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Abstract

Wildfires result in human fatalities not only due to the direct exposure to flames, but also indirectly through smoke inhalation.

The Mediterranean basin with its hot and dry summers is a hotspot for such devastating events. The situation has further

been aggravated in recent years by climate change as well as a growing and aging population in the region. To assess the

health impacts due to short-term exposure to air pollution created by the 2021 summer wildfires in the eastern and central

Mediterranean basin, we used a regional-scale chemistry transport model to simulate concentrations of major air pollutants

such as fine particulate matter with a diameter less than 2.5 μm (PM2.5), SO2, NO2, and O3 - in a fire and a no-fire scenario.

Elevated short-term exposure of the population to air pollutants are associated with excess all-cause mortality using relative

risks for individual pollutants from previously published meta-analyses. Our estimates indicate that the short-term exposure to

wildfire-caused changes in O3 accounted for 741 (95% CI:556-940) excess deaths in total over the entire region of investigation

during the wildfire season between mid-July to early October 2021. This is followed by 270 (95% CI:177-370) excess deaths

due to elevated PM2.5 exposure, rendering the health effect of increased O3 from wildfires larger than the effect of increased

PM2.5. We show this to be attributed largely to the spatially more widespread impact of wildfires on O3. Our study concludes

with a discussion on uncertainties associated with the health impact assessment based on different air pollutants.
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Key Points:9

• Exposures to PM2.5 and O3 caused by 2021 summer wildfires accounted for 27010

and 741 excess deaths in the eastern and central Mediterranean.11
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• Choice of exposure response functions leads to uncertainty up to a factor of 3.14
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Abstract15

Wildfires result in human fatalities not only due to the direct exposure to flames, but16

also indirectly through smoke inhalation. The Mediterranean basin with its hot and dry17

summers is a hotspot for such devastating events. The situation has further been aggra-18

vated in recent years by climate change as well as a growing and aging population in the19

region. To assess the health impacts due to short-term exposure to air pollution created20

by the 2021 summer wildfires in the eastern and central Mediterranean basin, we used21

a regional-scale chemistry transport model to simulate concentrations of major air pol-22

lutants such as fine particulate matter with a diameter less than 2.5 µm (PM2.5), SO2,23

NO2, and O3 - in a fire and a no-fire scenario. Elevated short-term exposure of the pop-24

ulation to air pollutants are associated with excess all-cause mortality using relative risks25

for individual pollutants from previously published meta-analyses. Our estimates indi-26

cate that the short-term exposure to wildfire-caused changes in O3 accounted for 741 (95%27

CI:556-940) excess deaths in total over the entire region of investigation during the wild-28

fire season between mid-July to early October 2021. This is followed by 270 (95% CI:177-29

370) excess deaths due to elevated PM2.5 exposure, rendering the health effect of increased30

O3 from wildfires larger than the effect of increased PM2.5. We show this to be attributed31

largely to the spatially more widespread impact of wildfires on O3. Our study concludes32

with a discussion on uncertainties associated with the health impact assessment based33

on different air pollutants.34

Plain Language Summary35

Wildfires lead to loss of life not only when directly affected, but also through the36

inhalation of the smoke generated. The Mediterranean basin is frequently affected by37

wildfires due to its hot and dry climate. Climate change as well as an increasingly ag-38

ing population made matters worse. In this study, we estimate the loss of life caused by39

wildfires in the eastern and central Mediterranean basin in summer 2021. We used a com-40

puter model to simulate concentrations of air pollutants emitted from wildfires and es-41

timate the resulting excess human deaths based on the most relevant evidence from lit-42

erature. Our estimates found that wildfires account for several hundred excess deaths43

in the study region between mid-July to early October 2021. We estimate the effects of44

Ozone, a gaseous air pollutant, to exceed those of particles created by wildfires. Further-45

more, we discuss the uncertainties associated with our estimates.46

1 Introduction47

Air pollution is a central issue in public health globally given its well-documented48

association with adverse health effects (Brunekreef & Holgate, 2002; Anenberg et al., 2010;49

Lelieveld et al., 2020). Exposure to air pollution, both long-term and short-term, is es-50

timated to cause millions of premature deaths and lost years of healthy life each year (WHO,51

2021). Air pollution from wildfires is becoming a subject of increasing concern due to52

the higher toxicity associated with its chemical composition (Naeher et al., 2007; Wegesser53

et al., 2009). Furthermore, smoke from wildfires can travel large distances and impact54

the health of a much larger population than the effects of the actual fire (Bencherif et55

al., 2020). Most recently, prominent examples are wildfires in the Amazon in 2019 (Butt56

et al., 2021), Australia in 2019-2020 (Graham et al., 2021), and those in the United States57

in recent years (Burke et al., 2021; Kramer et al., 2019; Xie et al., 2020). It has been shown58

that frequency and magnitude of fire events are increasingly affected by human activ-59

ities and have been exacerbated by climate change (Bowman et al., 2020; Jolly et al., 2015).60

Globally, wildfire smoke is estimated to cause more than 330,000 premature deaths61

each year during 1997 - 2006 (Johnston et al., 2012). As climate change worsens, together62

with updated evidence of impacts of wildfires on human health (Chen et al., 2021; Haik-63

erwal et al., 2015), wildfires are projected to result in increased human and material losses64
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in the near future (Xu et al., 2020). Furthermore, wildfires can lead to a higher suscep-65

tibility to other (respiratory) diseases, with reports of an amplified risk of COVID-19 cases66

and deaths in wildfire seasons (Zhou et al., 2021; Schwarz et al., 2022) as a prime ex-67

ample. This may imply that previous studies may systematically underestimate the ac-68

tual health impacts of wildfires, as they fail to adequately address the underlying rela-69

tionship between wildfires and other environmental and health concerns.70

Historically, the Mediterranean basin which is characterized by hot and dry sum-71

mers has been negatively affected by wildfires. With increased warming and declining72

precipitation, the Mediterranean basin is expected to experience an increase in the fre-73

quency and scale of wildfires (Ruffault et al., 2020; Cos et al., 2021). Meanwhile, the rapid74

population growth in some countries (e.g., Egypt, Israel, and Tunisia) and an ageing pop-75

ulation in others (e.g., southern European countries) renders the Mediterranean basin76

ever more vulnerable to the unfavorable consequences of climate change (Linares et al.,77

2020). All this demands a comprehensive assessment of population exposure to wildfire-78

caused air pollution.79

In this context, the 2021 summer wildfires in the eastern and central Mediterranean80

basin serve as an indicator of future wildfire impacts. In our work we used this case to81

assess the health impacts due to short-term exposure to air pollution from wildfire smoke.82

An online-coupled atmospheric chemistry transport model was employed to simulate con-83

centrations of major air pollutants – fine particulate matter with a diameter of 2.5 µm84

or less (PM2.5), SO2, NO2, and O3 – in a fire and a no-fire scenario. Elevated short-term85

exposure to air pollutants are associated with excess all-age all-cause mortality using rel-86

ative risks (RRs) for individual pollutants based on previously published meta-analyses.87

We estimated the excess mortality attributable to wildfires for the entire region and the88

countries included, with detailed discussions on the uncertainties associated with the es-89

timates.90

2 Data and Methods91

2.1 Study area and period92

The study area covers 18 countries and regions in the central and eastern Mediter-93

ranean basin with a total population of 334.62 million in 2020, of which over half resides94

along its coastal areas and hydrological basins (World Bank, 2020). For a full list of coun-95

tries included in the study and their respective populations, please refer to Table S1 in96

the Supplementary Information (SI).97

We used the UN WPP-Adjusted population count GPWv4 dataset of the Gridded98

Population of the World, Version 4 (GPWv4) data from the Socioeconomic Data and99

Application Center (SEDAC) for 2020 (CIESIN, 2018) to describe the spatial popula-100

tion distribution. From the original resolution of 2.5 arc-minute (approx. 5 km) data were101

aggregated to a grid of about 20 x 20 km2 to be consistent with the configuration of the102

numerical model employed in this study (Fig. 1 a).103

The study period was 15 July - 02 October 2021, covering the major wildfire events104

in summer 2021. The severe dry conditions and heatwaves prevailing in this period have105

resulted in many intense and long-lasting wildfires across the region, emitting large amounts106

of air pollutants (e.g., particulate matter, NOx, and SO2) into the atmosphere (CAMS,107

2021). According to the European Forest Fire Information System (EFFIS) (EFFIS, 2021),108

there were more than 1800 wildfires with a burnt area of 10 hectares or larger occurring109

in the region and period of this study, which burnt 589,400 hectares area in total. As110

shown in Fig. 1 b-c, the worst hit countries include Turkey, Greece, Italy, Tunisia, and111

the ones in the Balkans (e.g., Albania, Montenegro, and North Macedonia).112
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b. c.b.

a.

Figure 1. The study region overlaid with the population data and wildfire statistics. a) Pop-

ulation counts per country from the Gridded Population of the World, Version 4 (GPWv4) data

for 2020 (CIESIN, 2018). The fan-shaped polygon demarcates the simulation domain. b-c) the

total number of wildfires and total burnt areas, respectively, based on the European Forest Fire

Information System (EFFIS) data between 15-July and 02-October, 2021. Countries included in

the study are outlined in black.
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2.2 Model description113

Concentrations of PM2.5, O3, NO2, and SO2 were simulated using the Weather Re-114

search and Forecasting model coupled to Chemistry (WRF-Chem) model (version 4.2.1),115

a fully online-coupled regional atmospheric chemistry model (Grell et al., 2005). The Model116

for Ozone and Related chemical Tracers, version 4 (MOZART-4) gas-phase chemistry117

mechanism (Emmons et al., 2010) with considerable updates to the chemistry of volatile118

organic compounds (Knote et al., 2014) was used to predict trace gas concentrations. Aerosol119

characteristics were simulated with the 4 size-bin implementation of the MOSAIC aerosol120

module (Zaveri et al., 2008). This includes a simplified formulation of secondary organic121

aerosol formation (Hodzic & Jimenez, 2011), including that from wildfires. Analyses in-122

terlaced with hourly forecasts from the Global Forecasting System (GFS) of the National123

Centers for Environmental Prediction (NCEP) made available through the NOAA Op-124

erational Model Archive and Distribution System (NOMADS, (Rutledge et al., 2006))125

were used as initial and boundary conditions for meteorological variables. Results of sim-126

ulations of the Whole Atmosphere Community Climate Model (WACCM) model cre-127

ated by the Atmospheric Chemistry Observations & Modeling Laboratory (ACOM) of128

the National Center of Atmospheric Research (NCAR) served to provide initial and bound-129

ary conditions for trace gases and particles (https://www.acom.ucar.edu/waccm/, last130

accessed 02.03.2022). The EDGAR-HTAP dataset was used for prescribing anthropogenic131

emissions (Janssens-Maenhout et al., 2012). The model simulations also considered bio-132

genic emissions from plants (Guenther et al., 2006), desert dust (LeGrand et al., 2019)133

and sea spray (Gong, 2003). Emissions of trace gases and particles from wildfires were134

included by the Fire INventory from NCAR (FINN) model (Wiedinmyer et al., 2011),135

based on daily observations of fire radiative power by the MODIS and VIIRS satellite136

instruments.137

The model domain covers the central and eastern Mediterranean basin (1.47 - 47.63◦E,138

27.60 - 49.45◦N) at 20 km horizontal resolution, with 33 vertical levels (up to 10 hPa)139

(Figure 1a). Two simulations, a fire and a no-fire scenario, were performed to quantify140

the contribution of wildfires to concentrations of major air pollutants. This model con-141

figuration has already been evaluated in different regions of the world and used to sim-142

ulate the concentrations of various air pollutants (Graham et al., 2021; Butt et al., 2021).143

2.3 Model evaluation144

We used the European Environmental Agency (EEA)’s AirBase air quality (includ-145

ing PM2.5, O3, NO2, and SO2) time series data sets (E1a & E2a) to evaluate the WRF-146

Chem simulations. AirBase data reported by EEA’s member states are provided either147

at hourly or daily intervals. Based on type and location, AirBase stations are classified148

as rural (including ”rural-remote”, ”rural-regional”), sub-urban (including ”rural-nearcity”),149

and urban. All AirBase data are quality-checked and flagged with different levels of ver-150

ification (European Environment Agency, 2021). We only used data with ”verification151

code” equal to 1 (verified) or 2 (preliminary verified) in the metadata, and only from sta-152

tions where more than 75% of observations were present during the entire period. For153

stations where only daily means were recorded, hourly WRF-Chem values were averaged154

to daily means for comparison. The data were downloaded using airbase 0.2.7 python155

library (https://pypi.org/project/airbase/).156

2.4 Health impacts assessment (HIA)157

Health impacts of short-term exposure to wildfire-caused air pollution were esti-158

mated using a well-established methodology (WHO, 2016). Details of the main steps are159

given below.160
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2.4.1 Determination of population exposure to air pollution161

Population exposure was quantified for each country by calculating the population-162

weighted concentrations of air pollutants using GWPv4 population data and pollutant163

concentration data from the WRF-Chem simulations. For country J on day d, its pop-164

ulation weighted exposure (Cpw) to a pollutant i - say, i is PM2.5, is then calculated as:165

Cpwi,J,d =

∑
∀j∈J (popj × cijd)∑

∀j∈J popj
(1)

where cijd is the daily mean air pollutant concentration for PM2.5, SO2, and NO2, whereas166

the daily mean 8 hour average (DMA8) is used for O3. Population-weighted exposure167

was computed for both fire and non-fire scenarios, with their difference representing the168

additional health burden attributable to wildfires.169

2.4.2 Estimate of exposure-associated health risk170

To estimate the exposure-associated health risk, we used both baseline health statis-171

tics (here e.g., mortality) and an exposure-response-function (ERF) for individual air pol-172

lutants.173

The baseline all-cause mortality data in both genders (deaths per annum) for 2019174

(the latest year for which data are available) were downloaded from the Global Health175

Data Exchange (GHDx) (Global Burden of Disease Collaborative Network, 2020). To176

interpolate the annual deaths to the summer months (July-August-September) 2021, we177

used the multi-annual (2010-2019) average of monthly deaths as proxy. Monthly base-178

line mortality data are collected by the European Statistical Office (Eurostat) for its mem-179

ber and associated states (Eurostat, 2021). For countries where monthly deaths are not180

available, e.g., Tunisia, Israel, and Egypt, the monthly mean deaths averaged over all other181

countries in this region were used as proxy (Figure S2 in SI). Total monthly deaths were182

then equally distributed to each day of the month.183

An ERF associates the proportional increase in exposure of an air pollutant with184

the potential adverse health outcomes, typically expressed as relative risk (RR). The RR185

is a ratio of incidences (e.g., deaths) exposed to air pollution relative to to incidences with186

no exposure. The RR can be estimated either by 1) pre-defined formulas or ranges of187

values from studies or meta-analyses, or 2) by integrated ERF approaches (Burnett et188

al., 2014; Cohen et al., 2017). Here, we chose the former approach, adopting RR values189

for short-term exposure mainly from a recently published systematic review by Orellano190

et al. (2020). To assess the uncertainty due to different RR estimates, we additionally191

calculated health impact estimates with RRs from different reviews published before (World192

Health Organization, 2013; Orellano et al., 2020; Vicedo-Cabrera et al., 2020; Liu et al.,193

2019). The RRs together with their respective 95% confidence intervals (CIs) are listed194

in Table 1.195

Given a linear relationship and an exposure increase ∆C of 10 µg/m3, the RR∆10196

is defined as197

RR∆C = eβ∆C . (2)

From Equation 2 we can back out the coefficient β and use it to estimate RRs for198

arbitrary ∆X:199

RR(∆X) = eβ(∆X−X0), (3)

where X0 is the theoretical minimum risk exposure level, below which no additional200

risk is assumed. In line with previous works (Graham et al., 2021; Macintyre et al., 2016),201
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Relative risk (95% CI)
PM2.5 O3

Orellano et al. (2020) 1.0065 (1.0044–1.0086) 1.0043 (1.0034–1.0052)
WHO (2013) 1.0123 (1.0045-1.0201) 1.0029 (1.0014-1.0043)

Liu et al. (2019)* 1.0068 (1.0059-1.0077) –
Vicedo-Cabrera et al. (2020) – 1.0018 (1.0012-1.0024)

* 2-day moving average is used as the exposure metric instead of the daily mean used elsewhere.
Table 1. Relative risks (RR∆10) with 95% confidence interval (CI) of all-cause mortality as-

sociated with short-term exposure to PM2.5 and O3 for an increase of 10 µg/m3 concentration,

obtained from selected meta-analysis or multi-city studies published before.

we assume X0 to be zero. We then derived excess exposures to an air pollutant i emit-202

ted from wildfires as the difference in population exposure between the fire and no-fire203

simulations for a country J :204

∆Ci, J = Cpwfire
i,J − Cpwno−fire

i,J (4)

To account for the health impacts on the population level, the population attributable205

fraction (PAF), defined as the fraction of adverse health outcomes in a population at-206

tributable to a specific exposure, is computed using the formula (Mansournia & Altman,207

2018):208

PAF = 1− 1

RR
(5)

The excess number of deaths attributable to wildfire-caused exposure to air pol-209

lutant i for a country J within the entire period of simulation (Ei,J) is computed as:210

Ei,J =

N∑
d=1

(BMJ,d × popJ × PAFi,J), (6)

where BMJ,d is the baseline mortality for the country J on day d, and N is the total num-211

ber of days simulated.212

2.4.3 Estimate of uncertainty due to error propagation in excess mor-213

tality214

Numerous sources of uncertainty exist for such a health impact assessment which215

have been discussed in details elsewhere (WHO, 2016).216

In this study, we accounted for the uncertainty arising from the multiplication of217

baseline mortality and relative risk, both of which are bounded with their respective 95%218

CIs. Assuming a normal distribution for both data sets (x ∼ N (µ, σ2)), the standard219

error (SE) of each data is derived as:220

SE(x) = (CIupper − CIlower)/(2 · z1−0.05/2), (7)

where z1−0.05/2 is the 0.975 quantile of the standard normal distribution (z0.975 ≈ 1.96).221

Then, the variance Var(x) = SE(x)2. As PAF depends linearly on 1/RR (Equation 5),222

its SE and variance are linear derivatives of those for 1/RR.223

To quantify the propagation of the uncertainties in the excess mortality estimates,224

two approaches were used. The first approach is based on the delta method (Ver Hoef,225
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2012). For the product of baseline mortality and PAF (as in Equation 6), the joint stan-226

dard error is calculated below:227

SE(x̂1x̂2) =

√
x̂1

2Var(x̂2) + x̂2
2Var(x̂1) + 2x̂1x̂2Cov(x̂1, x̂2), (8)

where x̂1, and x̂1 represent the expectations of baseline mortality and PAF, respectively.228

Since baseline mortality and PAF are mutually independent, their covariance is zero. Equa-229

tion 8 can be further shortened as:230

SE(x̂1x̂2) =

√
x̂1

2Var(x̂2) + x̂2
2Var(x̂1) (9)

The 95% confidence intervals for the product x1x2 are x̂1x̂2 ± 1.96SE(x̂1x̂2).231

The second approach is based on the Monte Carlo method. We respectively gen-232

erated the normally distributed random samples of BM and PAF (with a sample size N233

= 1000) based on the expectations and SEs derived from Equation 7. The 2.5% and 97.5%234

percentiles of the sample composed of the element-wise product of BM and PAF desig-235

nated the lower and upper bounds of the 95% CIs for their product. Repeating for 100236

times, the respective mean values of lower and upper bounds quantified the uncertainty237

for the estimated health impacts.238

We used the R software (version 4.1.1) (R Core Team, 2021) and the sf package239

(version 1.0-4) (Pebesma, 2018) to perform the statistical and geo-spatial analyses.240

3 Results241

3.1 Model validation242

Figure S3-S4 in SI show normalized Taylor diagrams for PM2.5 and O3 simulations243

for rural, sub-urban, and urban AirBase stations. Subject to the collection frequency of244

AirBase data, the performance was evaluated for daily and hourly means, respectively.245

Overall, WRF-Chem model performance is on par with recent multi-model inter-246

comparison studies of air quality models over Europe and North America (Im et al., 2015b,247

2015a) and produced accurate estimates for the concentrations of PM2.5 and O3 when248

compared to the AirBase dataset. We note that a perfect simulation, especially of ur-249

ban stations cannot be expected due to the very different representativeness of station250

measurements and the 20 km horizontal resolution of WRF-Chem.251

The estimates of PM2.5 from the WRF-Chem simulations were marginally better252

for daily mean values than for hourly values when compared to the observations, whereas253

the performance exhibited no significant difference between stations of different types.254

The correlation coefficients between the simulated and observed concentrations (on po-255

lar axes) range from 0.5 to 0.7. By comparison, neither the averaging time (hourly vs.256

daily) nor the type of station affected the model performance in estimating O3 concen-257

tration.258

3.2 Effects of wildfires on health-relevant pollutant concentrations259

Wildfires emit large amounts of particulate matter, nitrogen oxides (NOx), as well260

as carbon monoxide (CO) and other volatile organic compounds (VOCs) into the atmo-261

sphere (Schneider & Abbatt, 2022). They increase PM2.5 levels through direct emission262

of particles as well as the formation of secondary PM2.5 from the oxidation of the emit-263

ted SO2, NOx, and VOCs. These species are oxidized to less volatile sulfates, nitrates,264

and secondary organic aerosols (SOAs), respectively, which then condense onto pre-existing265

particles or form new ones (Kroll et al., 2020). Some VOCs are in part emitted with semi-266

and low volatility and will condense onto particles upon dilution and cooling without the267

need of further photochemical reactions.268
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Increased NOx and VOCs from wildfires lead to additional O3 formation downwind269

through photo-chemical reactions (Jaffe & Wigder, 2012). In addition, wildfires can in-270

crease concentrations of the hydroxyl radical (OH), leading to an increased atmospheric271

oxidation capacity, which further favors the formation of secondary particulate matter.272

3.3 Spatio-temporal patterns of air pollutant concentrations273

Figure 2 a shows the spatial pattern of the WRF-Chem simulated PM2.5 concen-274

tration as average over the entire period based on the fire scenario.275

The mean PM2.5 concentrations range from 5 to 160 µg/m3 across the region. High276

PM2.5 loads are clearly visible in regions that are already heavily polluted even in the277

absence of wildfires, e.g., along the eastern coastlines of Turkey including the metropoli-278

tan area of Istanbul, and the eastern Ukrainian metropolitan area of Mariupol on the279

north coast of the Azov sea. The latter region is one of the most polluted regions in Eu-280

rope. Furthermore, urban areas exhibit faintly higher PM2.5 concentrations in contrast281

to non-urban regions.282

Figure 2 b and c show the spatial pattern of fires-caused PM2.5 concentration rel-283

ative to that under no-fires scenario, and the percentage of PM2.5 loads attributable to284

wildfires. The increased PM2.5 concentrations caused by wildfires are mainly observed285

in the Balkans, Greece, and southern Italy, coinciding with the distribution of fire events286

within the simulation period (Figure 1 b-c). Some regions with high background indus-287

trial pollution exhibit no change or even a slight decrease in ambient PM2.5 concentra-288

tion.289

Diurnally, the PM2.5 concentration is subject to the mixing layer height (Figure290

S8 in SI). The daytime troughs reflect strong turbulent exchange and dilution within the291

mixed layer, whereas stable nighttime boundary layer enables PM2.5 to accumulate (Manning292

et al., 2018).293

Figure 3 shows the spatial pattern of WRF-Chem-simulated O3 concentrations. In294

contrast to the PM2.5 pattern, the O3 concentration demonstrates an upward gradient295

from urban agglomerations to non-urban surroundings, indicating titration by large ur-296

ban nitrogen oxides (NOx) emissions.297

The overall effect of the wildfires on O3 is more widespread due to the longer at-298

mospheric formation and lifetime of O3, and is hence visible on a country level (Figure299

S9). Interestingly, the border region between Bulgaria and Romania is observed to be300

one of regions most affected by wildfire-caused O3 pollution, which may be accounted301

for by the location-specific topography and the fact that it is located downwind of a num-302

ber of fires that occurred during the season. The region on the lower Danube plain is fur-303

ther bounded by the Carpathian Mountains to the North and West and by the Balkan304

Mountains to the South which forms a semi-closed topographical feature, channeling and305

concentrating air pollutants emitted from wildfires.306

Figure S9 in SI shows the diurnal pattern of O3, which is determined by the pres-307

ence of sunlight, as O3 is formed primarily by photo-chemical reactions.308

Figures S5-S6 and S10-S11 in SI show the spatial and temporal pattern of NO2 and309

SO2 concentrations, respectively. The hot spots of NO2 and SO2 are principally found310

in cities, along artery roads and shipping routes (Figure S5), and in large point sources311

like power plants and oil and gas refineries (Figure S6 a).312

By comparison to O3, increases of NOx and SO2 are less visible on a country level313

(Figures S9-S10), as their effects are limited locally due to their relatively shorter atmo-314

spheric lifetime, and the dilution into comparatively high pre-existing background con-315

centrations.316
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Figure 2. Spatial pattern of multi-month mean PM2.5 concentrations simulated by WRF-

Chem under the fires scenario and the difference relative to the no-fires scenario. a) PM2.5 con-

centration simulated under fires scenario, b) PM2.5 concentration under fires scenario relative to

no-fires (∆PM2.5 = PM2.5
fires- PM2.5

no-fires), c) PM2.5 concentration attributable to wildfires

in percentages (∆PM2.5/PM2.5
fires). The increased PM2.5 concentrations caused by wildfires are

mainly observed in the Balkans, Greece, and southern Italy, whereas the regions with high back-

ground industrial pollution (hot spots in the panel a) show a slight decrease in ambient PM2.5

concentration.

Similar to PM2.5, the diurnal pattern of NO2 and SO2 concentration is determined317

by the mixing layer height (Figure S10-S11 in SI). We do indeed find the expected in-318

creases in the concentration of the hydroxyl radical (OH) in the fire simulation (Figure319

S7 in SI), which will lead to additional formation of secondary particulate matter.320

3.4 Population-weighted exposure to major air pollutants321

Figure 4 depicts the multi-month mean population-weighted exposures to four air322

pollutants under fires (red dots), and no-fires (blue dots) scenarios. For the time series323

of population-weighted exposures to air pollutants in individual countries, please refer324

to Figures S12-S15. Countries in Balkans (e.g., Albania, North Macedonia, Montenegro,325

and Bulgaria), Romania, and Greece are among the most affected regions by the wildfire-326
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Figure 3. Spatial pattern of multi-month mean O3 concentrations simulated by WRF-Chem

under the fires scenario and the difference relative to the no-fires scenario. a) O3 concentra-

tion simulated under fires scenario, b) O3 concentration under fires scenario relative to no-

fires (∆O3 = O3
fires- O3

no-fires), c) O3 concentration attributable to wildfires in percentages

(∆O3/O3
fires).
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Figure 4. Multi-month daily mean population weighted concentration of air pollutants, fires

scenario versus no-fires scenario. For pollutants other than O3, the daily mean concentration is

used, while the daily mean 8-h average (DMA8) for O3. B&H stands for Bosnia and Herzegovina.
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caused PM2.5 and O3 pollution, in line with the incidence of wildfires within the sim-327

ulation period. By contrast, wildfires have not resulted in a discernible increase of pop-328

ulation exposure to NO2 and SO2 within the simulation period and region. Therefore,329

we estimate the wildfire-associated health impacts based primarily on PM2.5 and O3 ex-330

posures.331

3.5 Wildfire-caused excess mortality332

Figure 5 a-b shows the excess number of deaths for each country estimated based333

separately on RRs of short-term exposure to PM2.5 and O3 obtained from the meta-analysis334

by Orellano et al. (2020). The 95% CIs are estimated using the Monte Carlo method de-335

scribed in Section 2.4.3. The exact number of deaths for each country and the entire re-336

gion are available in Table S2 in SI.337

Owing to the large population, Italy and Egypt are the countries with the high-338

est excess death estimates due to short-term exposure to wildfire-caused PM2.5 and O3.339

Although wildfires are not frequently observed in Egypt (Figure 1 b), the deaths recorded340

are significant and can be attributed to the transport of air pollution caused by wild-341

fires occurring elsewhere in the Mediterranean basin, clearly indicating the widespread342

impact of wildfires on the whole Mediterranean basin.343

Figure 5 c-d sum up the excess deaths attributable to short-term exposure to PM2.5344

and O3 in the entire region of investigation during mid-July to early October, 2021, based345

on RRs suggested by different publications. Based on the RR values from Orellano et346

al. (2020), there are 270 (95% CI: 177-370) deaths attributable to the short-term expo-347

sure to wildfire-caused PM2.5. This estimate is close to the one based on Liu et al. (2019)348

– 281 (95%: 225-334). In comparison, 508 (95% CI: 187-847) excess deaths are estimated349

based on the RRs from World Health Organization (2013), albeit with a pronounced range350

of uncertainty.351

With regard to the excess deaths attributable to short-term O3 exposure, 741 (95%352

CI: 556 - 940]) excess deaths are estimated based on Orellano et al. (2020), remarkably353

exceeding the estimates based on World Health Organization (2013) (501, 95% 247-768)354

and Vicedo-Cabrera et al. (2020) (310, 95% 201-428).355

4 Discussion and Conclusions356

We have assessed the health impacts due to the short-term exposure to air pollu-357

tion caused by wildfires over the eastern and central Mediterranean basin in the sum-358

mer 2021. The exposures were estimated using a fully coupled atmospheric chemistry359

model under fire and no-fire scenarios, respectively, while the consequent health impacts360

were quantified based on well-established ERFs from selected systematic reviews. We361

estimated that the 2021 summer wildfires result in an excess number of deaths ranging362

from approximately 270 (95% CI: 177-370) to 741 (95% CI: 556 - 940]), depending on363

the targeted pollutants which population are exposed to, and on their respective ERFs.364

In general, we found larger health impacts due to wildfire-associated exposure to365

O3 than to PM2.5. As the relative risk of exposure to O3 is actually lower than that of366

PM2.5 exposure (Table 1), the reason for this surprising finding is shown to be attributable367

to the more widespread impact of wildfires on O3 due to a longer overall lifetime of O3368

in the atmosphere.369

We refrained from deciding whether the excess deaths attributed to each pollutant370

can simply be added up to generate a synthesized estimate of health impacts as a result371

of the simultaneous exposure to multiple pollutants. The solution to this problem de-372

mands a thorough knowledge of correlations between health impacts of each pollutant373

(World Health Organization, 2013), and analysis of their confounding effects (Anderson374
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Figure 5. Excess deaths with uncertainties estimated based on relative risks of short-term

exposure to PM2.5 and O3. a-b) wildfire-caused excess deaths with 95% CIs for each country

included in the study based on relative risk values for short-term PM2.5 and O3 exposures from

Orellano et al. (2020). c) Total excess deaths estimated using relative risk values from different

meta-analyses (with the vertical gray band indicating the ones used in panels a and b), based on

short-term exposure to PM2.5 and O3, respectively. The 95% CIs were estimated using the Delta

(I) and Monte Carlo (II) methods. In Liu et al. (2019), the 2-day moving average of daily mean

PM2.5 concentrations was used to estimate the excess mortality.
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et al., 2012; Bell et al., 2007). Although several statistical methods have been proposed375

to address the multi-collinearity issues in concurrent exposure (Stafoggia et al., 2017; Wei376

et al., 2020), they have not been widely adopted, including in studies that underlay the377

systematic reviews by Orellano et al. (2020); World Health Organization (2013). There-378

fore, results based on these reviews should be interpreted with caution, as confounders379

were not adequately adjusted for. As a result, it remains inconclusive whether to sum380

up the death estimates based on different air pollutants. All the aforementioned aspects381

can substantially affect the outcomes of the health impact assessment, making it diffi-382

cult to narrow down the range of real health impacts attributable to wildfire-caused air383

pollution beyond what we have shown here.384

The WRF-Chem model enables a temporally and spatially resolved exposure es-385

timate, while accounting for primary emissions from wildfires and subsequent secondary386

chemical and physical processes. To date, the health impact assessment of air pollution387

is limited to a subset of its proxies (e.g., PM2.5, NO2, O3), with their exposures being388

measured by mass. This simplification is increasingly challenged by mounting evidence389

that the toxicity of air pollution depends to a large extent on the chemical composition390

and atmospheric ageing rather than the mass itself. Especially, several studies point to391

the fact that particulate matter arising from wildfires is more toxic to lungs compared392

with particulate matter from normal ambient air (Wegesser et al., 2009; Dong et al., 2017;393

Xu et al., 2020). In the future, the ability of such modeling systems to estimate further394

harmful trace gases as well as chemically-speciated particulate matter may help over-395

come such limitations, leading to better association and causation in epidemiological anal-396

ysis.397

We have accounted for uncertainties arose from the baseline mortality data and ERFs.398

However, we have to acknowledge several sources of uncertainty that have not been taken399

into account within this study. The health impacts estimated within the study is lim-400

ited to the excess mortality due to short-term exposure to air pollution aggravated by401

wildfires. This does not take into account direct loss of life and hospital admissions caused402

by the direct exposure to radiant heat/smoke/flames of wildfires, nor the consequent im-403

pairment of life quality.404

Though broadly validated, the WRF-Chem model results contain a certain degree405

of uncertainty in exposure estimation. The uncertainty could originate from the model406

configuration (e.g., the horizontal and vertical grid setting of simulation domain, and pa-407

rameterization schemes adopted to account for the atmospheric physics and chemistry),408

model inputs (e.g., boundary meteorology, and inventories on anthropogenic and fires-409

associated emissions), as well as the representation of particles and their size distribu-410

tion within the model (Im et al., 2018).411

The horizontal resolution of 20 km set in the WRF-Chem simulation may be too412

coarse to represent urban areas and their related impacts on the dispersion and trans-413

formation of air pollutants sourced from wildfires. This may lead to an underestimation414

of particular matter and an overestimation of O3 in urban areas (Im et al., 2015a). Due415

to its complex nature, the model-associated uncertainty has not been addressed in the416

study. However, this can be the focus of future research.417

A further source of uncertainty lies in the ERFs adopted for the health impact as-418

sessment. Although ERFs derived from meta-analysis are thought to deliver less biased419

and impartial evidence on the association between exposure and health outcomes, they420

are prone to several other biases, e.g., publication bias and language bias, which may dis-421

tort the evidence (Page et al., 2021). Meanwhile, current ERFs are based primarily on422

exposures measured in urban or suburban settings, making the exposure estimate for ru-423

ral areas more prone to misclassification errors. Even though rural areas normally ex-424

hibit a lower level of particulate matters and are thought to be less polluted, the rural425

air can demonstrate similar levels of cellular oxidative potential as in cities, due largely426
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to more toxic chemicals emitted from agriculture activities (Wang et al., 2022). On the427

other hand, neither measurements by monitoring networks nor model simulations, are428

able to reproduce the individual exposure which is subject to a variety of factors such429

as personal behavior, socioeconomic status, and preexisting health conditions (Evangelopoulos430

et al., 2020).431

Regarding the large differences in estimated health impacts for O3, we note that,432

as a systematic review commissioned by the WHO, Orellano et al. (2020) included the433

most recent studies, providing updated evidence base supporting associations between434

short-term air pollution exposure and mortality, compared to World Health Organiza-435

tion (2013). In contrast, Vicedo-Cabrera et al. (2020) suggested a considerably lower RR436

for short-term exposure to O3, resulting in a smaller estimate of excess deaths. As both437

studies differ in methodology and underlying database leading to the relative risks, the438

reason for the discrepancy remains unexplored and is beyond the scope of this study.439

In all estimates, the choice of methods for quantifying the uncertainty of excess deaths440

exhibits a minor impact on the results. The Delta method, compared with the Monte441

Carlo method, is prone to slightly underestimate the lower and upper bounds of the 95%442

CI.443

We excluded the health impact assessment based on short-term exposure to PM10,444

another widely used proxy indicator for air pollution, to avoid double counting of the445

PM-associated health effects. This is based on the fact that PM2.5 accounts for an over-446

whelming proportion of PM-associated health effects (Lu et al., 2015; Liu et al., 2019).447

Future work is needed to reduce the uncertainties resulted from estimates of both448

exposures and health effects, while simultaneously augmenting the computational per-449

formance of the methodology used. To this end, it is worth further exploring the ensem-450

ble or hybrid approaches which combine both physically based atmospheric chemistry451

transport models and computationally efficient statistical models (Im et al., 2018; Conibear452

et al., 2021; Di et al., 2019; Shtein et al., 2019; Hough et al., 2021).453
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name ISO-2 ISO-3 pop. (in Mio.)
1 Albania AL ALB 2.84
2 Bosnia and Herzegovina (B&H) BA BIH 3.28
3 Bulgaria BG BGR 6.93
4 Cyprus CY CYP 1.21
5 Egypt EG EGY 102.33
6 Greece GR GRC 10.72
7 Croatia HR HRV 4.05
8 Israel IL ISR 9.22
9 Italy IT ITA 59.55
10 Lebanon LB LBN 6.83
11 Montenegro ME MNE 0.62
12 North Macedonia (N. Macedonia) MK MKD 2.07
13 Malta MT MLT 0.53
14 Romania RO ROU 19.29
15 Serbia RS SRB 6.91
16 Slovenia SI SVN 2.10
17 Tunisia TN TUN 11.82
18 Turkey TR TUR 84.34

SUM 334.62
Table S1. Countries included in the study and their respective population in 2020, obtained

from the World Bank’s World Development Indicators database (World Bank, 2020).
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PM2.5 O3

Country Method I Method II Method I Method II
Albania 5 [3,7] 5 [3,8] 12 [9,16] 12 [9,16]
B&H 4 [2,6] 4 [3,6] 9 [7,12] 9 [7,12]
Bulgaria 21 [13,29] 21 [14,29] 63 [46,80] 63 [47,81]
Croatia 4 [3,6] 4 [3,6] 10 [7,12] 10 [7,13]
Cyprus 1 [0,1] 1 [0,1] 2 [1,2] 2 [1,2]
Egypt 45 [27,63] 45 [29,64] 128 [88,167] 128 [90,169]
Greece 23 [16,30] 23 [16,30] 55 [43,67] 55 [44,67]
Israel 4 [2,5] 4 [2,5] 9 [7,11] 9 [7,11]
Italy 67 [46,89] 67 [46,89] 155 [123,188] 155 [123,187]
Lebanon 2 [2,3] 2 [2,3] 6 [5,7] 6 [5,7]
Malta 0 [0,1] 0 [0,1] 1 [1,1] 1 [1,1]
Montenegro 2 [1,2] 2 [1,2] 4 [3,5] 4 [3,5]
N. Macedonia 4 [3,6] 4 [3,6] 11 [8,15] 11 [8,15]
Romania 36 [23,48] 36 [23,49] 110 [81,139] 110 [83,140]
Serbia 15 [9,21] 15 [10,21] 40 [29,51] 40 [29,51]
Slovenia 1 [1,1] 1 [1,1] 2 [2,3] 2 [2,3]
Tunisia 4 [3,6] 4 [3,6] 11 [7,14] 11 [7,14]
Turkey 31 [19,43] 31 [20,43] 114 [83,144] 114 [85,145]
SUM 270 [174,367] 270 [177,370] 741 [548,934] 741 [556,940]

Table S2. Excess number of deaths for individual countries and the entire region estimated

based on wildfires-caused PM2.5 and O3 loads within the simulation period, with 95% confidence

intervals (CIs) in brackets. The methods I and II refer to the Delta and Monte Carlo methods

for the uncertainty estimation, respectively, which are described in details in Section 2.4.3 in the

main text. The Delta method slightly underestimate the excess deaths compared to the Monte

Carlo method. However, the difference is not significant.

May 7, 2022, 8:28pm



X - 6 :

500

1000

1500

2000

Israel
Turkey

Egypt

Tunisia

Lebanon

Cyprus

Albania

Malta
Slovenia

Italy
Montenegro

N. Macedonia

B&H
Croatia

Greece

Serbia

Romania

Bulgaria

m
or

ta
lit

y 
ra

te
 [d

ea
th

s 
pe

r 
10

0,
00

0]

Figure S1. Baseline all-cause mortality in both genders 2019 for each country with 95% con-

fidence intervals, downloaded from the Global Health Data Exchange (Global Burden of Disease

Collaborative Network, 2020).The annual mortality rates of countries range from 515 (Israel) to

1791 (Bulgaria) deaths per 100,000 population. B&H stands for Bosnia and Herzegovina.
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Figure S2. Multi-annual monthly mean normalized ratio of death averaged across 2010-

2020 (dark gray, bold), underlaid with data for individual years (light gray) downloaded from

(Eurostat, 2021). For countries where monthly death data are not available (e.g., Egypt, Israel,

Lebanon), the monthly mortality is calculated based on the regional mean value averaged across

all other countries (General*).
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Figure S3. Validation of PM2.5 concentration simulated by WRF-Chem using AirBase E1a

& E2a air quality data. We only used the verified AirBase data with ”verification code” equal

to 1 (verified) or 2 (preliminary verified) in the metadata, and data from stations where more

than 75% of observations are present during the entire period. Each AirBase station is spatially

matched to a WRF grid cell (20 km). The hourly WRF values are also averaged to daily means

for comparison with AirBase data from stations where only daily means were recorded.
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Figure S4. Validation of O3 concentration simulated by WRF-Chem using AirBase data.
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Figure S5. Spatial pattern of multi-month mean NO2 concentration simulated by WRF-Chem

under the fires scenario and the difference relative to the no-fires scenario. a) NO2 concentra-

tion simulated with fires scenario, b) NO2 concentration with fires scenario relative to no-fires

(∆NO2 = NO2
fires- NO2

no-fires), c) NO2 concentration attributable to wildfires in percentages

(∆NO2/NO2
fires).The elevation of wildfire-caused NO2 is mainly observed in the Balkans, South

Italy, and southern coast of Turkey. In contrast, regions with high background industrial pollu-

tion show a slight decrease in ambient NO2 concentration.
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Figure S6. Spatial pattern of multi-month mean SO2 concentration simulated by WRF-Chem

under the fires scenario and the difference relative to the no-fires scenario. a) SO2 concentra-

tion simulated with fires scenario, b) SO2 concentration with fires scenario relative to no-fires

(∆SO2 = SO2
fires- SO2

no-fires), c) SO2 concentration attributable to wildfires in percentages

(∆SO2/SO2
fires).
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Figure S7. Spatial pattern of multi-month mean hydroxyl radical (OH) concentration simu-

lated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario.

a) OH concentration simulated with fires scenario, b) OH concentration with fires scenario rel-

ative to no-fires (∆OH= OHfires- OHno-fires), c) OH concentration attributable to wildfires in

percentages (∆OH/OHfires).
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Figure S8. Diurnal pattern of multi-month hourly mean ambient PM2.5 concentration for

each country and the entire region of interest (ROI). In most countries, the PM2.5 concentration

follows a pattern subject to the mixing layer height. The daytime troughs reflect strong turbulent

exchange and dilution within the mixed layer, whereas stable nighttime boundary layer enables

PM2.5 to accumulate (Manning et al., 2018). The wildfire-caused elevation of PM2.5 concentration

in all countries can be ascribed to the emissions of gas-phase air pollutants such as NOx, and

VOCs from wildfires. These species are oxidized to form less volatile nitrates, and secondary

organic aerosols (SOAs), respectively, and condense into the particle phase (Kroll et al., 2020).
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Figure S9. Diurnal pattern of multi-month hourly mean O3 concentration for each country

and the entire ROI. The biomass burning presents a significant source of O3 precursors such as

carbon monoxide (CO), volatile organic compounds (VOCs), and nitrogen oxide (NOx), which

form O3 in the presence of solar radiation (Holzinger et al., 1999). Therefore, the concentration of

O3 starts to increase after the sunrise and often reaches its maximum in the afternoon (between

LT1200 and 1600). As the time of the day (horizontal axis) is in UTC, the local time (LT) of

each country may be offset, subject to the time zone which the country is located in.
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Figure S10. Diurnal pattern of multi-month hourly mean SO2 concentration for each country

and the entire region of interest.

May 7, 2022, 8:28pm



X - 16 :
N

O
2 

[p
pb

]

Albania

0

5

10

15

20

0 8 16

a. B&H

0

5

10

15

20

0 8 16

b. Bulgaria

0

5

10

15

20

0 8 16

c. Croatia

0

5

10

15

20

0 8 16

d. Cyprus

0

5

10

15

20

0 8 16

e. Egypt

0

5

10

15

20

0 8 16

f.

Greece

0

5

10

15

20

0 8 16

g. Israel

0

5

10

15

20

0 8 16

h. Italy

0

5

10

15

20

0 8 16

i.

Lebanon

0

5

10

15

20

0 8 16

j. Malta

0

5

10

15

20

0 8 16

k. Montenegro

0

5

10

15

20

0 8 16

l.

N. Macedonia

0

5

10

15

20

0 8 16

m. Romania

0

5

10

15

20

0 8 16

n. Serbia

0

5

10

15

20

0 8 16

o. Slovenia

0

5

10

15

20

0 8 16

p. Tunisia

0

5

10

15

20

0 8 16

q. Turkey

0

5

10

15

20

0 8 16

r.

ROI

0

5

10

15

20

0 8 16

no_fires fires

s.

Hour [UTC]

Figure S11. Diurnal pattern of multi-month hourly mean NO2 concentration for each country

and the entire region of interest.
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Figure S12. Time series of 24h-mean population weighted concentration of PM2.5 for each

country.
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Figure S13. Time series of population weighted daily maximum 8-h average (DMA8) of O3

for each country.
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Figure S14. Time series of 24h-mean population weighted concentration of SO2 for each

country.
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Figure S15. Time series of 24h-mean population weighted concentration of NO2 for each

country.
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