its impacts on water1134

resources in the western united states. Nature Reviews Earth & Environment ,1135

2 (11), 800–819.1136

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-1137

scale image recognition. arXiv preprint arXiv:1409.1556 .1138

Snauffer, A. M., Hsieh, W. W., Cannon, A. J., & Schnorbus, M. A. (2018). Im-1139

proving gridded snow water equivalent products in british columbia, canada:1140

multi-source data fusion by neural network models. The Cryosphere, 12 (3),1141

891–905.1142

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich,1143

A. (2015). Going deeper with convolutions. In Proceedings of the ieee confer-1144

ence on computer vision and pattern recognition (pp. 1–9).1145

Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2020). Efficient transformers: A1146

survey. arXiv preprint arXiv:2009.06732 .1147

Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. (2020). Physically interpretable neu-1148

ral networks for the geosciences: Applications to earth system variability. Jour-1149

nal of Advances in Modeling Earth Systems, 12 (9), e2019MS002002.1150

Tsymbal, A. (2004). The problem of concept drift: definitions and related work.1151

Computer Science Department, Trinity College Dublin, 106 (2), 58.1152

USDA Natural Resources Conservation Service. (2022). SNOwpack TELemetry Net-1153

work (SNOTEL) [Dataset]. Retrieved from https://data .nal .usda .gov/1154

dataset/snowpack-telemetry-network-snotel1155

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,1156

. . . Polosukhin, I. (2017). Attention is all you need. arXiv preprint1157

arXiv:1706.03762 .1158

–32–



manuscript submitted to Water Resources Research

Wang, X., Kondratyuk, D., Christiansen, E., Kitani, K. M., Alon, Y., & Eban, E.1159

(2021). Wisdom of committees: An overlooked approach to faster and more1160

accurate models.1161

Wang, Y.-H., Gupta, H. V., Zeng, X., & Niu, G.-Y. (2022). Exploring the po-1162

tential of long short-term memory networks for improving understanding of1163

continental-and regional-scale snowpack dynamics. Water Resources Research,1164

58 (3), e2021WR031033.1165

Wunsch, A., Liesch, T., & Broda, S. (2021). Groundwater level forecasting with1166

artificial neural networks: a comparison of long short-term memory (lstm),1167

convolutional neural networks (cnns), and non-linear autoregressive networks1168

with exogenous input (narx). Hydrology and Earth System Sciences, 25 (3),1169

1671–1687.1170

Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall-runoff model with lstm-1171

based sequence-to-sequence learning. Water resources research, 56 (1),1172

e2019WR025326.1173

Xu, G., Ren, T., Chen, Y., & Che, W. (2020). A one-dimensional cnn-lstm model1174

for epileptic seizure recognition using eeg signal analysis. Frontiers in Neuro-1175

science, 14 , 1253.1176

Yan, J., Mu, L., Wang, L., Ranjan, R., & Zomaya, A. Y. (2020). Temporal convolu-1177

tional networks for the advance prediction of enso. Scientific reports, 10 (1), 1–1178

15.1179

Ye, F., Hu, J., Huang, T.-Q., You, L.-J., Weng, B., & Gao, J.-Y. (2021). Trans-1180

former for ei niño-southern oscillation prediction. IEEE Geoscience and Re-1181

mote Sensing Letters.1182

Zeng, X., Broxton, P., & Dawson, N. (2018). Snowpack change from 1982 to 20161183

over conterminous united states. Geophysical Research Letters, 45 (23), 12–1184

940.1185

–33–


