An estimate of excess mortality resulting from air pollution caused by wildfires in the eastern and central Mediterranean basin in 2021

Bin Zhou¹ and Christoph Knote¹

¹University of Augsburg

November 23, 2022

Abstract

Wildfires result in human fatalities not only due to the direct exposure to flames, but also indirectly through smoke inhalation. The Mediterranean basin with its hot and dry summers is a hotspot for such devastating events. The situation has further been aggravated in recent years by climate change as well as a growing and aging population in the region. To assess the health impacts due to short-term exposure to air pollution created by the 2021 summer wildfires in the eastern and central Mediterranean basin, we used a regional-scale chemistry transport model to simulate concentrations of major air pollutants such as fine particulate matter with a diameter less than 2.5 μ m (PM_{2.5}), SO₂, NO₂, and O₃ - in a fire and a no-fire scenario. Elevated short-term exposure of the population to air pollutants are associated with excess all-cause mortality using relative risks for individual pollutants from previously published meta-analyses. Our estimates indicate that the short-term exposure to wildfire-caused changes in O₃ accounted for 741 (95% CI:556-940) excess deaths in total over the entire region of investigation during the wildfire season between mid-July to early October 2021. This is followed by 270 (95% CI:177-370) excess deaths due to elevated PM_{2.5}. We show this to be attributed largely to the spatially more widespread impact of wildfires on O₃. Our study concludes with a discussion on uncertainties associated with the health impact assessment based on different air pollutants.

An estimate of excess mortality resulting from air pollution caused by wildfires in the eastern and central Mediterranean basin in 2021

Bin Zhou^{1,2}, Christoph Knote¹

¹Model-based Environmental Exposure Science, Faculty of Medicine, University of Augsburg, Augsburg, 5 $\label{eq:Germany} \ensuremath{\operatorname{Germany}}\xspace^2 \ensuremath{\operatorname{Potsdam}}\xspace$ Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, 6 7 Germany 8

Key Points:

1

2

3

4

9

10	•	Exposures to $PM_{2.5}$ and O_3 caused by 2021 summer wildfires accounted for 270				
11		and 741 excess deaths in the eastern and central Mediterranean.				
12	•	Excess deaths attributable to increased O_3 exposure exceed those based on $\mathrm{PM}_{2.5}$				
13		exposure.				
14	•	Choice of exposure response functions leads to uncertainty up to a factor of 3.				

• Choice of exposure response functions leads to uncertainty up to a factor of 3.

Corresponding author: Bin Zhou, bin.zhou@med.uni-augsburg.de

Abstract 15

Wildfires result in human fatalities not only due to the direct exposure to flames, but 16 also indirectly through smoke inhalation. The Mediterranean basin with its hot and dry 17 summers is a hotspot for such devastating events. The situation has further been aggra-18 vated in recent years by climate change as well as a growing and aging population in the 19 region. To assess the health impacts due to short-term exposure to air pollution created 20 by the 2021 summer wildfires in the eastern and central Mediterranean basin, we used 21 a regional-scale chemistry transport model to simulate concentrations of major air pol-22 lutants such as fine particulate matter with a diameter less than 2.5 μ m (PM_{2.5}), SO₂, 23 NO_2 , and O_3 - in a fire and a no-fire scenario. Elevated short-term exposure of the pop-24 ulation to air pollutants are associated with excess all-cause mortality using relative risks 25 for individual pollutants from previously published meta-analyses. Our estimates indi-26 cate that the short-term exposure to wildfire-caused changes in O_3 accounted for 741 (95%) 27 CI:556-940) excess deaths in total over the entire region of investigation during the wild-28 fire season between mid-July to early October 2021. This is followed by 270 (95% CI:177-29 370) excess deaths due to elevated PM_{2.5} exposure, rendering the health effect of increased 30 O_3 from wildfires larger than the effect of increased $PM_{2.5}$. We show this to be attributed 31 largely to the spatially more widespread impact of wildfires on O₃. Our study concludes 32 with a discussion on uncertainties associated with the health impact assessment based 33 34 on different air pollutants.

35

Plain Language Summary

Wildfires lead to loss of life not only when directly affected, but also through the 36 inhalation of the smoke generated. The Mediterranean basin is frequently affected by 37 wildfires due to its hot and dry climate. Climate change as well as an increasingly ag-38 ing population made matters worse. In this study, we estimate the loss of life caused by 39 wildfires in the eastern and central Mediterranean basin in summer 2021. We used a com-40 puter model to simulate concentrations of air pollutants emitted from wildfires and es-41 timate the resulting excess human deaths based on the most relevant evidence from lit-42 erature. Our estimates found that wildfires account for several hundred excess deaths 43 in the study region between mid-July to early October 2021. We estimate the effects of 44 Ozone, a gaseous air pollutant, to exceed those of particles created by wildfires. Further-45 more, we discuss the uncertainties associated with our estimates. 46

1 Introduction 47

Air pollution is a central issue in public health globally given its well-documented 48 association with adverse health effects (Brunekreef & Holgate, 2002; Anenberg et al., 2010; 49 Lelieveld et al., 2020). Exposure to air pollution, both long-term and short-term, is es-50 timated to cause millions of premature deaths and lost years of healthy life each year (WHO, 51 2021). Air pollution from wildfires is becoming a subject of increasing concern due to 52 the higher toxicity associated with its chemical composition (Naeher et al., 2007; Wegesser 53 et al., 2009). Furthermore, smoke from wildfires can travel large distances and impact 54 the health of a much larger population than the effects of the actual fire (Bencherif et 55 al., 2020). Most recently, prominent examples are wildfires in the Amazon in 2019 (Butt 56 et al., 2021), Australia in 2019-2020 (Graham et al., 2021), and those in the United States 57 in recent years (Burke et al., 2021; Kramer et al., 2019; Xie et al., 2020). It has been shown 58 that frequency and magnitude of fire events are increasingly affected by human activ-59 ities and have been exacerbated by climate change (Bowman et al., 2020; Jolly et al., 2015). 60

Globally, wildfire smoke is estimated to cause more than 330,000 premature deaths 61 each year during 1997 - 2006 (Johnston et al., 2012). As climate change worsens, together 62 with updated evidence of impacts of wildfires on human health (Chen et al., 2021; Haik-63 erwal et al., 2015), wildfires are projected to result in increased human and material losses 64

in the near future (Xu et al., 2020). Furthermore, wildfires can lead to a higher susceptibility to other (respiratory) diseases, with reports of an amplified risk of COVID-19 cases
and deaths in wildfire seasons (Zhou et al., 2021; Schwarz et al., 2022) as a prime example. This may imply that previous studies may systematically underestimate the actual health impacts of wildfires, as they fail to adequately address the underlying relationship between wildfires and other environmental and health concerns.

Historically, the Mediterranean basin which is characterized by hot and dry sum-71 mers has been negatively affected by wildfires. With increased warming and declining 72 73 precipitation, the Mediterranean basin is expected to experience an increase in the frequency and scale of wildfires (Ruffault et al., 2020; Cos et al., 2021). Meanwhile, the rapid 74 population growth in some countries (e.g., Egypt, Israel, and Tunisia) and an ageing pop-75 ulation in others (e.g., southern European countries) renders the Mediterranean basin 76 ever more vulnerable to the unfavorable consequences of climate change (Linares et al., 77 2020). All this demands a comprehensive assessment of population exposure to wildfire-78 caused air pollution. 79

In this context, the 2021 summer wildfires in the eastern and central Mediterranean 80 basin serve as an indicator of future wildfire impacts. In our work we used this case to 81 assess the health impacts due to short-term exposure to air pollution from wildfire smoke. 82 An online-coupled atmospheric chemistry transport model was employed to simulate con-83 centrations of major air pollutants – fine particulate matter with a diameter of 2.5 μ m 84 or less $(PM_{2.5})$, SO₂, NO₂, and O₃ – in a fire and a no-fire scenario. Elevated short-term 85 exposure to air pollutants are associated with excess all-age all-cause mortality using rel-86 ative risks (RRs) for individual pollutants based on previously published meta-analyses. 87 We estimated the excess mortality attributable to wildfires for the entire region and the 88 countries included, with detailed discussions on the uncertainties associated with the es-89 timates. 90

⁹¹ 2 Data and Methods

92

2.1 Study area and period

The study area covers 18 countries and regions in the central and eastern Mediterranean basin with a total population of 334.62 million in 2020, of which over half resides along its coastal areas and hydrological basins (World Bank, 2020). For a full list of countries included in the study and their respective populations, please refer to Table S1 in the Supplementary Information (SI).

We used the UN WPP-Adjusted population count GPWv4 dataset of the Gridded Population of the World, Version 4 (GPWv4) data from the Socioeconomic Data and Application Center (SEDAC) for 2020 (CIESIN, 2018) to describe the spatial population distribution. From the original resolution of 2.5 arc-minute (approx. 5 km) data were aggregated to a grid of about 20 x 20 km² to be consistent with the configuration of the numerical model employed in this study (Fig. 1 a).

The study period was 15 July - 02 October 2021, covering the major wildfire events 104 in summer 2021. The severe dry conditions and heatwaves prevailing in this period have 105 resulted in many intense and long-lasting wildfires across the region, emitting large amounts 106 of air pollutants (e.g., particulate matter, NO_x, and SO₂) into the atmosphere (CAMS, 107 2021). According to the European Forest Fire Information System (EFFIS) (EFFIS, 2021), 108 there were more than 1800 wildfires with a burnt area of 10 hectares or larger occurring 109 in the region and period of this study, which burnt 589,400 hectares area in total. As 110 shown in Fig. 1 b-c, the worst hit countries include Turkey, Greece, Italy, Tunisia, and 111 the ones in the Balkans (e.g., Albania, Montenegro, and North Macedonia). 112

Figure 1. The study region overlaid with the population data and wildfire statistics. a) Population counts per country from the Gridded Population of the World, Version 4 (GPWv4) data for 2020 (CIESIN, 2018). The fan-shaped polygon demarcates the simulation domain. b-c) the total number of wildfires and total burnt areas, respectively, based on the European Forest Fire Information System (EFFIS) data between 15-July and 02-October, 2021. Countries included in the study are outlined in black.

113 2.2 Model description

Concentrations of $PM_{2.5}$, O_3 , NO_2 , and SO_2 were simulated using the Weather Re-114 search and Forecasting model coupled to Chemistry (WRF-Chem) model (version 4.2.1). 115 a fully online-coupled regional atmospheric chemistry model (Grell et al., 2005). The Model 116 for Ozone and Related chemical Tracers, version 4 (MOZART-4) gas-phase chemistry 117 mechanism (Emmons et al., 2010) with considerable updates to the chemistry of volatile 118 organic compounds (Knote et al., 2014) was used to predict trace gas concentrations. Aerosol 119 characteristics were simulated with the 4 size-bin implementation of the MOSAIC aerosol 120 121 module (Zaveri et al., 2008). This includes a simplified formulation of secondary organic aerosol formation (Hodzic & Jimenez, 2011), including that from wildfires. Analyses in-122 terlaced with hourly forecasts from the Global Forecasting System (GFS) of the National 123 Centers for Environmental Prediction (NCEP) made available through the NOAA Op-124 erational Model Archive and Distribution System (NOMADS, (Rutledge et al., 2006)) 125 were used as initial and boundary conditions for meteorological variables. Results of sim-126 ulations of the Whole Atmosphere Community Climate Model (WACCM) model cre-127 ated by the Atmospheric Chemistry Observations & Modeling Laboratory (ACOM) of 128 the National Center of Atmospheric Research (NCAR) served to provide initial and bound-129 ary conditions for trace gases and particles (https://www.acom.ucar.edu/waccm/, last 130 accessed 02.03.2022). The EDGAR-HTAP dataset was used for prescribing anthropogenic 131 emissions (Janssens-Maenhout et al., 2012). The model simulations also considered bio-132 genic emissions from plants (Guenther et al., 2006), desert dust (LeGrand et al., 2019) 133 and sea spray (Gong, 2003). Emissions of trace gases and particles from wildfires were 134 included by the Fire INventory from NCAR (FINN) model (Wiedinmyer et al., 2011), 135 based on daily observations of fire radiative power by the MODIS and VIIRS satellite 136 instruments. 137

The model domain covers the central and eastern Mediterranean basin (1.47 - 47.63°E, 27.60 - 49.45°N) at 20 km horizontal resolution, with 33 vertical levels (up to 10 hPa) (Figure 1a). Two simulations, a fire and a no-fire scenario, were performed to quantify the contribution of wildfires to concentrations of major air pollutants. This model configuration has already been evaluated in different regions of the world and used to simulate the concentrations of various air pollutants (Graham et al., 2021; Butt et al., 2021).

144 2.

2.3 Model evaluation

We used the European Environmental Agency (EEA)'s AirBase air quality (includ-145 ing $PM_{2.5}$, O_3 , NO_2 , and SO_2) time series data sets (E1a & E2a) to evaluate the WRF-146 Chem simulations. AirBase data reported by EEA's member states are provided either 147 at hourly or daily intervals. Based on type and location, AirBase stations are classified 148 as rural (including "rural-remote", "rural-regional"), sub-urban (including "rural-nearcity"), 149 and urban. All AirBase data are quality-checked and flagged with different levels of ver-150 ification (European Environment Agency, 2021). We only used data with "verification 151 code" equal to 1 (verified) or 2 (preliminary verified) in the metadata, and only from sta-152 tions where more than 75% of observations were present during the entire period. For 153 stations where only daily means were recorded, hourly WRF-Chem values were averaged 154 to daily means for comparison. The data were downloaded using airbase 0.2.7 python 155 library (https://pypi.org/project/airbase/). 156

¹⁵⁷ 2.4 Health impacts assessment (HIA)

Health impacts of short-term exposure to wildfire-caused air pollution were estimated using a well-established methodology (WHO, 2016). Details of the main steps are given below.

2.4.1 Determination of population exposure to air pollution

Population exposure was quantified for each country by calculating the populationweighted concentrations of air pollutants using GWPv4 population data and pollutant concentration data from the WRF-Chem simulations. For country J on day d, its population weighted exposure (Cpw) to a pollutant i - say, i is PM_{2.5}, is then calculated as:

$$Cpw^{i,J,d} = \frac{\sum_{\forall j \in J} (pop_j \times c_{ijd})}{\sum_{\forall j \in J} pop_j} \tag{1}$$

where c_{ijd} is the daily mean air pollutant concentration for PM_{2.5}, SO₂, and NO₂, whereas the daily mean 8 hour average (DMA8) is used for O₃. Population-weighted exposure was computed for both fire and non-fire scenarios, with their difference representing the additional health burden attributable to wildfires.

2.4.2 Estimate of exposure-associated health risk

161

170

To estimate the exposure-associated health risk, we used both baseline health statistics (here e.g., mortality) and an exposure-response-function (ERF) for individual air pollutants.

The baseline all-cause mortality data in both genders (deaths per annum) for 2019 174 (the latest year for which data are available) were downloaded from the Global Health 175 Data Exchange (GHDx) (Global Burden of Disease Collaborative Network, 2020). To 176 interpolate the annual deaths to the summer months (July-August-September) 2021, we 177 used the multi-annual (2010-2019) average of monthly deaths as proxy. Monthly base-178 line mortality data are collected by the European Statistical Office (Eurostat) for its mem-179 ber and associated states (Eurostat, 2021). For countries where monthly deaths are not 180 available, e.g., Tunisia, Israel, and Egypt, the monthly mean deaths averaged over all other 181 countries in this region were used as proxy (Figure S2 in SI). Total monthly deaths were 182 then equally distributed to each day of the month. 183

An ERF associates the proportional increase in exposure of an air pollutant with 184 the potential adverse health outcomes, typically expressed as relative risk (RR). The RR 185 is a ratio of incidences (e.g., deaths) exposed to air pollution relative to to incidences with 186 no exposure. The RR can be estimated either by 1) pre-defined formulas or ranges of 187 values from studies or meta-analyses, or 2) by integrated ERF approaches (Burnett et 188 al., 2014; Cohen et al., 2017). Here, we chose the former approach, adopting RR values 189 for short-term exposure mainly from a recently published systematic review by Orellano 190 et al. (2020). To assess the uncertainty due to different RR estimates, we additionally 191 calculated health impact estimates with RRs from different reviews published before (World 192 Health Organization, 2013; Orellano et al., 2020; Vicedo-Cabrera et al., 2020; Liu et al., 193 2019). The RRs together with their respective 95% confidence intervals (CIs) are listed 194 in Table 1. 195

Given a linear relationship and an exposure increase ΔC of 10 μ g/m³, the RR_{$\Delta 10$} is defined as

$$RR_{\Delta C} = e^{\beta \Delta C}.$$
 (2)

From Equation 2 we can back out the coefficient β and use it to estimate RRs for arbitrary ΔX :

$$RR(\Delta X) = e^{\beta(\Delta X - X_0)},\tag{3}$$

where X_0 is the theoretical minimum risk exposure level, below which no additional risk is assumed. In line with previous works (Graham et al., 2021; Macintyre et al., 2016),

	Relative risk (95% CI)			
	$PM_{2.5}$	O ₃		
Orellano et al. (2020)	$1.0065 \ (1.0044 - 1.0086)$	$1.0043 \ (1.0034 - 1.0052)$		
WHO (2013)	$1.0123 \ (1.0045 - 1.0201)$	$1.0029 \ (1.0014 - 1.0043)$		
Liu et al. $(2019)^*$	$1.0068 \ (1.0059 - 1.0077)$	_		
Vicedo-Cabrera et al. (2020)	_	$1.0018 \ (1.0012 \text{-} 1.0024)$		

* 2-day moving average is used as the exposure metric instead of the daily mean used elsewhere. **Table 1.** Relative risks ($RR_{\Delta 10}$) with 95% confidence interval (CI) of all-cause mortality associated with short-term exposure to $PM_{2.5}$ and O_3 for an increase of 10 μ g/m³ concentration, obtained from selected meta-analysis or multi-city studies published before.

we assume X_0 to be zero. We then derived excess exposures to an air pollutant *i* emitted from wildfires as the difference in population exposure between the fire and no-fire simulations for a country *J*:

$$\Delta Ci, J = Cpw_{i,J}^{fire} - Cpw_{i,J}^{no-fire} \tag{4}$$

To account for the health impacts on the population level, the population attributable fraction (PAF), defined as the fraction of adverse health outcomes in a population attributable to a specific exposure, is computed using the formula (Mansournia & Altman, 2018):

$$PAF = 1 - \frac{1}{RR} \tag{5}$$

The excess number of deaths attributable to wildfire-caused exposure to air pollutant *i* for a country *J* within the entire period of simulation $(E_{i,J})$ is computed as:

$$E_{i,J} = \sum_{d=1}^{N} (BM_{J,d} \times pop_J \times PAF_{i,J}), \tag{6}$$

where $BM_{J,d}$ is the baseline mortality for the country J on day d, and N is the total number of days simulated.

213 214

2.4.3 Estimate of uncertainty due to error propagation in excess mortality

Numerous sources of uncertainty exist for such a health impact assessment which have been discussed in details elsewhere (WHO, 2016).

In this study, we accounted for the uncertainty arising from the multiplication of baseline mortality and relative risk, both of which are bounded with their respective 95% CIs. Assuming a normal distribution for both data sets $(x \sim \mathcal{N}(\mu, \sigma^2))$, the standard error (SE) of each data is derived as:

$$SE(x) = (CI^{upper} - CI^{lower})/(2 \cdot z_{1-0.05/2}),$$
(7)

where $z_{1-0.05/2}$ is the 0.975 quantile of the standard normal distribution ($z_{0.975} \approx 1.96$). Then, the variance $Var(x) = SE(x)^2$. As PAF depends linearly on 1/RR (Equation 5),

its SE and variance are linear derivatives of those for 1/RR.

To quantify the propagation of the uncertainties in the excess mortality estimates, two approaches were used. The first approach is based on the delta method (Ver Hoef, 226 2012). For the product of baseline mortality and PAF (as in Equation 6), the joint stan-227 dard error is calculated below:

$$SE(\hat{x}_1 \hat{x}_2) = \sqrt{\hat{x}_1^2 Var(\hat{x}_2) + \hat{x}_2^2 Var(\hat{x}_1) + 2\hat{x}_1 \hat{x}_2 Cov(\hat{x}_1, \hat{x}_2)},$$
(8)

where $\hat{x_1}$, and $\hat{x_1}$ represent the expectations of baseline mortality and PAF, respectively. Since baseline mortality and PAF are mutually independent, their covariance is zero. Equation 8 can be further shortened as:

$$SE(\hat{x}_1 \hat{x}_2) = \sqrt{\hat{x}_1^2 Var(\hat{x}_2) + \hat{x}_2^2 Var(\hat{x}_1)}$$
(9)

The 95% confidence intervals for the product x_1x_2 are $\hat{x}_1\hat{x}_2 \pm 1.96\text{SE}(\hat{x}_1\hat{x}_2)$.

The second approach is based on the Monte Carlo method. We respectively generated the normally distributed random samples of BM and PAF (with a sample size N = 1000) based on the expectations and SEs derived from Equation 7. The 2.5% and 97.5% percentiles of the sample composed of the element-wise product of BM and PAF designated the lower and upper bounds of the 95% CIs for their product. Repeating for 100 times, the respective mean values of lower and upper bounds quantified the uncertainty for the estimated health impacts.

We used the R software (version 4.1.1) (R Core Team, 2021) and the *sf* package (version 1.0-4) (Pebesma, 2018) to perform the statistical and geo-spatial analyses.

241 3 Results

242

3.1 Model validation

Figure S3-S4 in SI show normalized Taylor diagrams for PM_{2.5} and O₃ simulations for rural, sub-urban, and urban AirBase stations. Subject to the collection frequency of AirBase data, the performance was evaluated for daily and hourly means, respectively.

Overall, WRF-Chem model performance is on par with recent multi-model intercomparison studies of air quality models over Europe and North America (Im et al., 2015b, 2015a) and produced accurate estimates for the concentrations of $PM_{2.5}$ and O_3 when compared to the AirBase dataset. We note that a perfect simulation, especially of urban stations cannot be expected due to the very different representativeness of station measurements and the 20 km horizontal resolution of WRF-Chem.

The estimates of PM_{2.5} from the WRF-Chem simulations were marginally better for daily mean values than for hourly values when compared to the observations, whereas the performance exhibited no significant difference between stations of different types. The correlation coefficients between the simulated and observed concentrations (on polar axes) range from 0.5 to 0.7. By comparison, neither the averaging time (hourly vs. daily) nor the type of station affected the model performance in estimating O₃ concentration.

259

3.2 Effects of wildfires on health-relevant pollutant concentrations

Wildfires emit large amounts of particulate matter, nitrogen oxides (NO_x) , as well 260 as carbon monoxide (CO) and other volatile organic compounds (VOCs) into the atmo-261 sphere (Schneider & Abbatt, 2022). They increase $PM_{2.5}$ levels through direct emission 262 of particles as well as the formation of secondary $PM_{2.5}$ from the oxidation of the emit-263 ted SO_2 , NO_x , and VOCs. These species are oxidized to less volatile sulfates, nitrates, 264 and secondary organic aerosols (SOAs), respectively, which then condense onto pre-existing 265 particles or form new ones (Kroll et al., 2020). Some VOCs are in part emitted with semi-266 and low volatility and will condense onto particles upon dilution and cooling without the 267 need of further photochemical reactions. 268

Increased NO_x and VOCs from wildfires lead to additional O_3 formation downwind through photo-chemical reactions (Jaffe & Wigder, 2012). In addition, wildfires can increase concentrations of the hydroxyl radical (OH), leading to an increased atmospheric oxidation capacity, which further favors the formation of secondary particulate matter.

273

3.3 Spatio-temporal patterns of air pollutant concentrations

Figure 2 a shows the spatial pattern of the WRF-Chem simulated $PM_{2.5}$ concentration as average over the entire period based on the fire scenario.

The mean $PM_{2.5}$ concentrations range from 5 to 160 μ g/m³ across the region. High PM_{2.5} loads are clearly visible in regions that are already heavily polluted even in the absence of wildfires, e.g., along the eastern coastlines of Turkey including the metropolitan area of Istanbul, and the eastern Ukrainian metropolitan area of Mariupol on the north coast of the Azov sea. The latter region is one of the most polluted regions in Europe. Furthermore, urban areas exhibit faintly higher $PM_{2.5}$ concentrations in contrast to non-urban regions.

Figure 2 b and c show the spatial pattern of fires-caused $PM_{2.5}$ concentration relative to that under no-fires scenario, and the percentage of $PM_{2.5}$ loads attributable to wildfires. The increased $PM_{2.5}$ concentrations caused by wildfires are mainly observed in the Balkans, Greece, and southern Italy, coinciding with the distribution of fire events within the simulation period (Figure 1 b-c). Some regions with high background industrial pollution exhibit no change or even a slight decrease in ambient $PM_{2.5}$ concentration.

Diurnally, the PM_{2.5} concentration is subject to the mixing layer height (Figure S8 in SI). The daytime troughs reflect strong turbulent exchange and dilution within the mixed layer, whereas stable nighttime boundary layer enables PM_{2.5} to accumulate (Manning et al., 2018).

Figure 3 shows the spatial pattern of WRF-Chem-simulated O_3 concentrations. In contrast to the $PM_{2.5}$ pattern, the O_3 concentration demonstrates an upward gradient from urban agglomerations to non-urban surroundings, indicating titration by large urban nitrogen oxides (NO_x) emissions.

The overall effect of the wildfires on O_3 is more widespread due to the longer at-298 mospheric formation and lifetime of O_3 , and is hence visible on a country level (Figure 299 S9). Interestingly, the border region between Bulgaria and Romania is observed to be 300 one of regions most affected by wildfire-caused O_3 pollution, which may be accounted 301 for by the location-specific topography and the fact that it is located downwind of a num-302 ber of fires that occurred during the season. The region on the lower Danube plain is fur-303 ther bounded by the Carpathian Mountains to the North and West and by the Balkan 304 Mountains to the South which forms a semi-closed topographical feature, channeling and 305 concentrating air pollutants emitted from wildfires. 306

Figure S9 in SI shows the diurnal pattern of O_3 , which is determined by the presence of sunlight, as O_3 is formed primarily by photo-chemical reactions.

Figures S5-S6 and S10-S11 in SI show the spatial and temporal pattern of NO₂ and SO₂ concentrations, respectively. The hot spots of NO₂ and SO₂ are principally found in cities, along artery roads and shipping routes (Figure S5), and in large point sources like power plants and oil and gas refineries (Figure S6 a).

By comparison to O₃, increases of NO_x and SO₂ are less visible on a country level (Figures S9-S10), as their effects are limited locally due to their relatively shorter atmospheric lifetime, and the dilution into comparatively high pre-existing background concentrations.

Figure 2. Spatial pattern of multi-month mean $PM_{2.5}$ concentrations simulated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario. a) $PM_{2.5}$ concentration simulated under fires scenario, b) $PM_{2.5}$ concentration under fires scenario relative to no-fires ($\Delta PM_{2.5} = PM_{2.5}^{\text{fires}} - PM_{2.5}^{\text{no-fires}}$), c) $PM_{2.5}$ concentration attributable to wildfires in percentages ($\Delta PM_{2.5}/PM_{2.5}^{\text{fires}}$). The increased $PM_{2.5}$ concentrations caused by wildfires are mainly observed in the Balkans, Greece, and southern Italy, whereas the regions with high background industrial pollution (hot spots in the panel a) show a slight decrease in ambient $PM_{2.5}$ concentration.

Similar to PM_{2.5}, the diurnal pattern of NO₂ and SO₂ concentration is determined by the mixing layer height (Figure S10-S11 in SI). We do indeed find the expected increases in the concentration of the hydroxyl radical (OH) in the fire simulation (Figure S7 in SI), which will lead to additional formation of secondary particulate matter.

321

3.4 Population-weighted exposure to major air pollutants

Figure 4 depicts the multi-month mean population-weighted exposures to four air pollutants under fires (red dots), and no-fires (blue dots) scenarios. For the time series of population-weighted exposures to air pollutants in individual countries, please refer to Figures S12-S15. Countries in Balkans (e.g., Albania, North Macedonia, Montenegro, and Bulgaria), Romania, and Greece are among the most affected regions by the wildfire-

Figure 3. Spatial pattern of multi-month mean O_3 concentrations simulated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario. a) O_3 concentration simulated under fires scenario, b) O_3 concentration under fires scenario relative to no-fires ($\Delta O_3 = O_3^{\text{fires}} - O_3^{\text{no-fires}}$), c) O_3 concentration attributable to wildfires in percentages ($\Delta O_3/O_3^{\text{fires}}$).

Figure 4. Multi-month daily mean population weighted concentration of air pollutants, fires scenario versus no-fires scenario. For pollutants other than O_3 , the daily mean concentration is used, while the daily mean 8-h average (DMA8) for O_3 . B&H stands for Bosnia and Herzegovina.

caused $PM_{2.5}$ and O_3 pollution, in line with the incidence of wildfires within the simulation period. By contrast, wildfires have not resulted in a discernible increase of population exposure to NO₂ and SO₂ within the simulation period and region. Therefore, we estimate the wildfire-associated health impacts based primarily on $PM_{2.5}$ and O_3 exposures.

332

3.5 Wildfire-caused excess mortality

Figure 5 a-b shows the excess number of deaths for each country estimated based separately on RRs of short-term exposure to $PM_{2.5}$ and O_3 obtained from the meta-analysis by Orellano et al. (2020). The 95% CIs are estimated using the Monte Carlo method described in Section 2.4.3. The exact number of deaths for each country and the entire region are available in Table S2 in SI.

Owing to the large population, Italy and Egypt are the countries with the highest excess death estimates due to short-term exposure to wildfire-caused PM_{2.5} and O₃. Although wildfires are not frequently observed in Egypt (Figure 1 b), the deaths recorded are significant and can be attributed to the transport of air pollution caused by wildfires occurring elsewhere in the Mediterranean basin, clearly indicating the widespread impact of wildfires on the whole Mediterranean basin.

Figure 5 c-d sum up the excess deaths attributable to short-term exposure to $PM_{2.5}$ 344 and O_3 in the entire region of investigation during mid-July to early October, 2021, based 345 on RRs suggested by different publications. Based on the RR values from Orellano et 346 al. (2020), there are 270 (95% CI: 177-370) deaths attributable to the short-term expo-347 sure to wildfire-caused $PM_{2.5}$. This estimate is close to the one based on Liu et al. (2019) 348 - 281 (95%: 225-334). In comparison, 508 (95% CI: 187-847) excess deaths are estimated 349 based on the RRs from World Health Organization (2013), albeit with a pronounced range 350 of uncertainty. 351

With regard to the excess deaths attributable to short-term O_3 exposure, 741 (95% CI: 556 - 940]) excess deaths are estimated based on Orellano et al. (2020), remarkably exceeding the estimates based on World Health Organization (2013) (501, 95% 247-768) and Vicedo-Cabrera et al. (2020) (310, 95% 201-428).

4 Discussion and Conclusions

We have assessed the health impacts due to the short-term exposure to air pollu-357 tion caused by wildfires over the eastern and central Mediterranean basin in the sum-358 mer 2021. The exposures were estimated using a fully coupled atmospheric chemistry 359 model under fire and no-fire scenarios, respectively, while the consequent health impacts 360 were quantified based on well-established ERFs from selected systematic reviews. We 361 estimated that the 2021 summer wildfires result in an excess number of deaths ranging 362 from approximately 270 (95% CI: 177-370) to 741 (95% CI: 556 - 940), depending on 363 the targeted pollutants which population are exposed to, and on their respective ERFs. 364

In general, we found larger health impacts due to wildfire-associated exposure to O₃ than to PM_{2.5}. As the relative risk of exposure to O₃ is actually lower than that of PM_{2.5} exposure (Table 1), the reason for this surprising finding is shown to be attributable to the more widespread impact of wildfires on O₃ due to a longer overall lifetime of O₃ in the atmosphere.

We refrained from deciding whether the excess deaths attributed to each pollutant can simply be added up to generate a synthesized estimate of health impacts as a result of the simultaneous exposure to multiple pollutants. The solution to this problem demands a thorough knowledge of correlations between health impacts of each pollutant (World Health Organization, 2013), and analysis of their confounding effects (Anderson

Figure 5. Excess deaths with uncertainties estimated based on relative risks of short-term exposure to $PM_{2.5}$ and O_3 . a-b) wildfire-caused excess deaths with 95% CIs for each country included in the study based on relative risk values for short-term $PM_{2.5}$ and O_3 exposures from Orellano et al. (2020). c) Total excess deaths estimated using relative risk values from different meta-analyses (with the vertical gray band indicating the ones used in panels a and b), based on short-term exposure to $PM_{2.5}$ and O_3 , respectively. The 95% CIs were estimated using the Delta (I) and Monte Carlo (II) methods. In Liu et al. (2019), the 2-day moving average of daily mean $PM_{2.5}$ concentrations was used to estimate the excess mortality.

et al., 2012; Bell et al., 2007). Although several statistical methods have been proposed 375 to address the multi-collinearity issues in concurrent exposure (Stafoggia et al., 2017; Wei 376 et al., 2020), they have not been widely adopted, including in studies that underlay the 377 systematic reviews by Orellano et al. (2020); World Health Organization (2013). There-378 fore, results based on these reviews should be interpreted with caution, as confounders 379 were not adequately adjusted for. As a result, it remains inconclusive whether to sum 380 up the death estimates based on different air pollutants. All the aforementioned aspects 381 can substantially affect the outcomes of the health impact assessment, making it diffi-382 cult to narrow down the range of real health impacts attributable to wildfire-caused air 383 pollution beyond what we have shown here. 384

The WRF-Chem model enables a temporally and spatially resolved exposure es-385 timate, while accounting for primary emissions from wildfires and subsequent secondary 386 chemical and physical processes. To date, the health impact assessment of air pollution 387 is limited to a subset of its proxies (e.g., $PM_{2.5}$, NO_2 , O_3), with their exposures being 388 measured by mass. This simplification is increasingly challenged by mounting evidence 389 that the toxicity of air pollution depends to a large extent on the chemical composition 390 and atmospheric ageing rather than the mass itself. Especially, several studies point to 391 the fact that particulate matter arising from wildfires is more toxic to lungs compared 392 with particulate matter from normal ambient air (Wegesser et al., 2009; Dong et al., 2017; 393 Xu et al., 2020). In the future, the ability of such modeling systems to estimate further 394 harmful trace gases as well as chemically-speciated particulate matter may help over-395 come such limitations, leading to better association and causation in epidemiological anal-396 vsis. 397

We have accounted for uncertainties arose from the baseline mortality data and ERFs. However, we have to acknowledge several sources of uncertainty that have not been taken into account within this study. The health impacts estimated within the study is limited to the excess mortality due to short-term exposure to air pollution aggravated by wildfires. This does not take into account direct loss of life and hospital admissions caused by the direct exposure to radiant heat/smoke/flames of wildfires, nor the consequent impairment of life quality.

Though broadly validated, the WRF-Chem model results contain a certain degree of uncertainty in exposure estimation. The uncertainty could originate from the model configuration (e.g., the horizontal and vertical grid setting of simulation domain, and parameterization schemes adopted to account for the atmospheric physics and chemistry), model inputs (e.g., boundary meteorology, and inventories on anthropogenic and firesassociated emissions), as well as the representation of particles and their size distribution within the model (Im et al., 2018).

The horizontal resolution of 20 km set in the WRF-Chem simulation may be too coarse to represent urban areas and their related impacts on the dispersion and transformation of air pollutants sourced from wildfires. This may lead to an underestimation of particular matter and an overestimation of O_3 in urban areas (Im et al., 2015a). Due to its complex nature, the model-associated uncertainty has not been addressed in the study. However, this can be the focus of future research.

A further source of uncertainty lies in the ERFs adopted for the health impact as-418 sessment. Although ERFs derived from meta-analysis are thought to deliver less biased 419 and impartial evidence on the association between exposure and health outcomes, they 420 are prone to several other biases, e.g., publication bias and language bias, which may dis-421 tort the evidence (Page et al., 2021). Meanwhile, current ERFs are based primarily on 422 exposures measured in urban or suburban settings, making the exposure estimate for ru-423 ral areas more prone to misclassification errors. Even though rural areas normally ex-424 hibit a lower level of particulate matters and are thought to be less polluted, the rural 425 air can demonstrate similar levels of cellular oxidative potential as in cities, due largely 426

to more toxic chemicals emitted from agriculture activities (Wang et al., 2022). On the
other hand, neither measurements by monitoring networks nor model simulations, are
able to reproduce the individual exposure which is subject to a variety of factors such
as personal behavior, socioeconomic status, and preexisting health conditions (Evangelopoulos
et al., 2020).

Regarding the large differences in estimated health impacts for O_3 , we note that, 432 as a systematic review commissioned by the WHO, Orellano et al. (2020) included the 433 most recent studies, providing updated evidence base supporting associations between 434 short-term air pollution exposure and mortality, compared to World Health Organiza-435 tion (2013). In contrast, Vicedo-Cabrera et al. (2020) suggested a considerably lower RR 436 for short-term exposure to O_3 , resulting in a smaller estimate of excess deaths. As both 437 studies differ in methodology and underlying database leading to the relative risks, the 438 reason for the discrepancy remains unexplored and is beyond the scope of this study. 439

In all estimates, the choice of methods for quantifying the uncertainty of excess deaths
exhibits a minor impact on the results. The Delta method, compared with the Monte
Carlo method, is prone to slightly underestimate the lower and upper bounds of the 95%
CI.

We excluded the health impact assessment based on short-term exposure to PM_{10} , another widely used proxy indicator for air pollution, to avoid double counting of the PM-associated health effects. This is based on the fact that $PM_{2.5}$ accounts for an overwhelming proportion of PM-associated health effects (Lu et al., 2015; Liu et al., 2019).

Future work is needed to reduce the uncertainties resulted from estimates of both exposures and health effects, while simultaneously augmenting the computational performance of the methodology used. To this end, it is worth further exploring the ensemble or hybrid approaches which combine both physically based atmospheric chemistry transport models and computationally efficient statistical models (Im et al., 2018; Conibear et al., 2021; Di et al., 2019; Shtein et al., 2019; Hough et al., 2021).

454 Conflict of Interest

455 The authors declare no conflict of interest.

456 Data Availability Statement

Data sets supporting the findings of this study are publicly available. GPW v4 pop-457 ulation count data from the Center for International Earth Science Information Network 458 (CIESIN) are available via https://doi.org/10.7927/H4PN93PB. All-age all-cause both-459 gender mortality data for the countries included in the study are available via he Global 460 Health Data Exchange (GHDx), downloaded from https://ghdx.healthdata.org/gbd 461 -results-tool?params=gbd-api-2019-permalink/4e1860d6fad20ccf64c5e6f7e1f7a24b. 462 Monthly base-line mortality data (2010-2019) for the member and associated states of 463 European Statistical Office (Eurostat) are available via https://ec.europa.eu/eurostat/ 464 databrowser/view/DEMO_MMONTH/default/table?lang=en&category=demo.demo_mor. 465 European Environmental Agency (EEA)'s AirBase air quality time series data sets (E1a 466 & E2a) were downloaded using airbase 0.2.7 python library (https://pypi.org/project/ 467 airbase/). Most data processing, analyses, and visualization were performed using R 468 software (version 4.1.1) (R Core Team, 2021). R codes and essential WRF-Chem sim-469 ulation results leading to the results of this study are currently (upon submission) stored 470 in an internal repository hosted by the University of Augsburg. They will be shared via 471 a public repository during the review process. 472

473 Acknowledgments

The authors acknowledge the European Forest Fire Information System of the European Commission for providing the data on total number of wildfires and total area of burnt areas. We acknowledge use of the WRF-Chem preprocessor tools mozbc, bio_emiss, fire_emiss and anthro_emiss provided by the Atmospheric Chemistry Observations and Modeling Lab (ACOM) of NCAR. The authors gratefully acknowledge computing time at the Augsburg Linux Compute Cluster (ALCC). Additional thanks go to David Jean du Preez for proofreading this paper.

481 References

- Anderson, G. B., Krall, J. R., Peng, R. D., & Bell, M. L. (2012). Is the relation be tween ozone and mortality confounded by chemical components of particulate
 matter? Analysis of 7 components in 57 US communities. American Journal of
 Epidemiology, 176(8), 726–732. doi: 10.1093/aje/kws188
- Anenberg, S. C., Horowitz, L. W., Tong, D. Q., & West, J. J. (2010). An estimate of
 the global burden of anthropogenic ozone and fine particulate matter on pre mature human mortality using atmospheric modeling. *Environmental Health Perspectives*, 118(9), 1189–1195. doi: 10.1289/ehp.0901220
- Bell, M. L., Kim, J. Y., & Dominici, F. (2007). Potential confounding of particulate matter on the short-term association between ozone and mortality in multisite time-series studies. *Environmental Health Perspectives*, 115(11), 1591–1595. doi: 10.1289/ehp.10108
- Bencherif, H., Bègue, N., Pinheiro, D. K., du Preez, D. J., Cadet, J. M., Lopes,
 F. J. d. S., ... Clerbaux, C. (2020). Investigating the long-range transport of
 aerosol plumes following the amazon fires (August 2019): A multi-instrumental
 approach from ground-based and satellite observations. *Remote Sensing*,
 12(22), 1–18. doi: 10.3390/rs12223846
- Bowman, D. M. J. S., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der
 Werf, G. R., & Flannigan, M. (2020, oct). Vegetation fires in the Anthropocene. Nature Reviews Earth & Environment, 1(10), 500-515. doi:
 10.1038/s43017-020-0085-3
- ⁵⁰³ Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. *Lancet*, ⁵⁰⁴ *360*(9341), 1233–1242. doi: 10.1016/S0140-6736(02)11274-8
- Burke, M., Driscoll, A., Heft-Neal, S., Xue, J., Burney, J., & Wara, M. (2021). The changing risk and burden of wildfire in the United States. *Proceedings of the National Academy of Sciences of the United States of America*, 118(2), 1–6. doi: 10.1073/PNAS.2011048118
- ⁵⁰⁹ Burnett, R. T., Arden Pope, C., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., ...
 ⁵¹⁰ Cohen, A. (2014). An integrated risk function for estimating the global burden
 ⁵¹¹ of disease attributable to ambient fine particulate matter exposure. *Environ* ⁵¹² mental Health Perspectives, 122(4), 397–403. doi: 10.1289/ehp.1307049
- Butt, E. W., Conibear, L., Knote, C., & Spracklen, D. V. (2021, jul). Large Air
 Quality and Public Health Impacts due to Amazonian Deforestation Fires in
 2019. GeoHealth, 5(7), 1–16. doi: 10.1029/2021GH000429
- CAMS. (2021). Wildfires wreaked havoc in 2021, CAMS tracked their impact. Retrieved from https://atmosphere.copernicus.eu/wildfires-wreaked -havoc-2021-cams-tracked-their-impact(Accessed:2022-02-01)
- Chen, G., Guo, Y., Yue, X., Tong, S., Gasparrini, A., Bell, M. L., ... Li, S. (2021, sep). Mortality risk attributable to wildfire-related PM2.5 pollution: a global time series study in 749 locations. *The Lancet Planetary Health*, 5(9), e579–e587. doi: 10.1016/S2542-5196(21)00200-X
- CIESIN. (2018). Gridded Population of the World, Version 4 (GPWv4): Population
 Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revi-

525	sion 11. Palisades, NY: NASA Socioeconomic Data and Applications Center			
526	(SEDAC). Retrieved from https://doi.org/10.7927/H4PN93PB			
527	Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K.,			
528	Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden			
529	of disease attributable to ambient air pollution: an analysis of data from the			
530	Global Burden of Diseases Study 2015. The Lancet, $389(10082)$, 1907–1918.			
531	doi: $10.1016/S0140-6736(17)30505-6$			
532	Conibear, L., Reddington, C. L., Silver, B. J., Chen, Y., Knote, C., Arnold, S. R., &			
533	Spracklen, D. V. (2021). Statistical Emulation of Winter Ambient Fine Par-			
534	ticulate Matter Concentrations From Emission Changes in China. GeoHealth,			
535	5(5), 1-13. doi: $10.1029/2021$ GH000391			
536	Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, PA., & Samsó,			
537	M. (2021). The Mediterranean climate change hotspot in the CMIP5 and			
538	CMIP6 projections. Earth System Dynamics Discussions (2018), 1–26. doi:			
539	10.5194/esd-2021-65			
540	Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Schwartz, J. (2019,			
541	sep). An ensemble-based model of PM2.5 concentration across the contiguous			
542	United States with high spatiotemporal resolution. Environment International,			
543	130(July), 104909. doi: 10.1016/j.envint.2019.104909			
544	Dong, T. T., Hinwood, A. L., Callan, A. C., Zosky, G., & Stock, W. D. (2017). In			
545	vitro assessment of the toxicity of bushfire emissions: A review. Science of the			
546	Total Environment, 603-604, 268–278. doi: 10.1016/j.scitotenv.2017.06.062			
547	EFFIS. (2021). Total burnt areas and total number of fires in 2021. Au-			
548	thor. Retrieved from https://effis.jrc.ec.europa.eu/applications/			
549	data-and-services(accessed:2021-12-01)			
550	Emmons, L. K., Walters, S., Hess, P. G., Lamarque, JF., Pfister, G. G., Fillmore,			
551	D., Kloster, S. (2010). Description and evaluation of the model for ozone			
552	and related chemical tracers, version 4 (mozart-4). Geoscientific Model Devel-			
553	opment, 3(1), 43-67. doi: 10.5194/gmd-3-43-2010			
554	European Environment Agency. (2021). AirBase air quality data (E1a &			
555	<i>E2a).</i> Retrieved from https://discomap.eea.europa.eu/map/ime/			
556	AirquairtyExport.fitm			
557	Eurostat. (2021). Deaths (total) by month, 2010-2019. Luxembourg.			
558	Evangelopoulos, D., Katsouyanni, K., Keogn, R. H., Samoli, E., Schwartz, J., Bar-			
559	ratt, B., Walton, H. (2020, apr). PM2.5 and NO2 exposure errors using			
560	proxy measures, including derived personal exposure from outdoor sources: A systematic review and mote analysis $Environment International (197(2))$			
561	A systematic review and meta-analysis. Environment International, $157(2)$, 105500 doi: 10.1016/j.envint.2020.105500			
562	Clobal Burden of Disease Collaborative Network (2020) Clobal Burden of Dise			
563	age Study 2010 (CBD 2010) Results South United States: Institute			
504	for Health Matrice and Evaluation (IHME) Betrieved from http://ghdy			
505	healthdata org/gbd-results-tool?params=gbd-api-2019-permalink/			
567	4e1860d6fad20ccf64c5e6f7e1f7a24b			
569	G_{ong} S (2003) A parameterization of sea-salt aerosol source function for sub-and			
569	super-micron particles Global biogeochemical cucles $17(4)$			
570	Graham, A. M., Pringle, K. J., Pope, R. J., Arnold, S. R., Conibear, L. A.,			
571	Burns, H., McQuaid, J. B. (2021, oct). Impact of the 2019/2020 Aus-			
572	tralian Megafires on Air Quality and Health. <i>GeoHealth</i> , 5(10), 1–17. doi:			
573	10.1029/2021GH000454			
574	Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,			
575	W. C., & Eder, B. (2005). Fully coupled "online" chemistry within the wrf			
576	model. Atmospheric Environment, 39(37), 6957–6975.			
577	Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C.			
578	(2006). Estimates of global terrestrial isoprene emissions using megan (model			
579	of emissions of gases and aerosols from nature). Atmospheric Chemistry and			

590	Physics 6(11) 3181-3210
500	Haikerwal A Akram M Monaco A D Smith K Sim M B Meyer M
501	Dennekamp M (2015) Impact of fine particulate matter (PM2 5) exposure
502	during wildfires on cardiovascular health outcomes <u>Journal of the American</u>
584	Heart Association $\lambda(7)$ 1–10 doi: 10.1161/JAHA 114.001653
504	Hodzic A & Jimenez J L (2011) Modeling anthronogenically controlled sec-
505	ondary organic aerosols in a megacity: a simplified framework for global
587	and climate models $Geoscientific Model Development \lambda(4) 901–917 doi:$
588	10.5194/gmd-4-901-2011
580	Hough I Sarafian B Shtein A Zhou B Lepeule J & Kloog I (2021) Gaus-
590	sian Markov random fields improve ensemble predictions of daily 1 km PM2.5
591	and PM10 across France. Atmospheric Environment, 264 (May), 118693. Re-
592	trieved from https://doi.org/10.1016/j.atmosenv.2021.118693 doi:
593	10.1016/j.atmosenv.2021.118693
594	Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Gal-
595	marini, S. (2015a). Evaluation of operational online-coupled regional air
596	quality models over Europe and North America in the context of AQMEII
597	phase 2. Part II: Particulate matter. Atmospheric Environment, 115, 421–441.
598	doi: 10.1016/j.atmosenv.2014.08.072
599	Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Gal-
600	marini, S. (2015b). Evaluation of operational on-line-coupled regional air
601	quality models over Europe and North America in the context of AQMEII
602	phase 2. Part I: Ozone. Atmospheric Environment, 115, 404–420. doi:
603	10.1016/j.atmosenv.2014.09.042
604	Im, U., Brandt, J., Geels, C., Hansen, K. M., Christensen, J. H., Andersen, M. S.,
605	Galmarini, S. (2018, apr). Assessment and economic valuation of air pollu-
606	tion impacts on human health over Europe and the United States as calculated
607	by a multi-model ensemble in the framework of AQMEII3. Atmospheric Chem-
608	istry and Physics, 18(8), 5967–5989. doi: 10.5194/acp-18-5967-2018
609	Jaffe, D. A., & Wigder, N. L. (2012). Ozone production from wildfires: A criti-
610	cal review. Atmospheric Environment, 51, 1-10. Retrieved from http://dx
611	.doi.org/10.1016/j.atmosenv.2011.11.063 doi: 10.1016/j.atmosenv.2011
612	.11.063
613	Janssens-Maenhout, G., Dentener, F., Aardenne, J. V., Monni, S., Pagliari, V., Or-
614	landini, L., Keating, T. (2012). EDGAR-HTAP: a harmonized gridded
615	air pollution emission dataset based on national inventories. Retrieved from
616	https://edgar.jrc.ec.europa.eu/dataset_htap_v1 doi: 10.2788/14102
617	Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries,
618	R. S., Brauer, M. (2012, may). Estimated Global Mortality Attributable
619	to Smoke from Landscape Fires. Environmental Health Perspectives, 120(5),
620	099-701. doi: $10.1269/enp.1104422$
621	Jolly, W. M., Cochrane, M. A., Freedorn, P. H., Holden, Z. A., Brown, I. J., Williamaan, C. J. & Damman, D. M. (2015). Climate induced explicitions
622	williamson, G. J., & Bowman, D. M. (2015). Climate-induced variations
623	1 11 doi: 10.1028/neorms2527
624	Knote C. Hodzie A. Jimonez I. L. Volkamer P. Orlando, I. I. Paidar S.
625	There $\Omega = (2014)$ Simulation of somi explicit mechanisms of son formation
626	from glyoxal in aerosol in a 3-d model Atmospheric Chemistry and Physics
628	1/(12), 6213–6239, doi: 10.5194/acp-14-6213-2014
620	Kramer H A Mockrin M H Alexandre P M & Radeloff V C (2010) High
630	wildfire damage in interface communities in California International Journal
631	of Wildland Fire, 28(9), 641–650, doi: 10.1071/WF18108
632	Kroll, J. H., Heald, C. L., Cappa, C. D. Farmer, D. K. Fry, J. L. Murphy
633	J. G., & Steiner, A. L. (2020). The complex chemical effects of COVID-
634	19 shutdowns on air quality. Nature Chemistry, 12(9), 777–779. doi:

 LeGrand, S. L., Polashenski, C., Letcher, T. W., Creighton, G. A., Peckham, S. E., & Cotola, J. D. (2019). The afwa dust emission scheme for the gocart acrosol model in wrf-chem v3. 8.1. <i>Geoscientific Model Development</i>, <i>12</i>(1), 131-166. Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. <i>Cardionascular Research</i>, <i>116</i>(11), 1910-1917. doi: 10.1093/cvr/cvaa025 Linares, C., Díaz, J., Negov, M., Martínez, G. S., Debono, R., & Paz, S. (2020). Im- pacts of climate change on the public health of the Mediterranean Basin popu- lation - Current situation, projections, preparedness and adaptation. <i>Environ- mental Research</i>, <i>182</i>(January), 109107. doi: 10.1016/j.envres.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. <i>New England Journal of Medicine</i>, <i>381</i>(8), 705-715. doi: 10.1056/nejimoa1817364 Li, F., Ni, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Sys- tematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. <i>Environmental Re- search</i>, <i>136</i>, 196-204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmo- spheric particulate matter episodes across the UK in spring 2014. <i>Environment International</i>, <i>97</i>, 108-116. doi: 10.1016/j.envrt.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Di- urnal Patterns in Global Fine Particulate Matter Concentration. <i>Envi- ronmental Science and Technology Letters</i>, <i>5</i>(11), 687-691. doi: 10.1021/ acs-estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). P	605	10,1038/s41557,020,0535,z
 Bernand, S. L., Houssneissi, C., Leuner, T. W., Originton, G. A., Texhala, S. L., Ketola, J. D. (2019). The afva dust emission scheme for the gocart aerosol model in wrf-chem v3. 8.1. <i>Geoscientific Model Development</i>, <i>12</i>(1), 131–166. Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. <i>Cardiovascular Research</i>, <i>116</i>(11), 1910–1917. doi: 10.1093/cvr/va025 Linares, C., Díaz, J., Negev, M., Martínez, G. S., Debono, R., & Paz, S. (2020). Im- pacts of climate change on the public health of the Mediterranean Basin popu- lation - Current situation, projections, preparedness and adaptation. <i>Environ- mental Research</i>, <i>183</i>(January), 109107. doi: 10.1016/j.envrcs.2019.109107 Lu, C., Chen, R., Sera, F., Viccdo-Cabrera, A. M., Guo, YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. <i>New England Journal of Medicine</i>, <i>381</i>(8), 705–715. doi: 10.1056/neijmoa1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Sys- tematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. <i>Environmental Re- search</i>, <i>136</i>, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmo- spheric particulate matter episodes across the UK in spring 2014. <i>Environment International</i>, <i>97</i>, 108–116. doi: 10.1016/j.envint.2016.07.018 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. <i>Environment International</i>, <i>97</i>, 108–116. doi: 10.1016/j.envint.2016.07.018 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. <i>Environmental Science and Technology Letters</i>, <i>5</i>(11), 687–691.	635	LaCrand S. L. Polashanski, C. Latahar, T. W. Craighton, C. A. Packham, S. F.
 model in wirt-chem v3. S.1. Geoscientific Model Development, 12(1), 131-166. Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovascular Research, 116(11), 1910-1917. doi: 10.1039/cvr/vva025 Linares, C., Díaz, J., Negev, M., Martínez, G. S., Debono, R., & Paz, S. (2020). Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. Environmental Research, 182(January), 109107. doi: 10.1016/j.envres.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381(8), 705-715. doi: 10.1056/nejimoa1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196-204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108-116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environment International, 97, 108-116. doi: 10.1016/slps5370000058575 Maeler, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67-106. doi: 10.10160/slps5370000058575 Orellano, P., Reynoso, J., Qu	636	& Cetola I D (2019) The afwa dust emission scheme for the gocart aerosol
 Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. <i>Cardiovascular Research</i>, 116(11), 1910–1917. doi: 10.1093/cvr/cvaa025 Linares, C., Díaz, J., Negev, M., Martínez, G. S., Debono, R., & Paz, S. (2020). Im- pacts of climate change on the public health of the Mediterranean Basin popu- lation - Current situation, projections, preparedness and adaptation. <i>Environ- mental Research</i>, 182(January), 109107. doi: 10.1016/j.envres.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Ctites. <i>New England Journal of Medicine</i>, 381(8), 705–715. doi: 10.1056/nejmoa1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Sys- tematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. <i>Environmental Re- search</i>, 136, 196–204. doi: 10.1016/j.envira.2016.07.018 Maaning, M. I., Harviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmo- spheric particulate matter opisodes across the UK in spring 2014. <i>Environment International</i>, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Di- urnal Patterns in Global Fine Particulate Matter Concentration. <i>Environmental Science and Technology Letters</i>, 5(11), 687–691. doi: 10.1021/ accsettlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. <i>BMJ</i> (<i>Online)</i>, 360(February), 2-3. doi: 10.1136/bmj.k757 Maehon, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and	638	model in wrf-chem v3. 8.1. Geoscientific Model Development, 12(1), 131–166.
 Loss of life expectancy from air pollution compared to other risk factors: A worldvide perspective. Cardiorascular Research, 116(11), 1910–1917. doi: 10.1093/cvr/cvaa025 Linares, C., Díaz, J., Negev, M., Martínez, G. S., Debono, R., & Paz, S. (2020). Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. Environmental Research, 182(January), 109107. doi: 10.1016/j.cmvrcs.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381(8), 705–715. doi: 10.1056/nejmoal817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakin, S. (2016). Mortality and emergency hospitalizations associated with latino-spheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental International, 97, 108–116. doi: 10.1016/j.mai/x57 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/0895870000958575 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shorttern exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: S	639	Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020).
 worldwide perspective. Cardiovascular Research, 116(11), 1910–1917. doi: 10.1093/cvr/cva025 Linarcs, C., Díaz, J., Negev, M., Martínez, G. S., Debono, R., & Paz, S. (2020). Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. Environmental Research, 182(January), 109107. doi: 10.1016/j.novres.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Gno, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381(8), 705–715. doi: 10.1056/nejmeo1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.cnvires.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diural Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acscstlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoft, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmok health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.0106/jSS8370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Clapponi, A. (2020). Shorttern exposure to particulate matter (PM10 an	640	Loss of life expectancy from air pollution compared to other risk factors: A
 10.1093/cvr/cva025 Linares, C., Diaz, J., Negev, M., Martínez, G. S., Debon, R., & Paz, S. (2020). Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. Environmental Research, 182(January), 109107. doi: 10.1016/j.newres.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381(8), 705–715. doi: 10.1056/nejmoa1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.cuvrts.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.icuvit.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shorttern exposure to particulate matter (PM10 and PM2.5), nitrogene dioxide (NO2), and ozone (O3) and all-cause and caus	641	worldwide perspective. Cardiovascular Research, 116(11), 1910–1917. doi:
 Linares, C., Díaz, J., Negev, M., Martínez, G. S., Debono, R., & Paz, S. (2020). Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. Environmental Research, 182 (January), 109107. doi: 10.1016/j.envres.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381 (8), 705–715. doi: 10.1056/nejmoa1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.euvres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmonspheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.euvri.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diumal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmij.K757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Tazicology, 19(1), 67–106. doi: 10.1080/89837060985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi	642	10.1093/cvr/cvaa025
 pacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. Environmental Research, 182 (January), 109107. doi: 10.106/j.envres.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381(8), 705–715. doi: 10.1056/ncjmoal817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envirt.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online, 3:60(February), 2–3. doi: 10.1136/bmik.757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1036/08958370600958575 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shorttern exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 1/2(December 2019), 105876. d	643	Linares, C., Díaz, J., Negev, M., Martínez, G. S., Debono, R., & Paz, S. (2020). Im-
 lation - Current situation, projections, preparedness and adaptation. Environmental Research, 182 (January), 109107. doi: 10.1016/j.envres.2019.10107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381 (8), 705–715. doi: 10.1056/nejmoal817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envrint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2-3. doi: 10.1030/bij.k757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J. Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.10106/j.envint.2020.105876 Page, M. J., Sterne, J. A	644	pacts of climate change on the public health of the Mediterranean Basin popu-
 mental Research, 182 (January), 109107. doi: 10.1016/j.envres.2019.109107 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Afr Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381(8), 705–715. doi: 10.1056/nejmoal817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.cnvint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Taxicology, 19(1), 67–106. doi: 10.1080/0895837060098875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Stern, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi	645	lation - Current situation, projections, preparedness and adaptation. Environ-
 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S., Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381(8), 705–715. doi: 10.1056/nejmoa1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Sys- tematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Re- search, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmo- spheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envirt.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Di- urnal Patterns in Global Fine Particulate Matter Concentration. Envi- ronmental Science and Technology Letters, 5 (11), 687–691. doi: 10.1021/ acc.settet.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Naeher, L. P., Brauer, M., Lipsett, M., Zeilkoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 1/2(December 2019), 105876. doi: 10.10102/jrsm.1468 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research:	646	mental Research, 182(January), 109107. doi: 10.1016/j.envres.2019.109107
 Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 381(8), 705–715. doi: 10.1056/nejmoal817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Sys- tematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Re- search, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmo- spheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Di- urnal Patterns in Global Fine Particulate Matter Concentration. Envi- ronmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/ acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Naeler, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Clapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm	647	Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y. YL., Tong, S.,
 in 652 Cities. New England Journal of Medicine, 381(8), 705-715. doi: 10.1056/nejmoa1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196-204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108-116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687-691. doi: 10.1021/acs.estlett.8b0573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360 (February), 2-3. doi: 10.1136/bmj.k757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67-106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support fo	648	Kan, H. (2019). Ambient Particulate Air Pollution and Daily Mortality
 10.1056/nejmoa1817364 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958376000985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shorttern exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.10016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The Journal, 10(1), 439–446. doi: 10.32614/RJ-2	649	in 652 Cities. New England Journal of Medicine, 381(8), 705–715. doi:
 Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diumal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/0858376000958575 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2	650	10.1056/nejmoa1817364
 tematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360 (February), 2–3. doi: 10.1136/bmj.k757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistica	651	Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Sys-
 PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136, 196–204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R =project.org/<td>652</td><td>tematic review and meta-analysis of the adverse health effects of ambient</td>	652	tematic review and meta-analysis of the adverse health effects of ambient
 search, 136, 196-204. doi: 10.1016/j.envres.2014.06.029 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108-116. doi: 10.1016/j.envirt.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Dimensional environmental Science and Technology Letters, 5(11), 687-691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360 (February), 2-3. doi: 10.1136/bmj.k757 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67-106. doi: 10.1080/08958376600985876 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1010/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher	653	PM2.5 and PM10 pollution in the Chinese population. Environmental Re-
 Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis, S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360 (Pebruary), 2–3. doi: 10.1136/bmj.k757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likel	654	search, 136, 196–204. doi: 10.1016/j.envres.2014.06.029
 S. (2016). Mortality and emergency hospitalizations associated with atmospheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. Environmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360 (February), 2–3. doi: 10.1136/bmj.k757 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Shortterm exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Rutfault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfree in the Mediterranea Basin. Scientific Reports, 1	655	Macintyre, H. L., Heaviside, C., Neal, L. S., Agnew, P., Thornes, J., & Vardoulakis,
 spheric particulate matter episodes across the UK in spring 2014. Environment International, 97, 108–116. doi: 10.1016/j.envint.2016.07.018 Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Di- urnal Patterns in Global Fine Particulate Matter Concentration. Envi- ronmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/ acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360 (February), 2–3. doi: 10.1136/bmj.K757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/089837060095875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutled	656	S. (2016). Mortality and emergency hospitalizations associated with atmo-
 ⁶⁵⁸ <i>International</i>, <i>97</i>, 108–116. doi: 10.1016/j.envint.2016.07.018 ⁶⁵⁹ Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Di- ⁶⁶⁰ urnal Patterns in Global Fine Particulate Matter Concentration. <i>Envi-</i> ⁶⁶¹ <i>ronmental Science and Technology Letters</i>, <i>5</i>(11), 687–691. doi: 10.1021/ ⁶⁶² acs.estlett.8b00573 ⁶⁶³ Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. <i>BMJ</i> ⁶⁶⁴ (<i>Online</i>), <i>360</i> (February), 2–3. doi: 10.1136/bmj.k757 ⁶⁶⁵ Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., ⁶⁶⁶ & Smith, K. R. (2007). Woodsmoke health effects: A review. <i>Inhalation</i> ⁶⁶⁷ <i>Toxicology</i>, <i>19</i>(1), 67–106. doi: 10.1080/08958370600985875 ⁶⁶⁶ Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- ⁶⁷⁷ term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide ⁶⁷⁸ (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic ⁶⁷⁹ review and meta-analysis. <i>Environment International</i>, <i>142</i> (December 2019), ⁶⁷² 105876. doi: 10.1016/j.envint.2020.105876 ⁶⁷³ Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- ⁶⁷⁴ gating and dealing with publication bias and other reporting biases in meta- ⁶⁷⁵ analyses of health research: A review. <i>Research Synthesis Methods</i>, <i>12</i>(2), ⁶⁷⁶ 248–259. doi: 10.1002/jrsm.1468 ⁶⁷⁹ Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector ⁶⁷⁴ Data. <i>The R Journal</i>, <i>10</i>(1), 439–446. doi: 10.32614/RJ-2018-009 ⁶⁷⁵ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., ⁶⁸⁶ Behadj-Khedher, C. (2020). Increased likelihood of heat-induced large ⁶⁸⁷ wildfires in the Mediterranean Basin. <i>Scientific Reports</i>, <i>10</i>(1), 1–9. doi: ⁶⁸⁶ 10.1038/s41598-020-70069-z ⁶⁸⁷ Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A clim	657	spheric particulate matter episodes across the UK in spring 2014. Environment
 Mahning, M. I., Martin, R. V., Hasenkopi, C., Plasher, J., & L. C. (2018). Di- urnal Patterns in Global Fine Particulate Matter Concentration. Envi- ronmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/ acs.estlett.8b00573 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2–3. doi: 10.1136/bmj.k757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bull	658	International, 97, 108–110. doi: 10.1016/j.envint.2010.07.018 Magning M I. Martin D. V. Haarbarf, G. Flasher, I. & Li, G. (2018) Di
 ⁶⁶⁰ Infair Fatterins in Grobal Fille Fatteriate Matter Concentration. Entri- ⁶⁶¹ ronmental Science and Technology Letters, 5(11), 687–691. doi: 10.1021/ ⁶⁶² acs.estlett.8b00573 ⁶⁶³ Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ ⁶⁶⁴ (Online), 360 (February), 2–3. doi: 10.1136/bmj.k757 ⁶⁶⁵ Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., ⁶⁶⁶ & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation ⁶⁶⁷ Toxicology, 19(1), 67–106. doi: 10.1080/08958376060085875 ⁶⁶⁶ Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- ⁶⁶⁷ term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide ⁶⁷⁰ (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic ⁶⁷¹ review and meta-analysis. Environment International, 142 (December 2019), ⁶⁷² 105876. doi: 10.1016/j.envint.2020.105876 ⁶⁷³ Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- ⁶⁷⁴ gating and dealing with publication bias and other reporting biases in meta- ⁶⁷⁵ analyses of health research: A review. Research Synthesis Methods, 12(2), ⁶⁷⁶ 248–259. doi: 10.1002/jrsm.1468 ⁶⁷⁷ Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector ⁶⁷⁸ Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 ⁶⁷⁹ R Core Team. (2021). R: A language and environment for statistical computing ⁶⁸⁰ [Computer software manual]. Vienna, Austria. Retrieved from https://www.R ⁶⁸¹ -project.org/ ⁶⁸² Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., ⁶⁸³ Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large ⁶⁸⁴ wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: ⁶⁸⁵ 10.1038/s41598-020-70069-z ⁶⁸⁶ Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate a	659	umal Pattorng in Clobal Fine Particulate Matter Concentration
 ⁶⁵¹ Tohnie India Technology Letters, 5(11), 031–051. doi: 10.1021/ acs.estlett.8b00573 ⁶⁶² Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. <i>BMJ</i> (Online), 360 (February), 2–3. doi: 10.1136/bmj.k757 ⁶⁶⁴ Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. <i>Inhalation</i> <i>Toxicology</i>, 19(1), 67–106. doi: 10.1080/08958370600985875 ⁶⁶⁵ Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. <i>Environment International</i>, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 ⁶⁷³ Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. <i>Research Synthesis Methods</i>, 12(2), 248–259. doi: 10.1002/jrsm.1468 ⁶⁷⁴ Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. <i>The R Journal</i>, 10(1), 439–446. doi: 10.32614/RJ-2018-009 ⁶⁸⁵ R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ ⁶⁸⁶ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. <i>Scientific Reports</i>, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z ⁶⁸⁷ Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. <i>Bulletin of the American Meteorological Society</i>, 87(3), 327–341. Re- trieved from https://n	660	renmental Science and Technology Letters 5(11) 687 601 doi: 10.1021/
 Mansournia, M. A., & Altman, D. G. (2018). Population attributable fraction. BMJ (Online), 360(February), 2-3. doi: 10.1136/bmj.k757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327-341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	661	acs estlett 8b00573
 Mansoninia, M. M., & Hindin, D. G. (2016). Topunatoria activation fraction. Dias (Online), 360 (February), 2-3. doi: 10.1136/bmj.k757 Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	002	Mansournia M A ℓ_z Altman D C (2018) Population attributable fraction BML
 Nacher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	664	(Online) 360(February) 2–3 doi: 10.1136/bmi.k757
 Kalmi, M. T., Didati, M. M. 2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short- term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	665	Nacher L P Brauer M Lipsett M Zelikoff J T Simpson C D Koenig J O
 Toxicology, 19(1), 67-106. doi: 10.1080/08958370600985875 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administration. Bulletin of the American Meteorological Society, 87(3), 327-341. Retrieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	666	& Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation
 Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142(December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administration. Bulletin of the American Meteorological Society, 87(3), 327-341. Retrieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	667	Toxicology, 19(1), 67–106. doi: 10.1080/08958370600985875
 term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327-341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	668	Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., & Ciapponi, A. (2020). Short-
 (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administration. Bulletin of the American Meteorological Society, 87(3), 327-341. Retrieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	669	term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide
 review and meta-analysis. Environment International, 142 (December 2019), 105876. doi: 10.1016/j.envint.2020.105876 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327-341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	670	(NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic
 ⁶⁷² 105876. doi: 10.1016/j.envint.2020.105876 ⁶⁷³ Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investigating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. <i>Research Synthesis Methods</i>, 12(2), 248–259. doi: 10.1002/jrsm.1468 ⁶⁷⁷ Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. <i>The R Journal</i>, 10(1), 439–446. doi: 10.32614/RJ-2018-009 ⁶⁷⁹ R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R ⁶⁷¹ -project.org/ ⁶⁷² Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., ⁶⁷³ Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. <i>Scientific Reports</i>, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z ⁶⁷⁴ Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administration. <i>Bulletin of the American Meteorological Society</i>, 87(3), 327–341. Retrieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	671	review and meta-analysis. Environment International, 142 (December 2019),
 Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi- gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327-341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	672	105876. doi: 10.1016/j.envint.2020.105876
 gating and dealing with publication bias and other reporting biases in meta- analyses of health research: A review. Research Synthesis Methods, 12(2), 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327-341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	673	Page, M. J., Sterne, J. A. C., Higgins, J. P. T., & Egger, M. (2021, mar). Investi-
 analyses of health research: A review. Research Synthesis Methods, 12(2), 248–259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administration. Bulletin of the American Meteorological Society, 87(3), 327–341. Retrieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	674	gating and dealing with publication bias and other reporting biases in meta-
 248-259. doi: 10.1002/jrsm.1468 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327-341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	675	analyses of health research: A review. $Research Synthesis Methods, 12(2),$
 Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1), 439–446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	676	248-259. doi: $10.1002/jrsm.1468$
 Data. The R Journal, 10(1), 439-446. doi: 10.32614/RJ-2018-009 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1-9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327-341. Re- trieved from https://nomads.ncep.noaa.gov 	677	Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector
 R Core Team. (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov 	678	Data. The R Journal, $10(1)$, $439-446$. doi: 10.32614 /RJ-2018-009
 [Computer software manual]. Vienna, Austria. Retrieved from https://www.R -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	679	R Core Team. (2021). R: A language and environment for statistical computing
 -project.org/ Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	680	[Computer software manual]. Vienna, Austria. Retrieved from https://www.R
 Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Belhadj-Khedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	681	-project.org/
 Beinadj-Knedher, C. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	682	Ruttault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N.,
 wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 1–9. doi: 10.1038/s41598-020-70069-z Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	683	Beinadj-Khedher, C. (2020). Increased likelihood of heat-induced large
 Rutledge, G. K., Alpert, J., & Ebisuzaki, W. (2006). NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administra- tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	684	what when the Mediterranean Basin. Scientific Reports, $10(1)$, 1–9. doi: 10.1028/241508.020.70060 –
 ⁶⁸⁶ Rutledge, G. K., Alpert, J., & EDISUZAKI, W. (2000). NOMADS: A climate and ⁶⁸⁷ weather model archive at the National Oceanic and Atmospheric Administra- ⁶⁸⁸ tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- ⁶⁸⁹ trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327 	685	10.1030/841090-020-(0009-Z) Dutledge C K Alport I & Ebigural: W (2006) NOMADS: A -1:
tion. Bulletin of the American Meteorological Society, 87(3), 327–341. Re- trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327	686	weather model archive at the National Oceanic and Atmospheric Administra
trieved from https://nomads.ncep.noaa.gov doi: 10.1175/BAMS-87-3-327	087	tion Bulletin of the American Meteorological Society $\Re^{7}(3)$ 327-341 Ro
	500	

690	Schneider, S. R., & Abbatt, J. P. (2022). Wildfire atmospheric chemistry: climate
691	and air quality impacts. Trends in Chemistry, $4(4)$, 255-257. (Special Issue:
692	Third Anniversary) doi: https://doi.org/10.1016/j.trechm.2021.12.004
693	Schwarz, L., Dimitrova, A., Aguilera, R., Basu, R., Gershunov, A., & Ben-
694	marhnia, T. (2022). Smoke and COVID-19 case fatality ratios during
695	California wildfires. Environmental Research Letters, 17(1), 014054. doi:
696	10.1088/1748-9326/ac4538
697	Shtein, A., Kloog, I., Schwartz, J., Silibello, C., Michelozzi, P., Gariazzo, C.,
698	Stafoggia, M. (2019). Estimating daily PM2.5 and PM10 over Italy using an
699	ensemble model. Environmental Science and Technology, 54, acs.est.9b04279.
700	doi: 10.1021/acs.est.9b04279
701	Stafoggia, M., Breitner, S., Hampel, R., & Basagaña, X. (2017). Statistical Ap-
702	proaches to Address Multi-Pollutant Mixtures and Multiple Exposures: the
703	State of the Science. Current environmental health reports, 4(4), 481–490. doi:
704	10.1007/s40572-017-0162-z
705	Ver Hoef, J. M. (2012). Who invented the delta method? American Statistician.
706	66(2), 124–127. doi: 10.1080/00031305.2012.687494
707	Vicedo-Cabrera, A. M., Sera, F., Liu, C., Armstrong, B., Miloievic, A., Guo,
708	Y. Y. L. L Gasparrini, A. (2020). Short term association between
709	ozone and mortality: global two stage time series study in 406 locations in
710	20 countries. The BMJ , 368, 1–10, doi: 10.1136/bmi.m108
711	Wang Y Puthussery J V Yu H Liu Y Salana S & Verma V (2022)
712	Sources of cellular oxidative potential of water-soluble fine ambient particulate
713	matter in the Midwestern United States. Journal of Hazardous Materials.
714	425 (September 2021), 127777, doi: 10.1016/i.jhazmat.2021.127777
715	Wegesser, T. C., Pinkerton, K. E., & Last, J. A. (2009). California wildfires of 2008:
716	Coarse and fine particulate matter toxicity. <i>Environmental Health Perspectives</i> .
110	117(6) 202 207 doi: 10.1220/ob.0200166
717	
717	Wei Y Wang Y Wu X Di O Shi L Koutrakis P Schwartz J D
717 718 719	Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts.
717 718 719 720	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Enidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aie/
717 718 719 720 721	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098
717 718 719 720 721 722	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/ kwaa098 WHO, (2016). Health Risk Assessment of air pollution. World Health Organization.
717 718 719 720 721 722 723	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. <i>World Health Organization</i>, 1–40.
717 718 719 720 721 722 723 724	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO (2021) WHO alobal air availity avidelines. Particulate matter (PM2.5 and 10.1002)
717 718 719 720 721 722 723 724 725	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.
717 718 719 720 721 722 723 723 724 725 726	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer C. Akagi S. Yokelson B. J. Emmons L. Al-Saadi J. Orlando J.
717 718 719 720 721 722 723 724 725 726 727	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soia A (2011) The fire inventory from near (finn): A high resolution
717 718 719 720 721 722 723 724 725 726 727 728	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model
 717 718 719 720 721 722 723 724 725 726 727 728 729 	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641.
 717 718 719 720 721 722 723 724 725 726 727 728 729 720 	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank (2020) Total nonvalation. The World Bank Group. Betrieved from
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP_POP_TOTL(Accessed11Dec.)
 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/ kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1-40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec .2021)
 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T32 T32 	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/ kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1-40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec .2021) World Health Organization (2013). Health risks of air pollution in Europe –
 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. <i>American Journal of Epidemiology</i>, 189(11), 1316–1323. doi: 10.1093/aje/ kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1-40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from near (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec .2021) World Health Organization. (2013). Health risks of air pollution in Europe – HBAPIE project. World Heath Organization (WHQ) 60
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316-1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1-40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625-641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec.2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y. Lin, M. & Horowitz, L. W. (2020). Summer PM2 5 Pollution Extremes
717 718 719 720 721 722 723 724 725 726 727 728 730 731 732 733 734 735 726	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec.2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfree Over the Western United States During 2017–2018. Geo.
717 718 719 720 721 722 723 724 725 726 727 728 730 731 732 733 734 735 736 737	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec.2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geo-nhusial Research Letters /7(16) 1–11. doi: 10.1029/2020GL089429
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4 (3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec.2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geophysical Research Letters, 47(16), 1–11. doi: 10.1029/2020GL089429 Xu B. Yu P. Abramson M. J. Johnston F. H. Samet, J. M. Bell, M. J.
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec .2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geophysical Research Letters, 47(16), 1–11. doi: 10.1029/2020GL089429 Xu, R., Yu, P., Abramson, M. J., Johnston, F. H., Samet, J. M., Bell, M. L., Guo, Y. (2020, nov). Wildfires Clobal Climate Change and Hu-
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec .2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geophysical Research Letters, 47(16), 1–11. doi: 10.1029/2020GL089429 Xu, R., Yu, P., Abramson, M. J., Johnston, F. H., Samet, J. M., Bell, M. L., Guo, Y. (2020, nov). Wildfires, Global Climate Change, and Human Health New England Journal of Medicine 288(22) 2173–2181. doi:
717 718 719 720 721 722 723 724 725 726 727 728 730 731 732 733 734 735 736 737 738 739 740 741	 Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec.2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geophysical Research Letters, 47(16), 1–11. doi: 10.1029/2020GL089429 Xu, R., Yu, P., Abramson, M. J., Johnston, F. H., Samet, J. M., Bell, M. L., Guo, Y. (2020, nov). Wildfires, Global Climate Change, and Human Health. New England Journal of Medicine, 383(22), 2173–2181. doi: 10.1056/NEJMsr202885
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741	 Wiel, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec .2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geophysical Research Letters, 47(16), 1–11. doi: 10.1029/2020GL089429 Xu, R., Yu, P., Abramson, M. J., Johnston, F. H., Samet, J. M., Bell, M. L., Guo, Y. (2020, nov). Wildfires, Global Climate Change, and Human Health. New England Journal of Medicine, 383(22), 2173–2181. doi: 10.1056/NEJMsr2028985
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743	 Wind, Sijo-Si, and Point 10, 1289 (enpression). Wei, Y., Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from near (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec.2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heatth Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geophysical Research Letters, 47(16), 1–11. doi: 10.1029/2020GL089429 Xu, R., Yu, P., Abramson, M. J., Johnston, F. H., Samet, J. M., Bell, M. L., Guo, Y. (2020, nov). Wildfires, Global Climate Change, and Human Health. New England Journal of Medicine, 383(22), 2173–2181. doi: 10.1056/NEJMsr202895 Zaveri, R. A., Easter, R. C., Fast, J. D., & Peters, L. K. (2008). Model for simulating aerosol interactions and chemistry (mosaic). Journal of Geophysical Researced Research Science and chemistry (mosaic). Journal of Geophysical Researced Researced Researce and chemistry (mosaic). Journal of Geophysical Researced Researced Researce Rese
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743	 Wirk, Wang, Y., Wu, X., Di, Q., Shi, L., Koutrakis, P., Schwartz, J. D. (2020). Causal effects of air pollution on mortality rate in Massachusetts. American Journal of Epidemiology, 189(11), 1316–1323. doi: 10.1093/aje/kwaa098 WHO. (2016). Health Risk Assessment of air pollution. World Health Organization, 1–40. WHO. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., & Soja, A. (2011). The fire inventory from ncar (finn): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. World Bank. (2020). Total population. The World Bank Group. Retrieved from https://data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec.2021) World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2.5 Pollution Extremes Caused by Wildfires Over the Western United States During 2017–2018. Geophysical Research Letters, 47(16), 1–11. doi: 10.1029/2020GL089429 Xu, R., Yu, P., Abramson, M. J., Johnston, F. H., Samet, J. M., Bell, M. L., Guo, Y. (2020, nov). Wildfires, Global Climate Change, and Human Health. New England Journal of Medicine, 383(22), 2173–2181. doi: 10.1056/NEJMsr2028985 Zaveri, R. A., Easter, R. C., Fast, J. D., & Peters, L. K. (2008). Model for simulating aerosol interactions and chemistry (mosaic). Journal of Geophysical Research: Atmospheres. 113(D13)

- Zhou, X., Josey, K., Kamareddine, L., Caine, M. C., Liu, T., Mickley, L. J., ...
- Dominici, F. (2021). Excess of COVID-19 cases and deaths due to fine partic-
- $_{747}$ ulate matter exposure during the 2020 wildfires in the United States. Science
- 748 Advances, 7(33), 1–12. doi: 10.1126/sciadv.abi8789

ΔO₃/O₃ [%] 5 10 15

no_fires fires ٠

Supplementary Information for

An estimate of excess mortality resulting from air pollution caused by wildfires in the eastern and central Mediterranean basin in 2021

Bin Zhou^{1,2}, Christoph Knote¹

¹Model-based Environmental Exposure Science, Faculty of Medicine, University of Augsburg, Augsburg, Germany ²Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany

Contents of this file

Tables

• Table S1: Countries included in the study and their respective population in 2020.

• Table S2: Excess number of deaths for individual countries and the entire region estimated based on wildfire-caused $PM_{2.5}$ and O_3 loads within the simulation period, with 95% CIs.

Figures

• Figure S1: Baseline all-cause all-age both-gender mortality 2019 for each country with 95% CIs.

• Figure S2: Multi-annual monthly mean normalized ratio of death averaged across 2010- 2020.

- \bullet Figure S3: Validation of WRF-Chem-simulated $\mathrm{PM}_{2.5}$ concentration.
- Figure S4: Validation of WRF-Chem-simulated O₃ concentration.

Х - 2

• Figure S5: Spatial pattern of multi-month mean NO₂ concentration simulated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario.

:

• Figure S6:Spatial pattern of multi-month mean SO₂ concentration simulated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario.

• Figure S7:Spatial pattern of multi-month mean hydroxyl radical (OH) concentration simulated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario.

• Figure S8: Diurnal pattern of multi-month hourly mean ambient $PM_{2.5}$ concentration for each country and the entire region of interest.

• Figure S9: Diurnal pattern of multi-month hourly mean O_3 concentration for each country and the entire region of interest.

• Figure S10: Diurnal pattern of multi-month hourly mean SO₂ concentration for each country and the entire region of interest.

• Figure S11: Diurnal pattern of multi-month hourly mean NO₂ concentration for each country and the entire region of interest.

• Figure S12: Time series of 24-h-mean population weighted $PM_{2.5}$ for each country.

• Figure S13: Time series of population weighted daily maximum 8-h average (DMA8)

of O_3 for each country

- Figure S14:Time series of 24-h-mean population weighted SO₂ for each country.
- Figure S15: Time series of 24-h-mean population weighted NO₂ for each country.

References

Eurostat. (2021). Deaths (total) by month, 2010-2019. Luxembourg.

Global Burden of Disease Collaborative Network. (2020). Global Burden of Disease Study 2019 (GBD 2019) Results. Seattle, United States: Institute for Health Metrics and

May 7, 2022, 8:28pm

Evaluation (IHME). Retrieved from http://ghdx.healthdata.org/gbd-results -tool?params=gbd-api-2019-permalink/4e1860d6fad20ccf64c5e6f7e1f7a24b

- Holzinger, R., Wameke, C., Hansel, A., Jordan, A., Lindinger, W., Scharffe, D. H., ... Crutzen, P. J. (1999). Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide. *Geophysical Research Letters*, 26(8), 1161–1164. doi: 10.1029/1999GL900156
- Kroll, J. H., Heald, C. L., Cappa, C. D., Farmer, D. K., Fry, J. L., Murphy, J. G., & Steiner, A. L. (2020). The complex chemical effects of COVID-19 shutdowns on air quality. *Nature Chemistry*, 12(9), 777–779. doi: 10.1038/s41557-020-0535-z
- Manning, M. I., Martin, R. V., Hasenkopf, C., Flasher, J., & Li, C. (2018). Diurnal Patterns in Global Fine Particulate Matter Concentration. *Environmental Science* and Technology Letters, 5(11), 687–691. doi: 10.1021/acs.estlett.8b00573
- World Bank. (2020). *Total population*. The World Bank Group. Retrieved from https:// data.worldbank.org/indicator/SP.POP.TOTL(Accessed11Dec.2021)

	name	ISO-2	ISO-3	pop. (in Mio.)
1	Albania	AL	ALB	2.84
2	Bosnia and Herzegovina (B&H)	BA	BIH	3.28
3	Bulgaria	BG	BGR	6.93
4	Cyprus	CY	CYP	1.21
5	Egypt	EG	EGY	102.33
6	Greece	GR	GRC	10.72
7	Croatia	HR	HRV	4.05
8	Israel	IL	ISR	9.22
9	Italy	IT	ITA	59.55
10	Lebanon	LB	LBN	6.83
11	Montenegro	ME	MNE	0.62
12	North Macedonia (N. Macedonia)	MK	MKD	2.07
13	Malta	MT	MLT	0.53
14	Romania	RO	ROU	19.29
15	Serbia	RS	SRB	6.91
16	Slovenia	\mathbf{SI}	SVN	2.10
17	Tunisia	TN	TUN	11.82
18	Turkey	TR	TUR	84.34
	SUM			334.62

 Table S1.
 Countries included in the study and their respective population in 2020, obtained

from the World Bank's World Development Indicators database (World Bank, 2020).

P		2.5	O_3	
Country	Method I	Method II	Method I	Method II
Albania	5 [3,7]	5 [3,8]	12 [9,16]	12 [9,16]
B&H	4 [2,6]	4[3,6]	9[7,12]	9[7,12]
Bulgaria	21 [13, 29]	21 [14, 29]	63 [46, 80]	63 [47, 81]
Croatia	4[3,6]	4[3,6]	$10 \ [7,12]$	10[7,13]
Cyprus	$1 \ [0,1]$	$1 \ [0,1]$	2 [1,2]	2 [1,2]
Egypt	45 [27, 63]	45 [29, 64]	128 [88, 167]	$128 \ [90, 169]$
Greece	23 [16, 30]	23 [16, 30]	55 [43, 67]	55 [44, 67]
Israel	4 [2,5]	4[2,5]	9[7,11]	9[7,11]
Italy	67 [46, 89]	67 [46, 89]	155 [123, 188]	155 [123, 187]
Lebanon	2[2,3]	2[2,3]	6[5,7]	6[5,7]
Malta	0 [0,1]	0 [0,1]	$1 \ [1,1]$	$1 \ [1,1]$
Montenegro	2 [1,2]	2 [1,2]	4[3,5]	4[3,5]
N. Macedonia	4[3,6]	4[3,6]	$11 \ [8,15]$	$11 \ [8,15]$
Romania	36[23, 48]	36[23, 49]	110 [81,139]	110 [83,140]
Serbia	15 [9,21]	15 [10, 21]	40 [29, 51]	40[29,51]
Slovenia	$1 \ [1,1]$	$1 \ [1,1]$	2[2,3]	2[2,3]
Tunisia	4[3,6]	4[3,6]	$11 \ [7,14]$	$11 \ [7,14]$
Turkey	31 [19, 43]	31 [20, 43]	114 [83, 144]	$114 \ [85, 145]$
SUM	270 [174, 367]	270 [177,370]	741 [548,934]	741 [556,940]

Table S2. Excess number of deaths for individual countries and the entire region estimated based on wildfires-caused $PM_{2.5}$ and O_3 loads within the simulation period, with 95% confidence intervals (CIs) in brackets. The methods I and II refer to the Delta and Monte Carlo methods for the uncertainty estimation, respectively, which are described in details in Section 2.4.3 in the main text. The Delta method slightly underestimate the excess deaths compared to the Monte Carlo method. However, the difference is not significant.

Figure S1. Baseline all-cause mortality in both genders 2019 for each country with 95% confidence intervals, downloaded from the Global Health Data Exchange (Global Burden of Disease Collaborative Network, 2020).The annual mortality rates of countries range from 515 (Israel) to 1791 (Bulgaria) deaths per 100,000 population. B&H stands for Bosnia and Herzegovina.

May 7, 2022, 8:28pm

Figure S2. Multi-annual monthly mean normalized ratio of death averaged across 2010-2020 (dark gray, bold), underlaid with data for individual years (light gray) downloaded from (Eurostat, 2021). For countries where monthly death data are not available (e.g., Egypt, Israel, Lebanon), the monthly mortality is calculated based on the regional mean value averaged across all other countries (General^{*}).

Daily mean PM_{2.5} WRF vs. Airbase (observed)

standard deviation (normalised)

Figure S3. Validation of $PM_{2.5}$ concentration simulated by WRF-Chem using AirBase E1a & E2a air quality data. We only used the verified AirBase data with "verification code" equal to 1 (verified) or 2 (preliminary verified) in the metadata, and data from stations where more than 75% of observations are present during the entire period. Each AirBase station is spatially matched to a WRF grid cell (20 km). The hourly WRF values are also averaged to daily means for comparison with AirBase data from stations where only daily means were recorded.

Daily mean O₃ WRF vs. Airbase (observed)

:

Hourly O₃ WRF vs. Airbase (observed)

Figure S4. Validation of O_3 concentration simulated by WRF-Chem using AirBase data.

ΔNO₂/NO₂ [%] _50 -25 0 25 50 75

Figure S5. Spatial pattern of multi-month mean NO₂ concentration simulated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario. a) NO₂ concentration simulated with fires scenario, b) NO₂ concentration with fires scenario relative to no-fires $(\Delta NO_2 = NO_2^{\text{fires}} - NO_2^{\text{no-fires}})$, c) NO₂ concentration attributable to wildfires in percentages $(\Delta NO_2/NO_2^{\text{fires}})$. The elevation of wildfire-caused NO₂ is mainly observed in the Balkans, South Italy, and southern coast of Turkey. In contrast, regions with high background industrial pollution show a slight decrease in ambient NO₂ concentration.

Figure S6. Spatial pattern of multi-month mean SO₂ concentration simulated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario. a) SO₂ concentration simulated with fires scenario, b) SO₂ concentration with fires scenario relative to no-fires $(\Delta SO_2 = SO_2^{\text{fires}} - SO_2^{\text{no-fires}})$, c) SO₂ concentration attributable to wildfires in percentages $(\Delta SO_2/SO_2^{\text{fires}})$.

Figure S7. Spatial pattern of multi-month mean hydroxyl radical (OH) concentration simulated by WRF-Chem under the fires scenario and the difference relative to the no-fires scenario. a) OH concentration simulated with fires scenario, b) OH concentration with fires scenario relative to no-fires ($\Delta OH = OH^{\text{fires}} - OH^{\text{no-fires}}$), c) OH concentration attributable to wildfires in percentages ($\Delta OH/OH^{\text{fires}}$).

Figure S8. Diurnal pattern of multi-month hourly mean ambient $PM_{2.5}$ concentration for each country and the entire region of interest (ROI). In most countries, the $PM_{2.5}$ concentration follows a pattern subject to the mixing layer height. The daytime troughs reflect strong turbulent exchange and dilution within the mixed layer, whereas stable nighttime boundary layer enables $PM_{2.5}$ to accumulate (Manning et al., 2018). The wildfire-caused elevation of $PM_{2.5}$ concentration in all countries can be ascribed to the emissions of gas-phase air pollutants such as NO_x , and VOCs from wildfires. These species are oxidized to form less volatile nitrates, and secondary organic aerosols (SOAs), respectively, and condense into the particle phase (Kroll et al., 2020).

X - 14

Figure S9. Diurnal pattern of multi-month hourly mean O_3 concentration for each country and the entire ROI. The biomass burning presents a significant source of O_3 precursors such as carbon monoxide (CO), volatile organic compounds (VOCs), and nitrogen oxide (NO_x), which form O_3 in the presence of solar radiation (Holzinger et al., 1999). Therefore, the concentration of O_3 starts to increase after the sunrise and often reaches its maximum in the afternoon (between LT1200 and 1600). As the time of the day (horizontal axis) is in UTC, the local time (LT) of each country may be offset, subject to the time zone which the country is located in.

Figure S10. Diurnal pattern of multi-month hourly mean SO_2 concentration for each country and the entire region of interest.

Figure S11. Diurnal pattern of multi-month hourly mean NO_2 concentration for each country and the entire region of interest.

Figure S12. Time series of 24h-mean population weighted concentration of $PM_{2.5}$ for each country.

Figure S13. Time series of population weighted daily maximum 8-h average (DMA8) of O_3 for each country.

Figure S14. Time series of 24h-mean population weighted concentration of SO_2 for each country.

Figure S15. Time series of 24h-mean population weighted concentration of NO_2 for each country.