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Abstract

Compound drought and heatwave (CDHW) events have received considerable attention in recent years due to their devastating

effects on human society and ecosystem. In this study, we systematically investigated the spatiotemporal changes of CDHW

events for historical period (1951-2014) and four future scenarios (2020-2100) (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) over

global land by using Coupled Model Intercomparison Project Phase 6 (CMIP6) models. The sensitivity of the CDHW events to

the changes of maximum air temperature and the climatic water balance variables are also examined. The CDHW is defined by

integrating monthly standardized precipitation evapotranspiration index (SPEI) and daily maximum temperatures. The results

show that the multi-model ensembles project a strong increasing trend in CDHW characteristics over almost all global lands

under SSP2-4.5, SSP3-7.0, and SSP5-8.5. A significant increase in CDHW risk will witness across global land areas for the

medium to long term future, if there is not aggressive adaptation and mitigation strategies. The results of sensitivity analysis

suggest that higher sensitivity of CDHW events to global warming will occur in the future except SSP1-2.6. Particularly, each

1°C global warming increases the duration of the CDHW events by 3 days in the historical period, but by about 10 days in the

future period. Overall, this study improves our understanding in the projection of CDHW events and the impacts of climate

drivers to the CDHW events under various future scenarios, which could provide support about the risk assessment, adaptation

and mitigation strategies under climate change.
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Key points:

• Multi-model ensembles average can capture the historical changes of com-
pound drought and heatwave events well.

• There is a significantly increasing trend for compound drought and heat-
wave characteristics over almost global land in the future.

• Future will witness higher sensitivity of compound drought and heatwave
events to global warming over most global land.

Abstract

Compound drought and heatwave (CDHW) events have received considerable
attention in recent years due to their devastating effects on human society and
ecosystem. In this study, we systematically investigated the spatiotemporal
changes of CDHW events for historical period (1951-2014) and four future sce-
narios (2020-2100) (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) over global
land by using Coupled Model Intercomparison Project Phase 6 (CMIP6) models.
The sensitivity of the CDHW events to the changes of maximum air tempera-
ture and the climatic water balance variables are also examined. The CDHW
is defined by integrating monthly standardized precipitation evapotranspiration
index (SPEI) and daily maximum temperatures. The results show that the
multi-model ensembles project a strong increasing trend in CDHW character-
istics over almost all global lands under SSP2-4.5, SSP3-7.0, and SSP5-8.5. A
significant increase in CDHW risk will witness across global land areas for the
medium to long term future, if there is not aggressive adaptation and mitiga-
tion strategies. The results of sensitivity analysis suggest that higher sensitivity
of CDHW events to global warming will occur in the future except SSP1-2.6.
Particularly, each 1°C global warming increases the duration of the CDHW
events by 3 days in the historical period, but by about 10 days in the future
period. Overall, this study improves our understanding in the projection of
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CDHW events and the impacts of climate drivers to the CDHW events under
various future scenarios, which could provide support about the risk assessment,
adaptation and mitigation strategies under climate change.

Plain Language Summary

Compound drought and heatwave (CDHW) events (co-occurring hot and dry
extremes) always cause severe damages to human society and natural system,
often beyond separate impacts from heatwaves and droughts. Understanding the
change of CDHW events under global warming can help to manage the risks
of associated disasters and advance climate change adaptation. Therefore, we
systematically investigated the future changes of CDHW events (characterized
by duration, severity, and magnitude) and the relationship between CDHW
characteristics and the relevant climate factors using the state-of-the-art climate
simulations. Here we show that future will witness a strong increase in CDHW
events. A significantly increasing CDHW risk will occur across most global
land for the medium to long term future without aggressive adaptation and
mitigation strategies. In addition, compared with the historical period, higher
sensitivity of CDHW events to global warming over most global land will occur
in the future. These tell us that measures to limit the temperature increase are
urgently needed for survive and thrive.

Keywords: Compound events, Compound drought and heatwave (CDHW),
CMIP6, Sensitivity analysis, Climate change, Future projection

1. Introduction

It is an established fact that the increasing concentration of greenhouse gases
caused by human activities has warmed the earth system, including the atmo-
sphere, ocean and land, further accelerating the hydrological cycle (IPCC, 2021;
Byrne & O’Gorman, 2018; Tett et al., 1999; P. Wu et al., 2013). The increase
in global surface temperature alters the spatiotemporal pattern, frequency and
magnitude of extreme events, such as heatwave (Perkins-Kirkpatrick & Lewis,
2020; Russo et al., 2014), drought (Ault, 2020; Dai, 2011; Trenberth et al., 2014;
G. Wu et al., 2022), heavy precipitation (Fischer & Knutti, 2016; Min et al.,
2011; Morrison et al., 2019) and flood (Gudmundsson et al., 2021; Hirabayashi
et al., 2013). Considerable attention has been paid to the research in weather
and climate extremes in recent decades due to the severe social and economic
impacts (Alexander et al., 2006; Cook et al., 2020; Wang et al., 2021; Q. Zhang
et al., 2021). Given the dependence between relevant climate drivers or hazards,
some extreme events tend to occur concurrently, such as drought and heatwave,
heavy rain and strong wind, which are termed compound events (Field et al.,
2012; Zscheischler et al., 2018; Zscheischler & Seneviratne, 2017). Compared
with single extreme events, compound events generally have much more devas-
tating effects on natural and human systems, especially for compound drought
and heatwave (CDHW) events, as its large spatial extent and long duration
(Mukherjee & Mishra, 2021; Shi et al., 2021; Zscheischler et al., 2018; Zscheis-
chler & Seneviratne, 2017). Hence, it is essential to investigate the spatiotem-
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poral variation of the CDHW events, especially their climate driving factors
during historical and future periods for risk assessment, adaptation and mitiga-
tion strategies.

Recently, many studies have investigated the characteristics of CDHW events
in various temporal and spatial scales and found that the frequency of CDHW
events has increased over the observed period and will continue to increase un-
der high future emission scenarios in most regions across the globe (Mukherjee
& Mishra, 2021; X. Wu et al., 2020; P. Zhang et al., 2020; Zscheischler &
Seneviratne, 2017). In addition, various methods were proposed to quantify
and describe the characteristics and risks of CDHW events. Some studies (Be-
vacqua et al., 2021; Leonard et al., 2014; Zscheischler et al., 2018) clarified and
extended the concept of compound events, and established the framework of
compound event research for quantifying its impacts and risks based on the ear-
lier definitions in the IPCC Special Report on Climate Extremes (IPCC-SREX).
Subsequently, some researchers used the percentile of monthly precipitation and
temperature (low precipitation percentile and high temperature percentile) to
describe the variation of dry-hot climate condition (X. Wu et al., 2020; Zhou
& Liu, 2018; Zscheischler & Seneviratne, 2017). In the past few years, an in-
creasing number of studies investigated the variation of CDHW characteristics
by defining CDHW event as a heatwave episode that occurs under drought con-
ditions (Feng et al., 2020; Mukherjee et al., 2020; Mukherjee & Mishra, 2021).
In these studies, the Standardized Precipitation Index (SPI) or Palmer Drought
Severity Index (PDSI) were employed to identify drought events, while a heat-
wave was typically defined as a period of consecutive extremely hot days with
the daily maximum temperature (Tmax) above a fixed percentile (Feng et al.,
2020; Mukherjee & Mishra, 2021; Shi et al., 2021; Yu & Zhai, 2020).

Generally, previous attention mainly focuses on the description of CDHW event
characteristics (Feng et al., 2020; Hao et al., 2018; X. Wu et al., 2019), and
the changes of CDHW events during the historical period using observations
(Feng et al., 2020; Mukherjee & Mishra, 2021; Yu & Zhai, 2020) and climate
model simulations (Nina N. Ridder et al., 2021). For the projection of future
period, several studies focused on the projection changes of CDHW by using
the percentile of monthly precipitation and temperature to describe the dry-hot
climate conditions, and only limited future scenario was selected, such as, the
Representative Concentration Pathway (RCP) 8.5 scenario from Coupled Model
Intercomparison Project Phase 5 (CMIP5) (X. Wu et al., 2020; Zhou & Liu,
2018; Zscheischler & Seneviratne, 2017). Recently, a state-of-the-art generation
of global climate models (GCMs) participating in CMIP6 have been available,
which have higher spatial resolution and improvements in physical processes,
and these GCMs employ the new Shared Socioeconomic Pathway (SSP)/RCP-
based emission scenarios for the future simulations of climate change (Eyring
et al., 2016; O’Neill et al., 2016). The results in Nina N. Ridder et al. (2021)
show that some CMIP6 models are able to capture the historical characteristics
of CDHW events in most regions of the world. Therefore, it is workable to
adopt the GCMs from CMIP6 for investigating the variation of CDHW events
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over history and the future. Using the CMIP6 multi-model ensemble, Vogel et
al. ( 2020) projected the changes in clusters of extreme dry-hot events at four
different global warming levels; Y. Wu et al. (2021) investigated the future
changes of compound extremes of monthly temperature and precipitation. So
far, however, there has been limited assessments of the projected changes of
global CDHW events from the event-based perspective under various future sce-
narios based on CMIP6 simulations. Additionally, deeper understanding of how
relevant climate drivers contribute to the changes of CDHW events characteris-
tics is still lacking. In this study, we systematically explore the spatial-temporal
changes of CDHW events over global land areas excluding Antarctica in history
(1951-2014) and various future (2020-2100) scenarios (i.e., SSP-RCP scenario),
integrating monthly standardized precipitation evapotranspiration index (SPEI)
and daily maximum temperatures from CMIP6 models. Furthermore, we exam-
ine the sensitivity of CDHW events to the relevant climate influencing factors
including Tmax and climatic water deficit (the difference between precipitation
and potential evapotranspiration) for a better understanding of the relationship
between climate factors and CDHW events under global warming conditions.
The specific objectives of this study are to: (1) evaluate the performance of the
selected models in simulating the observed CDHW events; (2) investigate the
projected changes of global CDHW; and (3) reveal the sensitivity of the changes
of CDHW events to climatic driving factors and the relevant contribution rate
of climatic driving factors.

2. Materials and Methods

2.1 Data

The six GCMs from CMIP6 are selected for the studies (Table 1). In order
to calculate the SPEI for further identifying CDHW events, we downloaded
11 meteorological variables at the daily resolution for the historical simulation
period 1950-2014 and the projection period 2015-2100 from the GCMs (Table
S1) (Eyring et al., 2016). To consider a range of possible future projection,
four combined scenarios of SSPs and RCPs from Tier 1 of ScenarioMIP, are
considered, i.e., SSP1-2.6 (+2.6 W/ m2; low forcing sustainability pathway),
SSP2-4.5 (+4.5 W m2; medium forcing middle of the road pathway), SSP3-7.0
(+7.0 W m2; high forcing regional rivalry pathway), and SSP5-8.5 (+8.5 W m2;
high forcing fossil-fueled development pathway) (Cook et al., 2020; O’Neill et
al., 2016).

Table 1. Information of used GCMs in this study

NUM Model Spatial Resolution Experiments
1 CMCC-CM2-SR5 192×288 Historical SSP2-4.5 SSP3-7.0 SSP5-8.5
2 FGOALS-g3 80×180 Historical SSP1-2.6 SSP2-4.5 SSP3-7.0
3 KACE-1-0-G 144×192 Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
4 NorESM2-LM 96×144 Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
5 NorESM2-MM 192×288 Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
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NUM Model Spatial Resolution Experiments
6 UKESM1-0-LL 144×192 Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

In order to validate the ability of GCMs to simulate various climate variables
and compound events, some observed records need to be employed. In this
study, the global land daily gridded maximum temperature product provided
by Climate Prediction Center (CPC-Unified) for the period 1979 to 2014 with
a spatial resolution of 0.5º×0.5º is used (PSL. 2022). This dataset has been
widely used as a reference for hydro-meteorology studies and climate change
impact studies due to the strict quality control and accuracy (Tarek et al. 2021;
Mukherjee and Mishra 2021; Nashwan et al. 2019). The monthly precipitation
and evapotranspiration baseline data are taken from the Climatic Research Unit
gridded Time Series Version 4 (CRU TS4.05) dataset with a 0.5º grid from
1950 to 2014 (Harris et al., 2020). Due to the long time span and high data
quality, CRU TS dataset has been widely employed in diverse research areas and
applications, especially for climate and hydrological fields (Arnell & Gosling,
2016; Guo et al., 2019; Hao et al., 2018).

Basically, the simulated climate variables from GCMs always have some biases
compared to the observed data (Chen et al., 2021). To minimize the biases
and improve the accuracy of climate model outputs, we employ the widely-
used Quantile Mapping (QM) method (Cannon et al., 2015; Maraun, 2013) to
correct the monthly precipitation and Tmax from GCMs outputs, and correct
the potential evapotranspiration (PET) calculated by the Penman–Monteith
(PM) equation using the 11 meteorological variables in table S1. The QM bias
correction method is one of the statistical downscaling methods, which attempts
to find a transfer function to obtain the best fit in mapping the simulated
cumulative distribution function of the variable onto the observed cumulative
distribution function (Themeßl et al., 2012). A detailed description of the QM
method is provided in A.1. of the Supporting information.

2.2 Definition of compound drought and heatwave events

In our study, the drought is defined in meteorological terms, as a water deficit
(difference between precipitation and PET) over a weekly, month or multi-
month scale (Vicente-Serrano, et al. 2010). The standardized precipitation
evapotranspiration index (SPEI) is applied to identify drought events. Here we
calculate SPEI at a 3-month scale (SPEI-3), and the drought event is defined
as SPEI-3 < -1 (Li et al., 2020; K. Xu et al., 2015) (Figure 1a). Compared to
the other two widely used drought indices, i.e., self-calibrated Palmer drought
severity index (sc-PDSI) (Wells et al. 2004) and standardized precipitation index
(SPI) (McKee et al. 1995), the SPEI is more suitable for detecting, monitoring
and investigating drought characteristics under global warming, as it considers
the consequences of PET (which includes solar radiation, temperature, wind
speed, air pressure and relative humidity) to drought (Vicente-Serrano et al.
2010). The 3-month time scale SPEI and the fixed threshold value of -1 are
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suitable for identifying drought conditions, which have been widely employed
to identify drought events over global and regional areas (Hao et al., 2018; Li et
al., 2020; Spinoni et al., 2019; K. Xu et al., 2015). We use the Food and Agri-
cultural Organization Penman–Monteith method (FAO-PM) to calculate the
PET. The detailed descriptions about FAO-PM method and calculating SPEI
are displayed in supplemental materials (Appendix A.2-3).

For the identification of heatwave events, the daily maximum temperature
(Tmax) data is used. A heatwave event is defined as Tmax greater than the
95th percentile of the baseline period and lasting at least three days (Figure
1b), which has been widely employed to identify heatwave events in the existing
literature (Kong et al., 2020; Z. Xu et al., 2016).

Based on the definition of drought and heatwave events, a CDHW event is
referred to as a heatwave event occurring within the drought month in our
study (Mukherjee et al., 2020; Mukherjee & Mishra, 2021; Zscheischler et al.,
2018). As can be seen from Figure 1, magenta lines are threshold; light yellow
shading denotes drought event; the part of Tmax time series marked in red are
heatwave events; the heatwave events circled by the orange oval are CDHW
events because they occur in drought months.

6



Figure 1. Schematic diagram of the identification of compound drought and
heatwave (CDHW) events. Magenta lines are threshold. Light yellow shading
denotes drought event. The part of Tmax time series marked in red are heatwave
events.

We further characterize the CDHW events using the duration, severity, and
magnitude. The characteristics of selected CDHW events are described as fol-
lows.

(i) CDHW duration is defined as the total number days of heatwave events
during the drought month (SPEI <-1 in this study) per year

(ii) CDHW severity indicates the difference between the average Tmax of CDHW
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events and the temperature threshold (95th percentile of a baseline period)

(iii) CDHW magnitude can be described by combining drought conditions and
heatwave conditions, which is defined as:

𝑀 = 1
𝑁

𝑁
∑
𝑛=1

(𝑇 max
𝑖

−𝑡ℎre) ∗ |SPEI𝑖|

where 𝑀 is the magnitude of CDHW events, 𝑁 is the total days of CDHW
events in a year, 𝑇 max𝑖 is the Tmax of the 𝑛 day of CDHW events in a year,
𝑡ℎre is the temperature threshold, SPEI𝑖 is the value of SPEI-3 during the month
of the 𝑛 day of CDHW events.

The temporal trend of CDHW characteristics is estimated using the Sen’s slope
estimator (Sen, 1968), and the Mann-Kendall (MK) trend test (Kendall, 1975;
Mann, 1945), which have been widely used in the trend detection of hydromete-
orological variables (Feng et al., 2020; Mukherjee & Mishra, 2021). The kernel
density estimator, which is a nonparametric method for estimating the empirical
probability distribution function (Russo et al., 2014), is employed to explore the
variability of future CDHW events relative to the historical period. A detailed
description of these methods is given in the supplementary materials (Appendix
A.4-5).

2.3 Sensitivity analysis

For investigating how the variation of CDHW events can be attributed to varia-
tions of its input factors, we further explore the sensitivity of CDHW events to
the temperature and the water deficit index (WDI, i.e., difference between pre-
cipitation and PET). The linear regression analysis method is adopted in this
study, which is the simplest and most widely used sensitivity analysis method
(Pianosi et al., 2016).

Here we assume a multiple linear relationship 𝑦 = 𝑎𝑖 + 𝑏𝑖𝑥𝑖 exists between the
dependent variable (CDHW characteristic) and the explanatory variables (Tmax
and WDI). The linear least-squares estimate method is employed to estimate the
regression coefficient 𝑏𝑖, which is the sensitivity measure. Given the input factors
have different units of measurement, we use the standard regression coefficient
to measure the sensitivity, which is defined as follow (Hall et al., 2009; Pianosi
et al., 2016):

𝑆𝑖 = 𝑏𝑖
SD(𝑥𝑖)
𝑆𝐷(𝑦)

where 𝑆𝑖 is the sensitivity coefficient for the input factor 𝑖, SD is the standard
deviation. In this study, two input factors, i.e., daily maximum temperature
(Tmax) and water deficit index (WDI), are selected, and the sensitivity can be
characterized as 𝑆𝑇 max and 𝑆WDI, respectively.
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Furthermore, we quantified the contribution of selected factors to the variation
of CDHW events. The relative contribution rate can be defined as follow (Tomas-
Burguera et al., 2020):

CR𝑖 = |𝑆𝑖|
∑𝑛

𝑖=1 |𝑆𝑖|
× 100%

where CR𝑖 is the relative contribution rate for the input factor 𝑖. The CR𝑇 max
and CRWDI stand for the contribution rate of Tmax and WDI, respectively.

3. Results

3.1 Performance of GCM simulations

To examine the capacity of the multi-model ensemble in reproducing the climate
drivers for identifying CDHW events, we firstly assess the performance of the raw
and corrected multi-model ensembles average in simulating the Tmax (Figure
1.), precipitation (Figure S1) and PET (Figure S2). For the spatial distributions,
we randomly select a year of the historical period (1998 in this study) as an
example rather than a multi-year average. The results show that both raw and
corrected multi-model ensembles mean can well capture the spatial patterns, of
which the latter matches the observed data better for all three variables. The
correlation coefficients of the corrected variables are all greater than the raw
data, whose values are greater than 0.975. For the temporal change over global
land areas, we find that the raw multi-model ensembles tend to underestimate
the annual average of Tmax, and overestimate the precipitation and PET, while
the corrected one fits the observed data well for both variations and trends.
Compared with the Tmax and PET, the precipitation of raw and corrected
data perform poorly in representing fluctuations (Figure S1d).
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Figure 2. Bias correction performance of annual average daily maximum temper-
ature (Tmax) from multi-model ensemble for 1979-2014 over global land areas.
(a) Spatial distribution of observed Tmax from CPC-unified in 1998; (b) Spatial
distribution of raw multi-model ensemble mean Tmax in 1998; (c) Spatial dis-
tribution of corrected multi-model ensemble mean Tmax in 1998; (d) Change
in global land Tmax for 1979-2014; (e) Bin scatter of the raw Tmax and CPC
Tmax for all global land pixels in 1998;(f) Bin scatter of the corrected Tmax
and CPC Tmax for all global land pixels in 1998.

We also compare the CDHW characteristics of historical corrected simulation
with that of observed data during 1979-2014 from the spatial distributions and
temporal changes, including CDHWmagnitude (Figure 3), duration (Figure S3),
and severity (Figure S4). As can be seen from these figures, the spatial patterns
of simulated CDHW characteristics are largely consistent with the observations;
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however, there are some local discrepancies between simulated and observed
data, such as the Amazon basin and parts of North East Asia for CDHW mag-
nitude. The results for bin-scatters further confirm the consistency of spatial
distributions between the observed CDHW characteristics and the simulated
CDHW characteristics. The correlation coefficients for the CDHW characteris-
tics in magnitude and severity are larger than 0.78. For the temporal change of
CDHW characteristics (Figure 3c, Figure S3c, and Figure S4c), we find that the
simulated CDHW characteristics capture the trend of time series well for the
historical period. Meanwhile, a significant increasing trend for all three CDHW
characteristics can be detected during the historical period (1979-2014), and
the increasing trend is more pronounced especially from 1995 (0.0493/decade
for 1979-1995 and 0.2678/decade for 1996-2014 in CDHW magnitude).

Figure 3. Comparisons of spatiotemporal patterns of CDHW magnitude for
1979-2014 from observed data and corrected multi-model ensemble mean, re-
spectively. (a) The observed mean spatial patterns of CDHW magnitude; (b)
The historical simulated mean spatial patterns of CDHW magnitude; (c) Time
series of CDHW magnitude for 1979-2014, the solid black line represents the
historical observation, and the solid red line represents the historical simulation.
The dashed lines represent linear fits, and the symbol “*” denotes a significant
trend at a 0.05 significance level. (d) The bin-scatter between the historical
observation and simulation for all global land pixels.

Taken together, the corrected multi-model ensemble average from CMIP6 mod-
els can capture the spatial patterns and temporal changes of annual Tmax,
precipitation, PET, and diverse CDHW characteristics well. Especially, the
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changes in the trend of climate drivers and diverse CDHW characteristics from
the multi-model ensemble mean are quite consistent with that of observed data
in the historical period. Hence, we inferred that it is rational to project the
CDHW characteristics using CMIP6 models for different scenarios over the fu-
ture period, which will be presented in the subsequent subsection.

3.2 Projection changes of CDHW characteristics

The global average changes and variabilities for diverse CDHW characteristics
are displayed in Figure 4 for historical and future periods. For future projection,
all four scenarios show a significantly increasing trend. The CDHW character-
istics trajectories across the four future scenarios diverge most strongly after
2050. The time series of CDHW characteristics tends to stabilize after 2050 un-
der SSP1-2.6 due to the low emissions and more aggressive mitigations. While
the global average CDHW characteristics will continue to increase under other
scenarios, of which the SSP5-8.5 scenario has the fastest riser, followed by SSP3-
7.0 and SSP2-4.5. The historical simulations reproduce the observed means and
variances from the kernel density charts, which agree with the results of Figure
3. Meanwhile, there are larger means and variances under SSP2-4.5, SSP3-7.0,
and SSP5-8.5 scenarios, while the SSP1-2.6 has a similar variance and the larger
mean compared with the historical period.
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Figure 4. Time series and probability density function (PDF) of global annual
average CDHW characteristics including magnitude (a, d), duration (b, e), and
severity (c, f) for the historical simulation (grey lines), observed (black lines) and
future projections from four scenarios. The shaded areas denote the interquartile
range calculated across models.

Furthermore, we explore the spatial distributions of trends for CDHW magni-
tude (Figure 5), CDHW duration (Figure S5), and CDHW severity (Figure S6).
Generally, the spatial distributions of the trend changes are largely consistent
for different CDHW characteristics. As Figure 5 shows, there is a significantly
increasing trend of CDHW magnitude in almost all land surface regions glob-
ally under SSP2-4.5, SSP3-7.0, and SSP5-8.5, while half of the global land areas
has no significant trend for the historical simulation and SSP1-2.6. Notably for
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SSP5-8.5, the CDHW events are characterized by greater than 1 ℃ per decade
increase in CDHW magnitude, greater than 10 days per decade increase in
CDHW duration and greater than 0.5℃ per decade increase in CDHW severity
during the future period (2020-2100) over most regions of the world, includ-
ing Amazon basin, Circum-Mediterranean regions, Middle East, Western and
Northern Asia, Europe, Northern Mexico, most parts of Africa, etc. What is
interesting about this figure is Eastern China and India will likely witness a
smaller increasing trend, and this region coincides well with the East and South
Asian monsoon regions.

Figure 5. Spatial change patterns of CDHW magnitude for history and four
future scenarios. The symbol “+” denotes a non-significant trend at a 0.05
significance level.

We divide the future into three sub time periods, i.e., near term (2021-2040),
mid-term (2041-2060), and long term (2081-2100) according to IPCC AR6 to
clarify the changes of CDHW during different time periods (IPCC, 2021). The
spatial changes maps of CDHW mean characteristics for these three periods
under four scenarios relative to the historical reference period (1981-2010) are
presented in Figure 6 and Figure S7-S8.
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Figure 6 shows that the CDHW magnitude for all three future terms is greater
than that of the baseline period over global land areas. In the near term (2021-
2040), there is no significant difference in the spatial patterns of CDHW magni-
tude between the four future scenarios, which is in agreement with the changes
of time series in Figure 4a-c. In the long term (2081-2100), more than half of the
global land areas including central and northern North America, the Amazon
basin, Europe, much of Africa, western and northern Asia, southern Australia,
have a CDHW magnitude above 5 under high and very high greenhouse gas
emission scenarios (SSP3-7.0 and SSP5-8.5). The smallest CDHW magnitude
occurs in the low greenhouse gas emission scenario SSP1-2.6. Additionally, we
find that the different CDHW characteristics are largely consistent in spatial
distribution. These results suggest that the global land areas will subject to an
increasing risk of CDHW events in the medium to long term future without the
more aggressive adaptation and mitigation strategies.

Figure 6. Spatial features of CDHW mean magnitude using 1981-2010 baseline
for diverse future scenarios at near term (2021-2040), mid-term (2061-2080) and
long term (2081-2100), respectively.

Overall, CMIP6 multi-model ensembles project a strong increasing trend in var-
ious CDHW characteristics under all four scenarios. Compared to the historical
period, there are larger means and variances under the selected future scenarios
except SSP1-2.6. For the spatial changes of CDHW characteristics, there is a
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significantly increasing trend in almost all global land areas under SSP2-4.5,
SSP3-7.0, and SSP5-8.5. The medium to long-term future will witness an in-
creasing CDHW risk across global land areas in high and very high greenhouse
gas emission scenarios (SSP3-7.0 and SSP5-8.5).

3.3 Sensitivity analysis of CDHW events

To investigate the responses of CDHW characteristics to the related climate
drivers (Tmax and WDI), we further explore the relative contribution rate of
climatic driving variables to the changes of CDHW events using the sensitivity
analysis method mentioned in subsection 2.3. In this subsection, we mainly
focus on the sensitivity of CDHW magnitude considering the consistency of
different CDHW characteristics in temporal and spatial changes.

The sensitivity coefficient boxplots of CDHW magnitude to Tmax and WDI
for global land pixels are shown in Figure 7a. In general, high temperature
promotes CDHW event, while rich water inhibits it. Therefore, for most of the
global land pixels, the 𝑆𝑇 max value is positive and the 𝑆WDI value is negative.
To compare in the boxplot, the absolute value of sensitivity coefficients is cal-
culated. What stands out in this figure is that higher sensitivity of CDHW
magnitude to Tmax will occur in the future (except SSP1-2.6) compared to the
historical period. This is especially true for the scenario SSP5-8.5, the median
of sensitivity coefficients from global land pixels is 0.76 while it is 0.38 in the
historical period.

The boxplots of the contribution rate of Tmax and WDI to the CDHW mag-
nitude changes during historical and future period (Figure 7b) indicates that
Tmax dominates the CDHW event changes under historical time period, SSP2-
4.5, SSP3-7.0, and SSP5-8.5. In addition, a higher contribution rate will occur
in future scenarios except SSP1-2.6. The median of contribution rates from
global land pixels is 0.75 under SSP5-8.5 while it is 0.53 under the historical
period.

Figure 7. Boxplot of sensitivity analysis of CDHW magnitude (a) and contri-
bution rate of climate drivers to CDHW magnitude (b) for global land pixels
under historical simulation and four future scenarios. The 𝑆𝑇 max and 𝑆WDI de-
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note the sensitivity of CDHW magnitude to the annual average daily maximum
temperature (Tmax) and annual total water deficit index (WDI), respectively.
The CR𝑇 max and CRWDI denote the contribution rate of the annual average
Tmax and annual WDI to the changes of CDHW magnitude, respectively.

The spatial maps of 𝑆Tmax and 𝑆WDI for CDHW magnitude are provided in
Figure 8. Compared to the historical 𝑆Tmax, the future 𝑆Tmax significantly
increases across most regions of global land except SSP1-2.6. Notably for SSP3-
7.0 and SSP5-8.5, more than half of the global land pixels have 𝑆Tmax values
being greater than 0.7. These pixels are mainly located in the Amazon Basin,
western South America, most of Africa, west-central Australia, and the Middle
East. For the spatial distributions of 𝑆WDI, there are no significant changes
between historical and future periods under scenarios SSP2-4.5, SSP3-7.0 and
SSP5-8.5. Most of the northern hemisphere corresponds to a much darker blue
color, especially for the northern part of Eurasia and northern North America.
Overall, the sensitivity coefficients of scenario SSP1-2.6 present different spatial
distributions compared with other future scenarios.
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Figure 8. Spatial distributions of sensitivity coefficients including 𝑆𝑇 max and
𝑆WDI for CDHW magnitude under historical period, SSP1-2.6, SSP2-4.5, SSP3-
7.0, SSP5-8.5, respectively.

We further present the spatial maps of contribution rate for CDHW magnitude
during the historical and future period in Figure 9. According to the definition
of CR𝑇 max and CRWDI, the sum of these two coefficients is 1 for the one fixed
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pixel; Hence, we only present one graph for one scenario here. The red color
indicates that the temperature change dominates the change of CDHW events,
while the blue color indicates that the water deficit change dominates it. The
darker the color indicates a higher contribution.

Figure 9 presents the spatial distributions of contribution rate (CR) of climate
drivers, of which a pixel with red represents that the Tmax dominates the varia-
tion of CDHW magnitude; a pixel with blue represents that the WDI dominates
it. As can be seen from this figure, the Tmax change dominates the variation
of CDHW magnitude over more than 90% pixels of global land under scenar-
ios SSP3-7.0 and SSP5-8.5. In historical and SSP2-4.5, more than half of the
global land pixels still have higher CR𝑇 max value. But for SSP1-2.6, the water
deficit dominates the change of CDHW magnitude over 65% global land pixels.
Collectively, most blue regions occur over Northern Hemisphere, for example,
China, northern Asia, most of North America during the historical period. The
scenario SSP1-2.6 will witness an almost blue Northern Hemisphere, while the
red regions only occur over India, southeast Asia, central and southern Africa,
Amazon Basin. Most of the blue regions in the historical period will turn red
in the future except SSP1-2.6. Especially for SSP3-7.0 and SSP5-8.5, tempera-
ture changes almost dominated the changes of CDHW characteristics across all
global land areas.
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Figure 9. Spatial distributions of contribution rate (CR) including CR𝑇 max
and CRWDI for CDHW magnitude under historical period, SSP1-2.6, SSP2-
4.5, SSP3-7.0, SSP5-8.5, respectively. Pie-charts represent the percentage of
area where temperature (red) and water deficit (blue) dominate the change in
CDHW magnitude.

We also find that higher sensitivity of CDHW characteristics to temperature
and the higher contribution rate of the changes in temperature to the changes
of CDHW characteristics will occur in the future except SSP1-2.6 from these
results mentioned above, which suggests a strong relationship between CDHW
characteristics and Tmax. Hence, we further explore it from an average global
perspective. The changes in global average CDHW magnitude and Tmax are
provided in Figure 10a. The trends of CDHW magnitude time series are very
consistent with that of Tmax for both historical simulation and future scenarios.
Figure 10b present the scatter plot of CDHW magnitude and Tmax. There is
a strong relationship between CDHW magnitude and Tmax for both historical
and future periods. What is more interesting is that the slope of the future
period is significantly larger than that of the historical period, which agrees
with the above results and suggests higher sensitivity of CDHW events to global
warming in the future.
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Figure 10. Relationship between CDHW magnitude with global annual aver-
age Tmax under historical simulation and four future scenarios. (a) Changes
in global average CDHW magnitude and Tmax. Solid lines denote the CDHW
magnitude, and dotted lines denote Tmax. (b) Scatter plot of CDHW magni-
tude and Tmax.

Furthermore, we calculate the slopes of different CDHW characteristics (CDHW
duration, severity, and magnitude) to Tmax using the linear regression method
under historical simulation and four future scenarios (Table 2). The results
show that each 1°C global warming increases the duration of the CDHW event
by 3 days in the historical period, but by about 10 days in the future period
under four scenarios. In addition, the sensitivity of CDHW magnitude to global
warming in the future period is approximately three times greater than that in
the historical period.

Table 2. Regression coefficients of different CDHW characteristics to Tmax
during historical and future periods.

Scenarios Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
Duration (days) 3.12 9.79 10.14 10.77 10.93
Severity (℃) 0.36 0.63 0.64 0.64 0.65
Magnitude 0.55 1.36 1.46 1.57 1.74

4. Discussion

Here, we systematically investigate the projection of CDHW events (character-
ized by duration, severity, and magnitude) using the state-of-the-art CMIP6
models under four future scenarios. The sensitivity of CDHW events to climate
drivers (including Tmax and WDI) is also quantified. We find a strong in-
creasing trend in CDHW characteristics and higher sensitivity of CDHW events
to global warming over most global land areas in the future except SSP1-2.6.
Nevertheless, there are some points that need to be discussed.

For the historical period, there is a significant temporal increase in the average
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CDHW characteristics, notably in recent two decades (Figure 3), which agrees
with the previous research about the changes of CDHW based on observed data
(Hao et al., 2018; Mukherjee & Mishra, 2021). The overall spatial characteristics
of simulated CDHW are in keeping with prior studies, but there are some local
discrepancies between our study and previous studies, which might be due to
the differences of data, identification method of CDHW event or study period
(Feng et al., 2020; Hao et al., 2018; Mukherjee & Mishra, 2021; X. Wu et al.,
2019).

We conclude that CDHW events are projected to increase over global land areas,
which is in agreement with the existing projection research (N. N. Ridder et al.,
2022; Sarhadi et al., 2018; X. Wu et al., 2020; Zscheischler & Seneviratne, 2017).
For all future scenarios, it is worth pointing out that Eastern China and India
will likely witness a smaller increasing trend in CDHW events (Figure 5-6), and
these regions coincide well with the East and South Asian monsoon regions. A
possible explanation for this might be that warming is relatively small (Fan et
al., 2020), while precipitation significantly increase over these monsoon regions
(Z. Chen et al., 2020).

This study find that CDHW events have a high sensitivity to global warming
in the future period except SSP1-2.6. There is a possible explanation for this
result. In our work, we assume that Tmax and WDI are independent when
performing sensitivity analysis. In fact, they are dependent. In general, the
increase in temperatures promotes both precipitation and PET (Berg et al.,
2013; Kingston et al., 2009; Singleton & Toumi, 2013). With global warming,
the dependence between Tmax and precipitation will become stronger, further
strengthening the correction between Tmax andWDI in the future period, which
will exacerbate the increase in CDHW events (Sarhadi et al., 2018; Zscheischler
& Seneviratne, 2017). In short, an increase in temperature has a greater effect
on the change of CDHW events in the future period than that in the historical
period, i.e., higher sensitivity of CDHW events to global warming in the future.

Recently, an interesting finding that precipitation trends determine future oc-
currences of compound hot–dry events, was published (Bevacqua et al., 2022).
The authors concluded, from the perspective of uncertainty, future droughts
will always coincide with at least moderately hot extremes due to the large local
warming; however, precipitation trends commonly depend on the model, region
and internal climate variability. That is, the uncertainty in the compound dry-
hot event arises mainly from the uncertainty in precipitation trends. In a word,
future compound hot–dry events are constraint by the constraining regional pre-
cipitation trends, which is non-contradictory with our conclusion. We explored
the relative contribution of climate drivers to the variation of CDHW events
without consideration of uncertainty. Although the multi-model ensembles can
simulate the CDHW characteristics well in time series and spatial distribution
during the historical period, the model uncertainty (shaded areas in Figure 4) is
considerable in the historical period, and even larger in the future period under
all scenario. Uncertainty is an inevitable issue in conducting future projection

22



research. In addition to the model uncertainty mentioned above, the uncer-
tainty can also be derived from observed data, bias correction methods, and
future scenarios in our study. The uncertainty should be quantified in further
researches.

5. Conclusions

In this study, we investigated the spatiotemporal changes of CDHW characteris-
tic (including CDHW duration, severity, and magnitude) based on the definition
of CDHW, using SPEI-3 and Tmax from CMIP6 models under historical period
(1951-2014) and diverse future scenarios (2020-2100) including SSP1-2.6, SSP2-
4.5, SSP3-7.0, and SSP5-8.5. Furthermore, we explored the responses of CDHW
characteristics to related climate drivers (Tmax and WDI) using the sensitivity
analysis method. The main conclusions are drawn as follows.

(1) The corrected multi-model ensemble average from CMIP6 simulations can
capture the spatial patterns and temporal changes of annual Tmax, precipita-
tion, PET, and diverse CDHW characteristics well. Especially, the changes in
the trend of climate drivers and diverse CDHW characteristics from the multi-
model ensemble mean are quite consistent with that of observed data in the
historical period.

(2) For the future period, CMIP6 multi-model ensembles project a strong in-
creasing trend in various global average CDHW characteristics under all four
scenarios, and there is a significantly increasing trend in CDHW characteris-
tics over almost all global land under SSP2-4.5, SSP3-7.0, and SSP5-8.5. The
medium to long term future will witness an increasing CDHW risk across global
land under scenarios SSP3-7.0 and SSP5-8.5.

(3) There is a higher sensitivity of CDHW events to global warming in the
future period (2020-2100) compared with that in the historical period (1951-
2014). The changes in Tmax dominate the changes of CDHW events over most
global land areas under future scenarios except SSP1-2.6. Particularly, each
1°C global warming increases the duration of the CDHW event by 3 days in the
historical period, but by about 10 days in the future period.

This study improves the understanding in the projected changes of CDHW
events and the impacts of climate drivers to the CDHW event under various
future scenarios, which could provide useful information for the risk manage-
ment of compound events and implementation of adaptation and mitigation
strategies under climate change.
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