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Abstract13

In this study we construct and compare three different deep learning (DL) models for14

estimating daily snow water equivalent (SWE) from high-resolution gridded meteoro-15

logical fields over the Rocky Mountain region. To train the DL models, Snow Teleme-16

try (SNOTEL) station-based SWE observations are used as the prediction target. All17

DL models produce higher median Nash-Sutcliffe Efficiency (NSE) values than a process-18

based SWE model and products, although mean squared errors also tend to be higher.19

Sensitivity of the SWE prediction to the model’s input variables is analyzed using an ex-20

plainable artificial intelligence (XAI) method, yielding insight into the physical relation-21

ships learned by the models. This method reveals the dominant role precipitation and22

temperature play in snowpack dynamics. In applying our models to estimate SWE through-23

out the Rocky Mountains, an extrapolation problem arises since the statistical proper-24

ties of SWE (e.g., annual maximum) and geographical properties of individual grid points25

(e.g., elevation) differ from the training data. This problem is solved by switching the26

prediction target to SWE fraction to alleviate extrapolation for all tested DL models.27

Our work shows that the DL models are promising tools for estimating SWE, and suf-28

ficiently capture relevant physical relationships to make them useful for spatial and tem-29

poral extrapolation of SWE values.30

1 Introduction31

Snowpack is a central component of the hydrologic cycle in montane regions, and32

its capacity to act as a reservoir for seasonal water storage is of vital importance to down-33

stream communities. This is especially true for watersheds in mid-to-high latitudes and34

at altitudes where streamflow is derived largely from snowmelt (Berghuijs et al., 2019).35

Snow water equivalent (SWE), defined as the equivalent amount of liquid water stored36

in the snowpack if it were to be instantaneously melted, is the metric most commonly37

employed by water managers to estimate and evenly compare water content of the snow-38

pack across regions. Climate change has already and will continue to significantly reduce39

both mean and maximum annual SWE, which will have repercussions for both stream-40

flow and groundwater dynamics, and in turn pose major challenges on water managers41

(Rhoades, Ullrich, & Zarzycki, 2018; Livneh & Badger, 2020; X. Chen et al., 2021; Hatch-42

ett et al., 2022; Rhoades et al., 2022). However, estimating the exact magnitude, tim-43

ing and persistence of SWE across various mountain ranges remains a scientific grand44

challenge (Siirila-Woodburn et al., 2021). Thus, there is considerable value for both sci-45

ence and society in the development of novel methods that can more precisely estimate46

spatiotemporally continuous SWE values over mountainous regions, both historically and47

into the future.48

Substantial and rapid progress in the development of machine learning (ML) and49

deep learning (DL) methods, and corresponding hardware advancements related to graph-50

ical processing units (GPUs), has stimulated promising research in the use of ML and51

DL-based models for problems in Earth system science (Feng et al., 2022). ML models52

have also been employed and have proven valuable for estimating SWE, although the53

majority of this research has focused on historical SWE estimation from existing snow54

and snow-related datasets. For instance, Snauffer et al. (2018) used an artificial neural55

network (ANN) model to estimate SWE from several reanalysis products. Their ML-56

generated SWE estimation exhibited better agreement with station observations, com-57

pared to those derived from a Variable Infiltration Capacity (VIC) hydrological model58

simulation. Odry et al. (2020) and Ntokas et al. (2021) designed an ANN model to pre-59

dict SWE and demonstrated that their ML model outperformed the benchmark regres-60

sion model. Their input variables included snow depth, temperature, accumulated pre-61

cipitation and several indices such as the number of snow-free days and the number of62

layers in the snowpack. Random forest methods have also been adopted to bias correct63

gridded SWE products (King et al., 2020).64
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To date, ML-based SWE estimation has largely relied on inference or emulation65

of existing snow-related products, rather than accounting for physical processes that shape66

snow accumulation. However, recent work by Manepalli et al. (2019) used a conditional67

generative adversarial network (cGAN) to emulate VIC-based estimates of SWE devel-68

oped by Livneh et al. (2015). They formulated this task as an image-to-image transla-69

tion problem, where the cGAN model translates gridded relationships between the in-70

put meteorological fields to the target SWE field without the need for snow-related prod-71

ucts. Although the cGAN model is demonstrably powerful, this type of image transla-72

tion task does not allow time dependency to be incorporated into the model. Namely,73

it assumes the SWE at time t can be expressed as a function of meteorological variables74

at the concurrent time t. Under such an architecture, the model cannot capture tem-75

poral features from the input predictors, (i.e., the snow accumulation process is ignored),76

which is vital for time series prediction.77

There have also been recent efforts to estimate SWE based on precipitation (P ),78

temperature (T ) and other factors that leverage physical causation and a process-based79

understanding of the system. These new DL models have modeled SWE as an accumu-80

lation process by relating SWE to a historic time series of meteorological variables, with81

the inputs from previous time steps:82

SWEt = f(Pt, Pt−1, ..., Pt−N+1, Tt, Tt−1, ..., Tt−N+1) (1)

where t denotes the time step and N is the length of the look-back window size. Using83

the above formula, Meyal et al. (2020) inputted precipitation, temperature, snow depth84

and SWE from previous days into a long-short-term memory (LSTM) model for SWE85

prediction at five observational stations. They found that the LSTM model can capture86

the temporal features of snow accumulation and perform well at the selected stations.87

Similarly, in Y.-H. Wang et al. (2022) an LSTM model is trained to emulate a gridded88

SWE dataset, demonstrating the superior ability of LSTM to capture snowpack dynam-89

ics over the western US. In these studies, both Manepalli et al. (2019) and Y.-H. Wang90

et al. (2022) emulated existing SWE products, while Meyal et al. (2020) used observa-91

tional records and thus did not assume the quality of any existing model or dataset.92

Although ML and DL models can achieve satisfying results for historical SWE, mod-93

els generally struggle with poor performance under extrapolation. Although the LSTM94

model in Meyal et al. (2020) performed well at the selected observational sites, it was95

not tested in out-of-sample areas, especially where the statistical properties of SWE ac-96

cumulation are different from the training sites. This poses a major challenge, partic-97

ularly if we want to generate a gridded SWE dataset with ML or DL models trained on98

in-situ observations. Given that in-situ estimates of SWE are generally located in those99

mountainous areas that are easily accessible and found at mid-elevation, they do not fully100

represent the areal heterogeneity of SWE at high-elevation or low-elevation that surround101

the stations (Blöschl, 1999). Therefore, a significant extrapolation problem may arise,102

particularly when applying the ML or DL models to low-elevation plains or valleys. This103

issue also makes it difficult to validate or calibrate process-based models, suggesting a104

need for more observations at both low- and high-elevation. In the case of ML-based mod-105

els, efforts to address the extrapolation problem include a transformation of the output106

target for climate emulation or by evaluating model performance using (extreme) out-107

of-sample scenarios for streamflow projection (S. Duan et al., 2020; Beucler, Pritchard,108

Rasp, et al., 2021).109

In our study, we investigate the viability of DL models for modeling SWE at point-110

wise locations and as a gridded product. Such datasets would have significant value to111

both researchers and practitioners, particularly those invested in water resource avail-112

ability and management. We first build three DL models based on equation (1), only us-113

ing the meteorological forcings from 581 observational stations in the western United States114

(WUS). The model behavior and input sensitivity are subsequently analyzed using an115
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explainable artificial intelligence (XAI) method. With these trained DL models in hand,116

we then tackle the spatial extrapolation problem and generate a gridded SWE product117

over the Rocky Mountains with 4km grid spacing. This work further sets the stage for118

a successive effort to leverage our DL model for predicting the response of mountain snow-119

pack to climate change.120

The structure of this paper is as follows. Section 2 describes the models employed,121

the data sources used in our study, and methods for analysis. Section 3 provides a com-122

parative assessment of model performance, including model behavior under cross-validation,123

and a permutation-based analysis of the DL model to understand which variables are124

deemed most relevant for SWE prediction. The DL model is then extnded to generate125

a gridded SWE product, which is described and analyzed in section 4. A discussion of126

DL model performance in contrast with a process-based model are in section 5, followed127

by conclusions in section 6.128

2 Models, Data and Methods129

2.1 Deep Learning Models130

Three different DL models applicable to time series problems are investigated and131

compared, following the general framework depicted in Figure 1. Under this design, the132

temporal block extracts temporal features from the input data, while the dense layer gen-133

erates a single-step prediction. The DL models are trained to minimize an objective func-134

tion (i.e., the loss function), which in this study is chosen to be the mean squared error135

(MSE). The number of training periods (epochs) is set to 50. The optimization algorithm136

is Adam with a learning rate of 1e-4 (Kingma & Ba, 2014). Since a gradient-based method137

is used to optimize the DL model, the converged model will be sensitive to the choice138

of initial weights. This effect is mitigated by training models 10 times with different ini-139

tial weights to generate an ensemble of predictions and use the ensemble mean, follow-140

ing X. Wang et al. (2021). The remaining hyperparameters for each model architecture141

are determined by grid search (more details in Appendix Appendix B). Hyperparam-142

eters are not fine-tuned in this study due to the steep computational cost and the min-143

imal benefit awarded by such an approach. All DL models are implemented using Py-144

Torch (Paszke et al., 2019). Specific details on the three DL models, along with our de-145

sign choices, are as follows.146

2.1.1 Long-Short Term Memory (LSTM)147

Long-Short Term Memory models (LSTMs) (Hochreiter & Schmidhuber, 1997) are148

a type of recurrent neural network that has commonly been used in hydrological predic-149

tion (Kratzert et al., 2019a; Feng et al., 2020; Lees et al., 2021). LSTMs have demon-150

strated considerable success for problems of this type, since they are designed to cap-151

ture temporal dependencies that are common in time-series data.152

Details on the mathematical structure of the LSTM are provided in Text S1. The153

gated design of LSTM enables it to keep and drop information from the previous time154

steps, which is naturally suited for time series tasks. A detailed figure representing the155

gates and outputs is depicted in Figure S1. Theoretically, there can be multiple LSTM156

layers stacked in a single LSTM model. However, the majority of past hydrological ap-157

plication studies adopt a one-layer LSTM model (Kratzert et al., 2019a; Xiang et al., 2020;158

Feng et al., 2020; Wunsch et al., 2021). In this study, we also utilize a one-layer LSTM159

model with the number of hidden units (i.e., the dimension of cell state) selected by hy-160

perparameter search.161
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Figure 1. The general framework employed in this study for all ML models.

2.1.2 Temporal Convolutional Neural Network (TCNN)162

Historically, convolutional models have been used for image-related tasks because163

of their ability to extract features with 2- or 3-dimensional convolutional kernels (i.e.,164

weighted inner products that are marched across the input image). Two well-known image-165

related models built with convolution layers are VGG-16 (Simonyan & Zisserman, 2014)166

and GoogLeNet (Szegedy et al., 2015). Temporal convolutional neural networks (TC-167

NNs) (Lea et al., 2017), where kernels are instead applied over the time dimension, have168

also been developed for time-series problems. Bai et al. (2018) tested these models for169

a variety of standard time series tasks and showed that convolutional models can often170

outperform LSTMs. TCNNs have also been used in Earth system modelling for predic-171

tions of streamflow and the El Niño Southern Oscillation (ENSO) (S. Duan et al., 2020;172

Yan et al., 2020).173

To mimic the inherent time dependencies built into LSTMs, TCNNs use dilated174

causal convolutions and residual connections (Bai et al., 2018). This architecture is de-175

picted in Figure S2. The causal convolution ensures that outputs at a given time step176

are only dependent on previous time steps, in contrast to a traditional convolution which177

could involve future information. The dilated convolution enlarges the receptive field by178

regularly skipping input time steps; consequently, with stacked deep CNN layers, the re-179

ceptive field at the final layer can cover the whole input time series. Residual connec-180

tions are needed along with the stacked layers since the model can be too deep to con-181

verge, and residual connections can avoid vanishing or exploding gradients (K. He et al.,182

2016).183

In this study, we use a stacked TCNN model analogous to those employed in Bai184

et al. (2018) and S. Duan et al. (2020), where each TCNN block consists of two CNN185

layers and one residual connection (Figure S2). The number of CNN kernels, TCNN blocks186

and kernel sizes are determined by hyperparameter search.187
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2.1.3 Self-Attention Model188

Vaswani et al. (2017) introduced the Transformer, a self-attention based encoder-189

decoder model (Bahdanau et al., 2014) for natural language processing (NLP). Since then,190

many self-attention-based models have been designed and investigated for application191

to time series problems (Devlin et al., 2018). In Earth system modeling applications, self-192

attention-based models have been used to predict the ENSO index (Ye et al., 2021) and193

forecast seasonal precipitation (Civitarese et al., 2021). In recent years, significant ef-194

fort has been made to optimize the original Transformer architecture and make it more195

computationally and memory efficient (Tay et al., 2020; Lin et al., 2021). These variants196

of Transformer models could provide more choices for Earth system applications.197

The equations governing the self-attention model are provided in Text S1. In the198

encoder portion of Transformer, the input vectors are embedded in a dense layer (also199

called an embedding layer). The self-attention layer takes the embedded inputs and ex-200

tracts the temporal features, which are then used as input for the decoder (depicted in201

Figure S3). It can be viewed as a fully connected layer but with dynamical weights rep-202

resenting the pairwise relationships of the input time steps (Lin et al., 2021).203

In this study, the encoder of the original Transformer model from Vaswani et al.204

(2017) is used, featuring a multi-head self-attention mechanism. The number of Trans-205

former encoder layers, number of heads, embedding size and feedforward dimensions are206

tuned using a hyperparameter search.207

2.2 Training Data208

Snow Telemetry (SNOTEL) stations provide daily SWE measurements and are used209

as the prediction target for the ML model. From the 829 stations with available data210

(including Alaska), we select 581 stations across the WUS with at least one year of com-211

plete observations over the training period from 1980 to 1990. Meteorological fields are212

from the 1/24th-degree (∼4-km) gridMET dataset, including daily precipitation, max-213

imum and minimum temperature, solar radiation, maximum and minimum relative hu-214

midity, specific humidity, vapor deficit and wind speed (Abatzoglou, 2013). Since SNO-215

TEL stations do not coincide with gridMET grid points, the data point nearest to each216

SNOTEL station provides the corresponding forcing.217

Static features at each station include latitude, longitude, elevation, diurnal anisotropic218

heat index (DAH) (Böhner & Antonić, 2009) and topographic solar radiation aspect in-219

dex (TRASP) (Roberts & Cooper, 1989). DAH and TRASP are used to account for sur-220

face solar radiation loading (i.e., shading) (Cristea et al., 2017). DAH is given by221

DAH = cos(αmax − α)× arctan(β) (2)

where αmax is the aspect receiving the maximum amount of solar radiation (for the WUS,222

we use αmax = 1.125π, following Böhner and Antonić (2009)), α is the aspect (in ra-223

dians), and β is the topographic slope (also in radians). DAH ranges between −1 and224

+1, with zero corresponding to flat terrain; for the WUS, DAH is largest on steep southwest-225

facing slopes that have higher afternoon solar radiation loading and lowest on steep north-226

facing slopes. TRASP is given by227

TRASP =
1

2

[
1− cos

(
α− π

6

)]
. (3)

TRASP is only a function of topographic aspect and accounts for daily solar radiation228

loading and ranges between 0 (for the coolest slopes) and +1 (for the warmest slopes).229

Both TRASP and DAH were calculated using the United States Geological Survey (USGS)230

Digital Elevation Model (DEM) dataset at 30-meter horizontal resolution. As with grid-231

MET, the nearest grid cell to the SNOTEL station is used as the corresponding input232

to the DL model.233
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2.3 Splitting the Data234

For purposes of constructing the primary DL models, the data are split into train-235

ing, validation and testing sets. Several such splittings are used throughout our paper236

in order to test the robustness of the DL method for capturing snowpack dynamics among237

different time periods and in different regions. For all splittings, we calculate the mean238

x and standard deviation σ of both the input and output variables in the training pe-239

riod and so normalize the data via240

Xnormalized =
xi − x̄

σ
. (4)

The splittings employed are as follows:241

(1) For the temporal train-test split, we use 1980 Oct 1st to 1999 Sep 30th as the train-242

ing period, 1999 Oct 1st to 2008 Sep 30th as the validation period and 2008 Oct243

1st to 2018 Sep 30th as the testing period. All SNOTEL stations are included in244

this splitting. Since validation is only used to determine hyper-parameters (which245

are fixed thereafter), this is the only splitting that includes a validation period.246

(2a) For the first spatial train-test split, SNOTEL stations are split into eight moun-247

tain ranges, including the Pacific Northwest, the Sierra Nevada, the Blue Moun-248

tains, Idaho/Western Montana, Northwestern Wyoming, Utah, Colorado, and Ari-249

zona/New Mexico. This division follows Serreze et al. (1999) and M. He et al. (2011b),250

where it was shown that these eight mountain ranges exhibited distinct snow dy-251

namics. This splitting includes eight experiments, in each case using seven moun-252

tain ranges for training and one for testing.253

(2b) For the second spatial train-test split, all SNOTEL stations are randomly split into254

eight subsets or folds. Each time this splitting is performed, seven folds are used255

for training and the rest for testing. Unlike the spatial splitting in (2a), this spa-256

tial splitting still allows the model to comprehensively learn snow dynamics from257

throughout the western US.258

2.4 Gridded SWE Reference Products259

Spatiotemporally complete observations of SWE in mountain areas remain elusive,260

requiring us to instead employ reconstructions that meld models and observations. Of261

course, such products inevitably inherit biases from incomplete observations and uncer-262

tainties in the model design, particularly in regions where observations are sparse. To263

better quantify these structural uncertainties, two model products are employed in this264

study. These two products were chosen because they are modern, high-quality data prod-265

ucts that are widely used in the snow modeling community. Other such SWE products266

can be found in McCrary et al. (2017) and Snauffer et al. (2018).267

The primary product employed is the daily 4km gridded SWE data from Zeng et268

al. (2018) (hereafter referred to as the University of Arizona or UA dataset), which uses269

PRISM precipitation and temperature data and assimilates SNOTEL observations. In270

the UA product, rainfall and snowfall are partitioned using daily 2m air temperature thresh-271

olds derived from station observations. When interpolating point measurements to a grid,272

the ratio of SWE observations is used instead of the absolute SWE measurements as net273

snowfall was found to be overestimated. Further details on the methodology employed274

and corresponding analysis can be found in Broxton et al. (2016) and Zeng et al. (2018).275

The second product adopted in this study is an independent SWE dataset devel-276

oped at the University of California, Los Angeles, (referred to as the UCLA dataset). The277

UCLA dataset takes three Landsat sensors as input, along with meteorological forcings,278

topographical features and landcover data. The snow estimates are then updated with279

MODIS remote sensing estimates of snow cover too. Within a Bayesian framework, this280

dataset provides ensemble statistics of SWE estimates (e.g., mean, standard deviation,281
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median) (Y. Fang et al., 2022). Details about the processing algorithm can be found at282

Margulis et al. (2019). The horizontal resolution of the UCLA product is 16 arc seconds,283

which varies from 350m to 500m. For the purposes of this study we use the ensemble mean284

SWE estimate, which is regridded to the same 4km resolution grid as the UA dataset.285

2.5 The SNOW-17 Model286

One issue with the use of gridded products is that they do not provide SWE data287

at the precise SNOTEL station locations. Interpolating meteorological and SWE data288

from gridded data points to SNOTEL stations can introduce potentially significant er-289

rors, particularly in regions of complex topography. Consequently, we further compare290

our DL-based SWE estimates to those from the process-based SNOW-17 snow accumu-291

lation and ablation model. SNOW-17 uses an air temperature index to determine en-292

ergy exchanges at the snow-air interface and enforces principles of water and energy bal-293

ance to estimate SWE and runoff. We refer readers to E. A. Anderson (1976) and E. An-294

derson (2006) for the detailed processes and equations used in the SNOW-17 model.295

Training data from selected SNOTEL stations and gridMET are used to calibrate296

the SNOW-17 model (i.e., 1980 Oct 1st to 1999 Sep 30th). The model is then used to297

generate SWE estimates over the testing period (2008 Oct 1st to 2018 Sep 30th) for com-298

parison. Candidate tuning parameters are determined based on previous studies on model299

sensitivities (e.g., E. A. Anderson, 1973; M. He et al., 2011a; Raleigh & Lundquist, 2012)300

and listed in the Appendix. The shuffled complex evolution approach (SCE-UA) is used301

to optimize the parameters, with details in Q. Duan et al. (1993, 1994).302

2.6 Performance Metrics303

Model performance is quantified using the Nash-Sutcliffe model efficiency coeffi-304

cient (NSE), a widely used metric for hydrological model evaluation (Nash & Sutcliffe,305

1970). It is defined via306

NSE(Ot, Pt) = 1−
∑

(Ot − Pt)
2∑

(Ot −Ot)2
, (5)

where O and P denote observations and predictions, respectively. Index t denotes the307

time and Ot is the observation mean. NSE is in the range (−∞, 1], with larger values308

indicating better performance and a score of 1 indicating a perfect match between model309

and observations. Note that the NSE score is not symmetric, i.e., NSE(A,B) ̸= NSE(B,A);310

in this study the first NSE argument consistently refers to the reference product.311

In this study, we employ NSE in two ways. First, the NSE of absolute SWE is cal-312

culated as313

NSEabsolute = NSE(SWE-REF,SWE-DL), (6)

where SWE-REF denotes the SWE from the reference dataset and SWE-DL denotes the314

SWE prediction from the deep learning model. Second, the NSE of the SWE fraction315

is given by316

NSEfraction = NSE

(
SWE-REF

max(SWE-REF)
,

SWE-DL

max(SWE-DL)

)
, (7)

= NSE

(
SWE-REF,

SWE-DL

max(SWE-DL)
×max(SWE-REF)

)
(8)

where max(SWE-REF) represents the historical maximum SWE from the reference dataset,317

and max(SWE-DL) denotes the historical maximum SWE from the DL models. Equa-318

tions 7 and 8 are equivalent since the NSE value is unaffected when the predictions and319

observations are multiplied or divided by the same constant. As opposed to the NSE of320
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absolute SWE, the NSE of SWE fraction emphasizes the temporal features and de-emphasizes321

errors in magnitude.322

Model performance is further quantified using root mean squared error (RMSE)323

and mean absolute error (MAE),324

RMSE(Ot, Pt) =
√∑

(Ot−Pt)2

nsamples
, (9)

MAE(Ot, Pt) =
1

nsamples

∑
|Ot − Pt|. (10)

where nsamples is the number of evaluated samples. RMSE and MAE are in the range325

[0,+∞) with lower values indicating a closer match, and a score of 0 indicating a per-326

fect match between the model and observations.327

2.7 Feature Permutation328

Although DL models generate accurate predictions, they are frequently referred to329

as ‘black box’ models since it is often unclear why and how the model produces its re-330

sults. Recent advances in explainable AI (XAI) have enabled better interpretation of DL331

model results, especially in Earth system modeling (McGovern et al., 2019; Gagne II et332

al., 2019; Barnes et al., 2020; Toms et al., 2020). Such techniques are further useful for333

building credibility in DL models by demonstrating that they are mimicking physical un-334

derstanding and principles.335

Permutation-based XAI methods are commonly used to quantify the relative im-336

portance of input variables in the DL models (Breiman, 1996). The permutation method337

evaluates the DL model by first obtaining a baseline performance score. Then each fea-338

ture is permuted to generate a shuffled dataset, and a new performance score is calcu-339

lated. The change in the performance score represents the importance of a given feature.340

A greater decrease in model skill corresponds to higher feature importance. This approach341

follows previous work addressing model interpretation (Gagne II et al., 2019). However,342

care should be taken in the interpretation of these results, as the quantified performance343

is potentially confounded by correlation among input features. For example, a model that344

uses both mean and maximum daily temperature as input may see minimal performance345

loss from the removal of either of these features while the removal of both would be sig-346

nificant. Efforts to address correlation issues include the use of multi-pass permutation,347

as discussed in a review by McGovern et al. (2019).348

In this study, we permute both the training and the testing set and train a reduced349

model. By permuting the training set and retraining the model, the permuted variable350

is blocked and the reduced model only receives the information from the remaining non-351

permuted variables. The importance of the permuted variable will be quantified by ex-352

amining the ratio of the new NSE value against the baseline score. The permutation is353

performed separately for dynamic inputs and static variables. For dynamic inputs, the354

time series from each grid point is used for re-sampling so that the statistical properties355

of these variables are preserved (i.e., only the time steps are shuffled). For static features,356

the permutation is performed among all stations.357

2.8 Switching the Model Target for Spatial Extrapolation358

DL models generally yield accurate predictions when interpolating between unseen359

samples in the training set range, but can struggle when extrapolating beyond this range.360

With that said, Balestriero et al. (2021) showed that in high-dimensional data with the361

training range defined by the convex hull of the training set (i.e., the minimal convex poly-362

gon that encompasses all the training points), samples almost always fall in the extrap-363

olation regime. This is particularly true for time series problems, where the dimension364

is the product of input time window size and a number of input features. For the prob-365

lem investigated here, extrapolation is most obvious when the SNOTEL-trained model366

–9–



manuscript submitted to Water Resources Research

is applied to the whole Rocky Mountains, since these stations are largely found only in367

high-elevation regions. To mitigate some of the effects of extrapolation, an alternate model368

target is considered in this work.369

To alleviate problems with extrapolation, a second set of DL models are trained370

with SWE fraction as a target, which is defined as the SWE normalized by the histor-371

ical maximum SWE at each station. In this case, the model output is generally less than372

1, though exceedance of maximum historical SWE is allowed and would produce values373

greater than 1. Consequently, for the SWE fraction, model normalization is not needed374

(i.e., equation 4). When extrapolating to a low-elevation area, the DL estimation is com-375

pared against the reference dataset. The absolute SWE can be recovered by multiply-376

ing the model result by the historical maximum SWE. In this case, the NSE of SWE frac-377

tion (equation 8) can be written as378

NSEfraction = NSE(SWE-REF,SWE-DL-FRAC×max(SWE-REF)) (11)

= NSE

(
SWE-REF

maxSWE-REF
,SWE-DL-FRAC

)
, (12)

where SWE-DL-FRAC denotes the DL model predicted SWE fraction.379

3 Model Performance at SNOTEL stations380

3.1 Computational Performance381

The training time for each DL model on a single RTX 2080TI GPU is 5 hours for382

the LSTM model, 10 hours for the TCNN model, and 26 hours for the Attention model.383

Although the training time varies among different DL models, all DL models only need384

to be trained once, and inference time is much shorter. Inference time at SNOTEL sta-385

tions is on the order of a few minutes. For our application over the Rocky Mountains,386

it takes approximately 35 minutes to generate a 10-year prediction of SWE on the 168387

× 108 grid cells covering the Rocky Mountains with parallel execution on a single RTX388

2080TI GPU for either the LSTM and TCNN. The Attention model takes longer than389

the other DL models to generate a prediction – approximately 2.5 hours without par-390

allel execution – and is limited by the GPU memory. Faster performance is anticipated391

using GPUs with larger memory. Given the much faster inference time, the training time392

is not used for model selection or intercomparison.393

3.2 Temporal Prediction394

Following DL model training, DL model performance is evaluated over the test-395

ing period (2008-10-01 to 2018-09-30) at all SNOTEL stations. Since summertime SWE396

is zero at most SNOTEL stations, daily information for both the entire testing period397

and only those days in the testing period when observed SWE is nonzero are examined398

separately. As discussed in section 2.1, the mean from a 10-member ensemble SWE pre-399

diction for each DL model and SNOTEL station is used for analysis. Table 1 shows the400

median NSE, MAE and MSE across all SNOTEL stations. Among the DL models, the401

LSTM has the highest median NSE value, followed by the TCNN and then the Atten-402

tion model. The distribution of NSE values is further shown in Figure 2. The LSTM cu-403

mulative distribution function (CDF) lies above the TCNN and Attention CDF, indi-404

cating that the LSTM produces more station SWE predictions with higher NSE values,405

compared with the TCNN and Attention models. When only comparing the TCNN and406

Attention models, the TCNN has a slightly higher median performance, although the407

Attention model shows better overall performance. An example of SWE prediction for408

a single SNOTEL station is given in Figure S5.409

Prediction accuracy is also computed for the UA and the UCLA dataset over the410

same testing period using the nearest grid point to the SNOTEL station (further dis-411
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Table 1. Tabulated model performance for prediction of SWE at SNOTEL stations. The top

table shows performance scores on dates when observed SWE is greater than zero, while the

bottom table shows the whole evaluation period (from 2008 to 2018). The best scores for each

metric are shown in bold font.

Nonzero SWE Median NSE Median MAE (mm) Median RMSE (mm)

LSTM 0.823 42.97 63.14
TCNN 0.792 52.58 73.14

Attention 0.779 52.03 72.06
UA 0.755 49.77 73.02

UCLA 0.482 77.31 104.51
SNOW-17 0.488 80.34 102.39

Whole period Median NSE Median MAE (mm) Median RMSE (mm)

LSTM 0.901 25.76 49.03
TCNN 0.879 31.07 55.76

Attention 0.871 29.93 54.08
UA 0.861 26.69 53.61

UCLA 0.708 47.16 81.19
SNOW-17 0.722 44.69 77.45

cussion of the potential impact of this choice on accuracy is provided in section 5). The412

median NSE values over the whole testing period are 0.861 and 0.482 for the UA and413

UCLA dataset, respectively. For those days when observed SWE is nonzero, the NSE414

score is 0.755 for the UA dataset and 0.708 for the UCLA dataset. Under this metric,415

all DL models achieve better results than these two datasets. Moreover, when compar-416

ing the distribution of NSE values in Figure 2, we see that the DL models produce more417

stations with higher NSE values. As for MAE and MSE metrics, the UA dataset achieves418

a lower median MAE than the TCNN and Attention for both the whole testing period419

and the nonzero-SWE period. Examining Figure 2, the UA dataset also attains the low-420

est MSE and MAE across 20% to 30% of SNOTEL stations.421

Finally, prediction accuracy from the DL models is compared with the SNOW-17422

model. Under all three metrics, all DL models attain higher NSE scores and lower MAE423

and MSE values than SNOW-17. Since we used the same training period to calibrate424

the SNOW-17 model, missing values may affect model parameters at some locations. In425

fact, the median NSE score for the SNOW-17 model increases to 0.778 when only those426

stations with less than one year of missing values are taken into consideration. Nonethe-427

less, this score is still lower than the DL models. Possible reasons are discussed further428

in Section 5.429

To better understand the drivers of model performance, we examine relationships430

between NSE, elevation, and maximum SWE. Figure 3 shows the NSE distribution with431

respect to elevation. In general, all DL models and process-based model/datasets per-432

form better at higher elevation. For the DL models, performance improvements are also433

positively correlated with maximum SWE (as shown in Figure 4). This relationship is434

not obvious among the process-based models, and seems to only hold for maximum SWE435

below 1500mm (1000mm for UCLA). However, sharp variations in performance can be436

partially attributed to low sample size for high maximum SWE. This result appears to437

be a common theme in our study: at higher elevations and in regions of deeper maxi-438

mum SWE, snowpack is easier to predict. We hypothesize that this is because there is439

less uncertainty in rain-snow partitioning at higher elevation, and because the processes440
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Figure 2. Cumulative distribution functions across three model performance metrics for

predicting SWE across SNOTEL stations in the western US. NSE values are truncated at 0.

The upper row shows model performance when only those SWE observations larger than zero

are used. The lower row shows model performance for all zero and nonzero SWE observations.

Higher scores in the first column, and lower scores in the second and third columns, are indica-

tive of higher performance.

that occur at the interface between land surface and snowpack are strongly nonlinear,441

but become less important when a deep snowpack is present.442

To summarize, for western US SNOTEL stations, DL models can generally pro-443

duce comparable results with the selected process-based model and datasets, and share444

a similar relationship between performance and elevation. Among all models, the LSTM445

model provides the most accurate predictions across the three DL models assessed. Al-446

though the three DL models exhibit differences in performance, the spatial distribution447

of their performance tends to be similar – that is, stations with lower (higher) NSE val-448

ues in one model tend to have lower (higher) NSE values in other models. Across DL449

models, the Pearson correlation of NSE is 0.856 and 0.660 for TCNN and Attention ver-450

sus LSTM (Figure S6). As shown in Figure 5, all DL models exhibit relatively poor per-451

formance (i.e., negative NSE values) in Western Washington, Northern Nevada, South-452

ern and Northwestern Oregon, and Northern Montana. In general, these stations tend453

to have a lower maximum SWE than other stations, which is consistent with our ear-454

lier attribution of model performance (Figure 4). These also tend to be regions where455

the UCLA product performs poorest, while the SNOW-17 and UA datasets are more vari-456
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able. Importantly, these results should not be taken as being indicative of the UA prod-457

uct being higher quality than the UCLA product. While the UA dataset assimilates SNO-458

TEL observations, the UCLA dataset relies almost exclusively on remote sensing, as out-459

lined in Section 2.4. Consequently, the relatively strong performance of the UA dataset460

is unsurprising when evaluated against SNOTEL observations. A more thorough com-461

parison between the UA and UCLA datasets (and, more generally, observational spread)462

would require an independent data source (e.g., the Airborne Snow Observatory), which463

lies beyond the scope of this study.464

Figure 3. NSE value distribution with respect to elevation. The left y-axis denotes the frac-

tion of stations with NSE values higher than 0.5 for each elevation bin. The right y-axis shows

the number of SNOTEL stations in each elevation bin.

3.3 Spatial Cross-Validation465

The ability of the model to transfer its understanding of physical processes from466

one region to another is now assessed, as we build towards the development of a grid-467

ded SWE product. Hereafter, our study will focus exclusively on the LSTM because of468

its superior performance compared with other DL models and its strong correlation with469

those models across stations. Among 581 SNOTEL stations, 530 are located inside the470

mountain range boundaries in Serreze et al. (1999) and M. He et al. (2011b). The two471

spatial splittings employed here are described in section 2.3, and are referred to as ‘moun-472

tain cross-validation’ for splitting (2a) and ‘8-fold cross-validation’ for splitting (2b). The473

‘time-split’ experiment which was analyzed in section 3.2 is used as a reference. Results474

from this experiment are given in Figure 6 and Table 2. Overall, the ‘time-split’ LSTM475

yields the best prediction accuracy, with a median NSE score of 0.899, followed by the476

‘8-fold cross-validation’ and ‘mountain cross-validation’ LSTMs, with the NSE scores of477

0.888 and 0.844, respectively. Compared with our full model that trained with 581 SNO-478

TEL stations, we do see a tendency of better performance with more training stations.479

This suggests the benefit of a large and diverse training set, which was also argued in480

K. Fang et al. (2022).481

Grouped by mountain ranges, Idaho/Western Montana and northwestern Wyoming482

areas exhibit stronger performance, while the Cascades produces the lowest median NSE483

score, which is especially pronounced for the ‘mountain cross-validation.’ This suggests484

there are unique snow dynamics in the Cascades that other mountain ranges appear un-485

able to capture. In addition, predictability is limited in Arizona/New Mexico (AZ/NW),486
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Figure 4. NSE value distribution with respect to maximum SWE measurement. The left

y-axis denotes the fraction of stations with NSE values higher than 0.5 for each SWE bin. The

right y-axis shows the number of SNOTEL stations in each SWE bin.

Table 2. Median NSE values for SNOTEL stations in major mountain ranges. Northwestern

Wyoming is abbreviated to NW Wyoming and Arizona/New Mexico to AZ/NW. Numbers in

parenthesis denote the number of SNOTEL stations in each mountain range.

Cascades (78) Sierra Nevada (24) Blue Mountains (26) Idaho/Western Montana (95)

Time-split 0.853 0.878 0.862 0.923
Cross-validation 0.812 0.845 0.879 0.914
Mountain-based 0.741 0.846 0.852 0.894

NW Wyoming (110) Utah (74) Colorado (109) AZ/NW (19) Overall (530)

Time-split 0.921 0.911 0.907 0.856 0.899
Cross-validation 0.901 0.891 0.892 0.792 0.888
Mountain-based 0.877 0.867 0.833 0.758 0.844

the southernmost of our selected mountain ranges. These results are not surprising given487

the distinct topographical features of these regions: the elevation is much lower in the488

Cascades compared with other mountain ranges (shown in Figure 6), while the AZ/NW489

mountains experience relatively warm temperatures and lower maximum SWE. Indeed,490

when the AZ/NW mountains are used for testing, elevation and latitude are completely491

out of the training range. This is an obvious example of model extrapolation, the likely492

explanation for this range’s relatively poor performance, and suggests a need for more493

observational data from a variety of snow regimes. Nonetheless, the DL model perfor-494

mance in this test exceeds NSE scores derived from SNOW-17 and the UCLA product.495

3.4 Permutation-Based Analysis496

The variables that are most important for the LSTM model are now studied us-497

ing a permutation-based analysis. As described in section 2.7, a new set of LSTM mod-498

els are trained and tested with the shuffled datasets. The importance of each input vari-499

able is quantified by comparing the ratio of the permuted LSTM model whole period NSE500

prediction to the LSTM model baseline NSE prediction, which is trained and tested with501

the non-permuted dataset. The permuted LSTM models are also trained 10 times to build502

an ensemble of predictions. To quantify model uncertainty, we use bootstrap sampling503
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Figure 5. SWE prediction performance from the DL models, the SNOW-17 model, and the

UA and UCLA datasets. Dots represent individual SNOTEL stations, with the color of the dot

representing the NSE value (truncated at 0).

Figure 6. SWE prediction performance from the LSTM with spatial cross-validation. Eleva-

tion is shown on the left as a reference. Dots represent individual SNOTEL stations, with the

color of the dot representing the NSE value (truncated at 0). Mountain-based cross-validation

is depicted on the left, random 8-fold cross-validation in the middle, and the time-split result is

shown on the right for reference. Black boxes represent the mountain region boundaries.

to provide results with a 90% confidence interval. In Figure 7, the green bars represent504

the performance decline for each static variable, the blue bars represent the performance505

decline from individual meteorological variables, and the orange bar represents the com-506

bined effect of all static variables.507

The input variable with the most influence on model performance was precipita-508

tion, followed by elevation, while the rest of the input variables had comparable influ-509

ence. This result agrees with the intuition that precipitation provides water mass to build510

snowpack, and precipitation type is determined by temperature (and humidity), which511

is shaped by elevation via the lapse rate (Jennings et al., 2018). Although this result seems512

like common sense and may be affected by the collinearity between input variables, it513

helps build trust in the LSTM model and provides evidence that it follows basic phys-514

ical principles. The combined effect of static features is also demonstrated to be criti-515

cal, as the LSTM model accuracy would drop approximately 7% without their inclusion,516

which is more than half the influence of precipitation. Clearly, these features are use-517
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Figure 7. SWE prediction performance drop (%) quantified using the NSE values among the

permuted estimates. Error bars represent the 90% confidence interval from bootstrap sampling.

Precipitation is abbreviated to ‘precip’, ‘sph’ stands for specific humidity, ‘srad’ for solar radia-

tion, ‘vpd’ for vapor deficit, and ‘vs for wind speed. ‘Tmin’, ‘tmax’, ‘rmin’, and ‘rmax’ refer to

minimum and maximum temperature and relative humidity.

ful for modulating snowpack dynamics at each SNOTEL station and in out-of-sample518

locations during extrapolation. The utility of static variables was also reported in Kratzert519

et al. (2019b), where LSTM models were used to predict streamflow.520

Among all static variables, there are three categories: location (latitude and lon-521

gitude), aspect and slope (DAH and TRASP), and elevation. We combined each static522

variable into these categories during the permutation process to compare their relative523

importance. Relative to the baseline LSTM model with a median NSE of 0.901, the LSTM524

model that did not include location information had the highest median NSE score (0.878),525

followed by aspect and slope (0.874), and elevation (0.870). Despite being rather mod-526

est drops, this result again emphasizes that elevation information is the most important527

in SWE prediction since it can determine the temperature and rain-snow partitioning528

of precipitation. Although the local temperature is also affected by latitude through dif-529

ferences in solar loading, the LSTM model benefited more from information related to530

aspect and slope, which have more localized effects on temperature.531

Because many of these variables are correlated, care should be taken in attribut-532

ing the relative importance of variables other than precipitation under the permutation533

test. This is especially true for temperature, since vapor deficit is a function of temper-534

ature and relative humidity and consequently, temperature can be inferred from vapor535

deficit and relative humidity even if we permute temperature. To better compare their536

relative influence on SWE predictability, several reduced-order LSTM models are trained.537

In each reduced-order model, precipitation and one of the other meteorological variables538

are used, and the remaining variables are permuted. The baseline for comparison was539

an LSTM model with only precipitation and the reference was a model with the full set540
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Table 3. First quantile, median and third quantile whole period NSE from several reduced-

order LSTMs for predicting total SWE. Precipitation is abbreviated to Precip.

First Quantile NSE Median NSE Third Quantile NSE

Precipitation Only 0.149 0.380 0.576

Precip+Wind Speed 0.432 0.620 0.740
Precip+Specific Humidity 0.686 0.826 0.896
Precip+Solar Radiation 0.709 0.836 0.905
Precip+Vapor Deficit 0.740 0.843 0.894
Precip+Temperature 0.793 0.874 0.924

Precip+Temperature+Relative Humidity 0.784 0.875 0.919
Precip+Temperature+Vapor Deficit 0.818 0.881 0.927

Precip+Temperature+Specific Humidity 0.799 0.882 0.927
Precip+Temperature+Wind Speed 0.803 0.884 0.926

Precip+Temperature+Solar Radiation 0.813 0.886 0.931

Full Model 0.831 0.901 0.938

of meteorological variables. The model using precipitation plus relative humidity was not541

included in this analysis because it did not converge to a reasonably performant model.542

As shown in Table 3, among the reduced-order models, precipitation and wind speed give543

the lowest NSE value, although even this combination does improve skill tremendously544

compared with the baseline model. The median NSE scores across the rest of the reduced-545

order models are all above 0.8, and the combination of temperature and precipitation546

produces the closest performance to the reference model. This indicates that vapor pres-547

sure deficit, solar radiation, and specific humidity contain influential information for SWE548

prediction, while temperature is the most critical variable for model skill besides precip-549

itation.550

To determine the best third variable in the model, five additional models were trained:551

each model consists of precipitation, temperature, and one other variable. The results552

are shown in Table 3. The model with precipitation, temperature and relative humid-553

ity attains the lowest NSE value and is very close to the model with only precipitation554

and temperature, which is consistent with previously observed anomalous low performance555

with precipitation and relative humidity. The inclusion of vapor deficit, specific humid-556

ity and wind speed all increase the model performance and yield similar NSE scores, prob-557

ably because these variables cannot be inferred from precipitation and temperature. The558

model with precipitation, temperature and solar radiation obtained the highest median559

NSE value of 0.886, or 98% of the full model performance. Clearly, with far fewer input560

variables, the model with precipitation, temperature and solar radiation was capable of561

capturing the temporal features necessary for SWE prediction. This again highlights the562

important roles that these three variables have in affecting the water cycle (S. Duan et563

al., 2020). Additionally, this result suggests that good estimates of snowpack can be ob-564

tained from datasets providing these quantities in high quality, such as CAMELS (Addor565

et al., 2017).566

One additional model was trained to capture some of the diurnal cycle of temper-567

ature through inclusion of both minimum and maximum temperature (as opposed to daily568

average temperature). The improvement in median NSE was only 0.002, suggesting min-569

imal value to the inclusion of both variables (more information in Table S1 and Text S2).570
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4 Spatial Extrapolation of DL Models to the Rocky Mountains571

Our earlier analysis indicates that DL models are capable of predicting daily SWE572

at individual SNOTEL stations and can even achieve satisfactory performance when ex-573

trapolating to stations out of the training set. A gridded SWE product similar to the574

UA and UCLA datasets is now developed by applying these models out-of-sample across575

the Rocky Mountains at 4km grid spacing (Figure 8). It is shown that the resulting prod-576

uct is reasonable, even when there are out-of-sample differences in the statistical prop-577

erties of the DL models’ input and output variables. The use of these models outside of578

their training range is a common problem referred to within the machine learning com-579

munity as concept drift or extrapolation (Tsymbal, 2004). In this case, extrapolation is580

expected to be common since, in addition to other differences, many grid points have el-581

evations lower or higher than the lowest or highest SNOTEL station (this was also hy-582

pothesized to have impacted model performance over the Cascades and New Mexico in583

Table 2).584

The 4km grid used in this application is inherited from the gridMET forcing data585

(section 2.2). A similar approach could also be used to produce an even higher resolu-586

tion product (e.g., one matching the 800m Parameter-elevation Regressions on Indepen-587

dent Slopes Model (PRISM) product). The simulation period is 2008-10-01 to 2018-09-588

30, the same as the SNOTEL testing set. For better comparison across different spatial589

resolutions, the gridMET data is also regridded to the UA and UCLA grid points us-590

ing the nearest neighbor method. When applied over the Rocky Mountains, the gridMET591

forcing variables are normalized with the mean and standard deviation from the train-592

ing SNOTEL stations (equation 4). The DL model SWE prediction is then transformed593

back to its original units with the same equation. The top row in Figure 9 and 10 shows594

the NSE values obtained from the DL-generated dataset (10 ensemble member mean)595

when using the UA dataset and UCLA dataset as reference, respectively, following equa-596

tion 6.597

The DL model estimates largely agree with the process-based estimates in high-598

elevation areas, while performance is relatively poor in low-elevation areas. Given that599

much of the domain is covered by low-elevation areas, it is useful to investigate the rea-600

sons for this poor performance and develop models which can mitigate these errors. One601

obvious driver of poor performance is the sensitivity of NSE to differences that are rel-602

atively small in absolute magnitude, when maximum SWE is already small. This is il-603

lustrated by comparing the UA and UCLA datasets (middle and right figures in Figure604

8). Negative NSE values abound in low-elevation areas (e.g., the northwestern Rockies,605

36◦N-37◦N and 109◦W-108◦W), suggesting significant disagreement between these two606

products in this region. This difference also appears in Figure 3, where both DL mod-607

els and the UA and UCLA datasets exhibit poor performance at lower elevations and608

when SWE amounts are low – indeed, the ground truth in these regions is poorly con-609

strained given a dearth of relevant measurements. The discrepancy between UA and UCLA610

in this region is likely exacerbated by the employ of different algorithms and data sources:611

UA is not informed by remote sensing estimates, but is informed by SNOTEL stations,612

while the opposite is true for the UCLA product. These factors make it difficult to quan-613

tify how much error may be attributed to the out-of-sample application of the DL model.614

To better understand the reasons for poor performance in low-elevation areas, er-615

rors in this region are decomposed into errors in magnitude estimation (i.e., too little616

or too much SWE) and errors in temporal dependency (i.e., too slow/rapid accumula-617

tion/melt). To mitigate issues related to magnitude estimation, model performance is618

assessed using the fraction of maximum SWE (i.e., SWE/maxSWE), where the max-619

imum is with respect to the historical/training period. That is, the NSE from snow frac-620

tion is calculated via equation 7. By using the SWE fraction, differences in SWE mag-621

nitude between the reference datasets and DL model are mitigated and so the evalua-622

tion emphasizes the temporal character of the SWE (e.g., the timing of accumulation623
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Figure 8. Elevation (left) along with NSE scores between reference datasets with UA as refer-

ence (middle) and UCLA as reference (right) over the Rocky mountain area.

and melt). The middle row in Figure 9 and 10 shows the assessment with SWE fraction.624

Under this metric, the DL model appears significantly better when evaluated against the625

UA dataset in Figure 9, with higher NSE values almost everywhere and a larger portion626

of positive NSEs. This difference indicates that while the DL models can capture the tem-627

poral dependence of SWE, magnitude biases can be relatively large over low-elevation628

areas. However, when the UCLA dataset is used as a reference, the fractional SWE met-629

ric does not always lead to improvements in the performance of the DL models (Figure630

10): in fact, only the TCNN model produces more grid points with positive NSE values,631

indicating some temporal feature mismatch between the LSTM and Attention models632

and the UCLA dataset that cannot be mitigated under this metric. Despite the over-633

all decrease in the fraction of positive NSE scores for the LSTM and Attention models,634

there are indeed improvements over the mountain range to the northeast of Santa Fe (36N-635

37N, 106W-105W). This pattern of improvement is consistent across all the DL mod-636

els and independent of the reference dataset, as similar patterns are also observed in Fig-637

ure 9.638

Given the improvement in model performance when using SWE fraction, a new set639

of DL models is trained on SNOTEL data to predict SWE fraction (section 2.8), rather640

than the SWE itself (with predictions hereafter referred to as SWE-DL-FRAC). NSE641

values are then computed using equation 12. It should be noted that equation 8 and 12642

are not equivalent and they represent two different comparisons. Equation 8 uses the orig-643

inal DL models, which predicts SWE magnitude normalized by the historical maximum644

prediction; whereas the maximum SWE in equation 12 is from reference datasets and645

the DL models are predicting SWE fractions. The bottom row in Figure 9 and 10 show646

the NSE results when predicting SWE fraction directly from the DL models. When com-647

pared to the original DL models which predict SWE magnitude, the DL models trained648

to predict SWE fraction exhibits a clear and significant improvement almost everywhere649

in the domain, but particularly in low-elevation regions. This result shows that normal-650

ization by maximum SWE is effective for all the DL models with both reference datasets.651

Among all the DL models, the LSTM-based model again provides the best overall SWE652

prediction, determined by the largest fraction of positive NSE values. Of course, to trans-653

form the fraction of maximum SWE back to an absolute SWE value, the historical max-654

imum SWE is needed within each grid cell. Since SNOTEL observations are unevenly655

distributed throughout the Rocky Mountains, we must rely on an alternative estimate656

of maximum SWE at each grid point; in this case, we use the historical maximum SWE657
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Figure 9. NSE values for DL model extrapolation estimates over the Rocky Mountains with

the UA dataset as reference. The top row shows the NSE score of the original DL model SWE

predictions. The middle row is the SWE fraction evaluation from the original models, computed

via equation (7). The bottom row represents the new set of DL models that predict SWE frac-

tion, computed via equation (12). NSE values below 0 are masked in all figure subpanels. The

black line is the 2300-meter contour. The percentage value given in the title is the fraction of

grid points with positive NSE values.
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Figure 10. Same as Figure 9, but with the UCLA dataset as reference.
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values from the reference dataset, either the UA or UCLA dataset, at each grid point658

over the training period to estimate maximum SWE. An example of annual maximum659

SWE prediction from this new LSTM model is shown in Figure S7.660

Figure 11. Area-averaged SWE climatology over the Rocky Mountain area. The first row

depicts results from the whole region, while the second row depicts only the area above 2300m.

‘UCLA’ and ‘UA’ stand for the results from the reference datasets. SWE fraction from LSTM

is transformed back to SWE depth and the results are denoted with the corresponding reference

datasets. The title for each subfigure denotes the L1 norm between the two climatology estima-

tions.

LSTM performance is further analyzed by examining the annual SWE climatol-661

ogy over the Rocky mountains. The SWE estimation in millimeters, which is derived from662

the DL-generated SWE fraction and reference datasets as in equation 12, is averaged over663

the Rocky Mountain area and compared against the reference dataset. In Figure 11, ‘LSTM-664

UCLA’ is derived from the LSTM estimation and historical maximum SWE from the665

UCLA dataset, whereas ‘LSTM-UA’ uses the UA dataset to derive the historical max-666

imum SWE. In general, the LSTM model matches the reference dataset, with correla-667

tion coefficients exceeding 0.99. The LSTM model does, however, have a tendency to un-668

derestimate the snowpack peaks, but this bias decreases in higher-elevation areas. The669

magnitude difference between these two reference datasets is also worth noting. Aver-670

aged over the whole area, a higher peak SWE is observed in the UCLA dataset, which671

again tends to diminish with elevation. This suggests that both process-based and DL672

models have significant uncertainties in their SWE estimations over the low-elevation ar-673

eas. Comparing the L1 norm between climatology estimations (the subtitles in Figure674

11), the LSTM L1 norm is smaller than those for the reference datasets, i.e., L1(UCLA,UA)675

is the largest for both whole-area and high-elevation climatology estimations. This sug-676

gests the LSTM model is always in the uncertainty range of the selected process-based677

datasets, which provides evidence of its credibility.678

In addition to differences in peak SWE, these models/datasets yield different ac-679

cumulation and melt dates. Both the UA dataset and the LSTM model exhibit earlier680

accumulation (melt) dates when the SWE starts increasing (hits zero) in comparison to681

the UCLA dataset. Unlike the magnitude bias, this difference persists as elevation in-682

creases. We are not able to determine which model/dataset generates the more precise683

melt date. A further evaluation is needed to draw such conclusions, which is out of our684

scope here.685
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5 Discussion686

One question that arises in this study relates to the importance of horizontal res-687

olution for the accuracy of the SWE prediction. Obviously, higher resolution alone should688

not be conflated with higher performance – but in mountainous regions, where topog-689

raphy and solar insolation can vary rapidly over short distances, the resolution is impor-690

tant to properly capture SWE daily-to-seasonal cycles. However, significant uncertain-691

ties in snow products persist over short distances, which are exemplified by a relative per-692

formance at SNOTEL station locations. In table 1, the UCLA product was first regrid-693

ded to the 4km UA grid, then interpolated to SNOTEL station locations for compar-694

ison, yielding a median NSE of 0.708. However, directly regridding the UCLA product695

to the SNOTEL station location, which one might expect would be far more accurate696

because of the finer grid spacing of the UCLA product, yields an even lower median NSE697

of 0.641 when assessed over the whole period. While this difference is likely to be pri-698

marily driven by observational uncertainty in SWE, we postulate that there may be an-699

other factor in play: specifically, given the significant differences in snow dynamics over700

relatively short spatial distances, it may be the case that accumulating SWE over a coarse701

grid cell may mute sharp variations in the spatial character of SWE and so could match702

more closely to the SNOTEL station. This is also corroborated by the spatial variabil-703

ity of UCLA SWE estimations within the UA grid boxes, as illustrated in Figure S8.704

Because of the relatively fine scale of mountainous features, it is also the case that705

high-resolution static inputs do not necessarily yield better performance. The impact of706

static feature resolution is investigated with the PRISM 800-meter topographic data (Daly707

et al., 2008). This data was used to derive elevation, TRASP and DAH for the LSTM708

model, and compared with TRASP and DAH inputs from 30-m USGS DEM data. At709

800-m spatial resolution, the derived slope and aspect are unlikely to represent the slope710

and aspect at the SNOTEL station, and consequently may be invalid for use in DL mod-711

els of SWE. However, the performance of the LSTM model with coarse TRASP and DAH712

actually increases slightly: from a median NSE of 0.901 (30-m DEM) to 0.911 (800-m713

DEM). This change is nonetheless significant under Mood’s median test (p-value equals714

0.019). This increase in performance suggests that, at least for these features, DL mod-715

els do not explicitly require precise topographical features for SWE prediction. This re-716

sult is again likely because the significant spatial heterogeneity of mountainous regions717

at finer spatial scale makes it difficult to extract a clear signal from the noise.718

In this study, nearest neighbor interpolation has been applied for both in-situ and719

gridded product evaluation. However, it could be that this interpolation method is re-720

sponsible for degrading model performance. This interpolation error is now investigated721

when the LSTM model is applied to develop the gridded Rocky Mountain SWE prod-722

uct. 105 SNOTEL stations inside the Rocky Mountains are selected, and four predic-723

tions with different interpolation processes are assessed: in-situ LSTM predictions (‘LSTM-724

in-situ’), reference datasets (either ‘UA’ or ‘UCLA’), SWE fraction from LSTM (‘LSTM-725

extra-FRAC’) and SWE depth from LSTM and reference dataset (‘LSTM-extra-SWE-726

REF’). All the LSTM predictions are generated from the model presented in section 4,727

using the SWE fraction as the target. ‘LSTM-in-situ’ uses the historical maximum SWE728

at each SNOTEL station to transform back to the SWE depth, using the nearest grid-729

MET forcing for each SNOTEL station. Both the ‘LSTM-extra-FRAC’ and ‘LSTM-extra-730

SWE-REF’ are estimates where the model is run at each UA grid point using the near-731

est gridMET forcing and the nearest grid point to the SNOTEL station is then selected732

for evaluation. ‘LSTM-extra-fraction’ uses LSTM-generated SWE fraction, with eval-733

uation performed on SWE fraction from each SNOTEL station, whereas ‘LSTM-extra-734

SWE-REF’ incorporates the historical maximum SWE from reference datasets. As shown735

in Table 4, LSTM SWE generated at UA grid points leads to a significant NSE drop of736

0.05-0.06 (when predicting fraction) or 0.07-0.10 (when predicting absolute SWE) and737

a corresponding increase in MAE. This suggests that significant errors emerge in the gen-738
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Table 4. Tabulated model comparison for prediction of SWE at SNOTEL stations in the

Rocky Mountains using different interpolation methods. The top table shows performance scores

on dates when observed SWE is greater than zero, while the bottom table shows the whole evalu-

ation period (from 2008 to 2018). The best scores for each metric are shown in bold font.

Nonzero SWE Median NSE Median MAE (mm) Median RMSE (mm)

LSTM-in-situ 0.802 41.88 58.28
UA 0.775 45.09 65.44

UCLA 0.560 70.38 98.82
LSTM-extra-FRAC 0.743 - -

LSTM-extra-SWE-UA 0.700 57.60 77.56
LSTM-extra-SWE-UCLA 0.600 63.71 84.88

Whole Period Median NSE Median MAE (mm) Median RMSE (mm)

LSTM-in-situ 0.891 25.54 46.32
UA 0.861 25.66 49.50

UCLA 0.727 47.23 78.95
LSTM-extra-FRAC 0.843 - -

LSTM-extra-SWE-UA 0.824 35.63 60.76
LSTM-extra-SWE-UCLA 0.772 39.59 68.00

Data Evaluated

LSTM-in-situ gridMET nearest to SNOTEL stations, max SWE from SNOTEL stations
LSTM-extra-FRAC gridMET nearest to UA grid points

LSTM-extra-SWE-REF gridMET nearest to REF grid points, max SWE from reference dataset

eration of gridded SWE products when interpolating quantities among grids, even those739

at a similar resolution, and so interpolation should be performed sparingly. Note that740

the UA performance in this test is unsurprising since SNOTEL data is directly assim-741

ilated into the UA product, and so the nearest UA data point is likely to be strongly cou-742

pled to the SNOTEL station.743

As seen in Table 1, all the DL models obtain higher NSE values than the SNOW-744

17 model. In Section 3.3, it was shown that the DL models benefit from training with745

many SNOTEL stations; however, the SNOW-17 model, which is tuned separately for746

each station, relies on a set of equations to prescribe the relevant physical processes and747

a much smaller set of tuning parameters. The difference in performance does not appear748

to arise from limited inputs: although the SNOW-17 model only takes precipitation, tem-749

perature, latitude and elevation as inputs, as shown in Table 3, a DL-reduced model with750

only these inputs (and others permuted) still yields a whole period median NSE of 0.874751

versus SNOW-17’s 0.722. Of course, in the permuted model the additional variables are752

not removed, only permuted, and so a fair comparison would require us to train an ad-753

ditional model that only uses these inputs. Doing so yields a whole period median NSE754

of 0.846, higher than SNOW-17 but lower than the full model. This result suggests there755

is still substantial room for improvement in the SNOW-17 model, although we do ac-756

knowledge that more modern process-based models are likely to yield better performance.757

A concerted effort to replace individual processes with SNOW-17 with data-driven mod-758

els could pinpoint areas of particular deficiency, though such work is beyond the scope759

of this study, but an important point in how ML can also inform physics-based model760

development.761
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Although the extrapolated SWE estimations generated with our fractional SWE762

model require the use of maximum historical SWE from a reference dataset to obtain763

SWE magnitude, fractional values can still provide valuable insights via some metrics,764

such as snow onset and melt date (see Rhoades, Jones, and Ullrich (2018)). Consequently,765

one could use these metrics to quantify some features of snowpack response under cli-766

mate change. While some past efforts have sought to address climate change impact on767

snowpack with climate model simulations, the grid spacing employed in climate mod-768

els is relatively generally coarse (e.g., 28 km in Rhoades, Ullrich, and Zarzycki (2018)),769

and so is largely unable to capture the most rugged topography and shadow casting por-770

tions of mountainous areas and their influence on the local meteorology. Given the de-771

velopment of downscaled climate simulations (e.g., 1/16-degree LOCA dataset by (Pierce772

et al., 2014) and 4-km MACA dataset by Abatzoglou and Brown (2012)), our DL mod-773

els could be used for SWE ensemble projections at much higher spatial resolution. Since774

the frigid temperatures of high-elevation regions provide a buffer against climate change,775

it is essential that SWE models operate at spatial scales fine enough to resolve moun-776

tain peaks. The necessary and sufficient spatial resolution, which is likely mountain range777

dependent, to get convergence in mountain range or basin-average peak SWE could be778

investigated in future work.779

6 Conclusions780

Previous studies have investigated and demonstrated that DL models are useful781

for Earth system applications. The present work investigates three DL models for SWE782

prediction over the Western US, with a focus on the Rocky Mountain region. The LSTM783

model, which is particularly well-suited to time-series tasks, achieves the best accuracy784

for SWE prediction in our experiments. The TCNN, another DL model, mimics the tem-785

poral dependency with stacked 1-D CNN layers, but without inherent states like LSTM786

model, its performance was somewhat worse. Attention models are also promising DL787

methods and have become widespread in their use for time-series tasks, especially for nat-788

ural language processing (NLP). Despite also demonstrating some capacity for predict-789

ing SWE, results from the Attention model were similar to the TCNN. Besides these typ-790

ical DL models, there have been efforts to combine different types of sequential layers791

or blocks in a hybrid model, as shown in Xu et al. (2020) and Y. Chen et al. (2020). Al-792

ternate architectures of DL models, including hybrid forms of the models discussed above,793

hold promise for further improvements, but are left for investigation in future work.794

Compared with the SNOW-17 process-based model and select reference datasets,795

DL models can achieve higher accuracy (in terms of NSE), when estimating in-situ SNO-796

TEL observations. By leveraging acceleration from GPUs, the DL model training time797

is reasonable and the inference is fast. Given the important role that SWE has in the798

mountainous hydrological cycle, DL models show promise for use in operational forecast-799

ing and long-term projection. The computational speed of DL models also allows one800

to generate an ensemble of SWE predictions through perturbations of the initial weights801

of the model, enabling probabilistic SWE predictions.802

A permutation-based method is used to better interpret the proposed DL model.803

Precipitation and elevation are shown to be the two dominant variables for SWE pre-804

diction, consistent with our physical understanding of snowpack dynamics. Although this805

result is intuitive, this analysis is useful for building trust in the ‘black box’ ML-based806

model before employing it for real applications. We caution that any conclusions drawn807

from this interpretation could be sensitive to strong correlations among input variables.808

In future work, we would like to examine methods that could eliminate these input cor-809

relations. For example, one could reconstruct a set of orthogonal input variables from810

the original inputs using principal component analysis. These orthogonal variables would811

contain the same information as the original inputs, which preserves the accuracy of the812

DL models, and the orthogonality would simplify the interpretation process. Nonethe-813

–25–



manuscript submitted to Water Resources Research

less, the interpretation will be drawn from the reconstructed variables, which are linear814

combinations of original inputs and may not represent any real physical features.815

Although in-situ estimates of SWE are useful for particular applications, spatiotem-816

porally continuous SWE predictions are needed for a wider range of applications. As a817

proof of concept, we apply the trained DL model to generate a gridded SWE estimation818

across the Rocky Mountains. A major constraint for our DL model is that most in-situ819

estimates of SWE are provided at mid-to-high elevations at discrete points throughout820

the Rocky Mountains. Therefore, the extrapolation problem for our DL model is par-821

ticularly pronounced when we apply our model to a wider spatial area where the sta-822

tistical properties learned from the in-situ measurements might not hold (e.g., lower el-823

evations). Without additional training data, our extrapolation results prove that we can824

generalize the DL models by altering the prediction from an absolute SWE depth to its825

seasonality. With this transformation, the target prediction becomes an elevation-invariant826

quantity that can be generalized to low-elevation areas, an approach also used for cli-827

mate model emulation in Beucler, Pritchard, Yuval, et al. (2021). To overcome the ex-828

trapolation problem without any loss of information (or transformation), the DL mod-829

els would either need more training data in low-elevation areas (e.g., satellite images)830

or incorporate physical constraints into their architectures (Kashinath et al., 2021).831

A limitation of our study is that it mainly focuses on the use of data-driven mod-832

els and does not incorporate physical constraints. One opportunity for future work would833

be to add mass balance into the model, as with the model described in Hoedt et al. (2021).834

These physical constraints could improve the physical interpretability of these models,835

as well. It should be noted that although we used the UA and UCLA datasets as ref-836

erences for extrapolation, their accuracy cannot be directly evaluated. Indeed, differences837

between these two datasets are observed from both grid point-wise NSE values and area-838

mean climatology time series over the Rocky Mountains, indicative of the uncertainties839

in these datasets. Additionally, the UCLA dataset provides not only the mean SWE es-840

timations, but also other statistics (such as median and quantiles). With DL models, such841

distributions could be generated along with point estimations, which would allow for the842

quantification of uncertainty and variability, which is useful for applications such as Earth843

system model development. Finally, it is clear that the mean squared error-based loss844

function employed in DL model training often underestimates extreme values. Gener-845

ative adversarial models now being explored for Earth system modeling (Manepalli et846

al., 2019; Pan et al., 2021) could allow for extremes to be better captured using both se-847

quential models and adversarial loss.848

Appendix A SNOW-17 Parameters849

The following parameters are tuned for the SNOW-17 model. The snow-rain par-850

tition uses a linear transition scheme, which involves PXTEMP1 and PXTEMP2, while851

PXTEMP is only used for the rain temperature for the energy budget.852

Appendix B Hyperparameter search853

Hyperparameters are set based on a grid search over a range of parameter values.854

The search space for these values is provided here. Each candidate model is trained with855

the training data and evaluated with the validation period. The model results in the best856

NSE value is taken as the optimal hyperparameter setting. For the Attention model, it857

is required that the embedding size should be divisible by the number of heads. So in858

the following grid search, embedding size is the product of embedding size ratio and num-859

ber of heads.860
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Table A1. SNOW-17 parameters

Parameter Description Unit Range

SCF Gage catch deficit multiplying factor 0.9-1.2

MFMAX Maximum melt factor during non-rain periods mm ·◦C · 6hr−1 0.5-1.3

MFMIN Minimum melt factor during non-rain periods mm ·◦C · 6hr−1 0.1-0.6

UADJ Average wind function during rain-on-snow periods mm ·mb−1 0.05-0.2
PXTEMP Temperature that separates rain and snow ◦C 0.0-2.0
PXTEMP1 Lower limit temperature dividing transition from snow ◦C -2.0-0.0
PXTEMP2 Upper limit temperature dividing rain from transition ◦C 0.0-4.0

Table B1. Hyperparameter search candidates for all DL models.

LSTM

Hidden states 64 128 256 512

TCNN

Blocks 4 5 6
Kernel size 7 9
Number of kernels 16 32 64

Attention

Heads 8 16
Embedding size ratio 1 2
Attention layers 2 3 4
Forward dimension 16 32 64

We further tested several Attention models with 32 heads. The models generally861

have similar performance to the 16-head models, but take a much longer time for train-862

ing. With such a small increment in performance, we decided to stop searching at 16 heads.863
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