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Abstract

Radiative skin temperature is often used to examine heat exposure in multi-city studies and for informing urban heat manage-

ment efforts since urban air temperature is rarely measured at the appropriate scales. Cities also have lower relative humidity,

which is not traditionally accounted for in large-scale observational urban heat risk assessments. Here using crowdsourced

measurements from over 40,000 weather stations in [?]600 urban clusters in Europe, we show the moderating effect of this

urbanization-induced humidity reduction on heat stress during the 2019 heatwave. We demonstrate that daytime differences

in heat index between urban clusters and their surroundings are weak and associations of this urban-rural difference with

background climate, generally examined from the skin temperature perspective, is diminished due to moisture feedback. We

also examine the spatial variability of skin temperature, air temperature, and heat indices within these clusters, relevant for

detecting hotspots and potential disparities in heat exposure, and find that skin temperature is a poor proxy for the intra-urban

distribution of heat stress. Finally, urban vegetation shows much weaker (˜1/6th as strong) associations with heat stress than

with skin temperature, which has broad implications for optimizing urban heat mitigation strategies. Our results are valid for

both operational metrics of heat stress (such as apparent temperature and Humidex) and for various empirical heat indices

from epidemiological studies. This study provide large-scale empirical evidence that skin temperature, used due to the lack of

better alternatives, is weakly suitable for informing heat mitigation strategies within and across cities, necessitating more urban

meteorological observations.
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Abstract 24 

Radiative skin temperature is often used to examine heat exposure in multi-city studies and for 25 

informing urban heat management efforts since urban air temperature is rarely measured at the 26 

appropriate scales. Cities also have lower relative humidity, which is not traditionally accounted 27 

for in large-scale observational urban heat risk assessments. Here using crowdsourced 28 

measurements from over 40,000 weather stations in ≈600 urban clusters in Europe, we show the 29 

moderating effect of this urbanization-induced humidity reduction on heat stress during the 2019 30 

heatwave. We demonstrate that daytime differences in heat index between urban clusters and 31 

their surroundings are weak and associations of this urban-rural difference with background 32 

climate, generally examined from the skin temperature perspective, is diminished due to 33 

moisture feedback. We also examine the spatial variability of skin temperature, air temperature, 34 

and heat indices within these clusters, relevant for detecting hotspots and potential disparities in 35 

heat exposure, and find that skin temperature is a poor proxy for the intra-urban distribution of 36 

heat stress. Finally, urban vegetation shows much weaker (~1/6th as strong) associations with 37 

heat stress than with skin temperature, which has broad implications for optimizing urban heat 38 

mitigation strategies. Our results are valid for both operational metrics of heat stress (such as 39 

apparent temperature and Humidex) and for various empirical heat indices from epidemiological 40 

studies. This study provide large-scale empirical evidence that skin temperature, used due to the 41 

lack of better alternatives, is weakly suitable for informing heat mitigation strategies within and 42 

across cities, necessitating more urban meteorological observations. 43 

  44 
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Plain Language Summary 45 

A central theme in urban climatology is that cities have higher heat stress than their background 46 

rural landscapes. In scientific studies across many cities, satellite observations are often used as a 47 

proxy for this higher urban heat stress. However, satellites measure the temperature of the urban 48 

surface, while heat stress is mainly a function of air temperature and humidity. It is critical to 49 

know how well, if at all, satellites capture urban heat stress, which has been traditionally difficult 50 

to measure using ground observations due to the lack of weather stations in cities. Here, we use 51 

measurements from over 40,000 citizen weather stations over Europe to address this important 52 

gap and compare the distributions of satellite-derived surface temperature, air temperature, and 53 

heat stress during the July 2019 heatwave. We find that the lower relative humidity due to 54 

urbanization partly offsets the effect of higher air temperatures on urban heat stress. Moreover, 55 

satellite-derived surface temperature shows very weak relationships with air temperature and 56 

heat stress, both within cities and when examining urban-rural differences across cities. Finally, 57 

urban vegetation is much less effective at reducing heat stress than at reducing surface 58 

temperature. These results are relevant for informing future urban research.  59 
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1. Introduction 60 

As the world continues to warm, with heatwaves becoming more frequent and intense (Perkins-61 

Kirkpatrick & Lewis, 2020), urban areas are expected to face the brunt of the impacts due to 62 

large populations and higher temperatures (Heaviside et al., 2017; Heilig, 2014). That cities, on 63 

average, have higher temperatures than their surroundings – the urban heat island (UHI) effect – 64 

is well-established (Arnfield, 2003; Qian et al., 2022). However, the time and magnitude of this 65 

phenomenon varies substantially across cities and depends on the type of temperature 66 

measurement (Ho et al., 2016; Venter et al., 2021; Zhang et al., 2014). Even though UHI 67 

estimates were traditionally from air temperature (Ta) measurements (Howard, 1833), many 68 

recent large-scale observational and modeling studies on the UHI, and urban climate in general, 69 

have focused on radiative skin temperature (Ts) (Chakraborty et al., 2019; Chakraborty & Lee, 70 

2019; Clinton & Gong, 2013; Hoffman et al., 2020; Hsu et al., 2021; Manoli et al., 2019; 71 

Mentaschi et al., 2022; Schwaab et al., 2021; L. Zhao et al., 2014, 2017), with many of these 72 

studies commenting on heat exposure in cities, their public health consequences, and potential 73 

mitigation strategies. Similarly, maps derived from Ts are often used as a guide for planning heat 74 

mitigation strategies by decision makers (Keith et al., 2019). However, Ta is more relevant for 75 

heat exposure than Ts, but is difficult to measure in cities due to the dearth of standard weather 76 

stations and hard to model due to multiple confounding factors (Ho et al., 2016; Muller et al., 77 

2013; Stone Jr et al., 2019). The two variables – Ta and Ts – are physically distinct (Jin & 78 

Dickinson, 2010), and the urban-rural differences in Ta (ΔTa) and Ts (ΔTs) are also not well 79 

correlated (Venter et al., 2021; Zhang et al., 2014), which brings into question the potential 80 

public health and policy implications of urban studies using Ts. 81 

Urban areas may also be drier than their surroundings (particularly in humid climate) due to the 82 

removal of vegetation and pervious surfaces - the urban dry island (UDI) effect (Lokoshchenko, 83 

2017; Qian et al., 2022). In comparison to the multitude of studies on the UHI, the UDI is rarely 84 

considered in large-scale urban heat risk assessments due to the lack of consensus on a standard 85 

metric for urban moisture content (Z. Wang et al., 2021) and the difficulty in measuring near-86 

surface moisture within cities, even when using satellites. The human physiological response to 87 

heat depends not just on Ta, but also on relative humidity (RH) (Anderson et al., 2013; Raymond 88 

et al., 2020; Sherwood & Huber, 2010). Electricity demand for cooling buildings, expected to be 89 
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enhanced due to the UHI, also depends on atmospheric humidity (Maia-Silva et al., 2020). 90 

Therefore, a more accurate understanding of the impact of urbanization on public health, energy 91 

demand, and the economy should account for the combined impacts of Ta and RH. Although 92 

modeling studies have the freedom to examine simulated Ta and RH (and thus, heat stress) over 93 

urban areas (Huang et al., 2021; Oleson et al., 2015; Sarangi et al., 2021; L. Zhao et al., 2021), 94 

models use simplified representations of urban areas with multiple sources of uncertainty 95 

(Krayenhoff et al., 2021; Qian et al., 2022; Sharma et al., 2021; Zheng et al., 2021). 96 

Additionally, it is computationally expensive to run such models at fine-enough scales to resolve 97 

intra-urban variability.  98 

Here we combine dense citizen weather station (CWS) measurements and satellite observations 99 

over Europe during the July 2019 heatwave to comprehensively examine the distributions of Ts, 100 

Ta, RH, and heat stress within and across satellite-derived urban clusters. We consider several 101 

metrics, both empirical and thermodynamic, for estimating heat stress, including the apparent 102 

temperature used by the US National Weather Service (HI0), which describes what the 103 

temperature feels like to humans when humidity is accounted for (Rothfusz, 1990; Steadman, 104 

1979). Our results, based on measurements from over 40,000 (after quality control) CWSs in 105 

over 600 clusters, suggest that the lower RH in these cities partially cancels out the impact of 106 

higher Ta on heat stress during daytime, resulting in smaller differences in HI0 (and several other 107 

heat indices considered) between urban areas and their surroundings. We also analyze the spatial 108 

gradients of these variables within clusters and demonstrate that satellite-derived Ts poorly 109 

captures the spatial distribution of ambient HI0 within cities. Finally, with reference to the notion 110 

of employing urban vegetation to reduce local-scale heat stress, we find that vegetation is much 111 

less efficient at lowering HI0 than lowering Ts at these scales. These results demonstrate the 112 

contrasting roles Ta and RH play to moderate urbanization-induced heat stress across scales - the 113 

most comprehensive analysis of this sort using in situ observations - and suggest that we should 114 

re-evaluate the current dependence on satellite-derived insights for urban design and policy 115 

making.  116 

2. Methods 117 
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Terra observations (not shown). The black dots show the Netatmo stations over the cluster and 134 

the gray region represents the rural reference. Sub-fig c shows the total number of valid 135 

observations and unique stations for each region that correspond to the Terra and Aqua overpass 136 

times. 137 

The rural or background reference for each cluster is a polygon buffer of 10 km width 138 

surrounding it (Fig. 1b), a definition of rural reference used in a previous global-scale study 139 

(Clinton & Gong, 2013). Since some urban clusters are closer to each other than 20 kms, a focal 140 

mode smoothing function is applied to prevent any overlap between the rural references of 141 

nearby clusters. This function designates a border between two overlapping buffers such that 142 

they are equidistant to the original urban clusters they surround. More information about the 143 

generation of the urban clusters and their rural references can be found in Venter et al. (Venter et 144 

al., 2021). 145 

2.2 Citizen weather station data 146 

All hourly 𝑇ୟ and RH observations from CWSs over Europe were downloaded for July 2019 147 

from Netatmo (https://netatmo.com/). This includes data from 113,215 stations during this 148 

period. CWSs data have errors and biases related to less-than-ideal sensor placement, insufficient 149 

site metadata, lack of radiation shield, and instrumental errors (Meier et al., 2017). We follow a 150 

quality-control procedure developed for these sensors using the “Crowd-QC” package in R 151 

(Napoly et al., 2018). The quality-control procedure starts with removal of statistical outliers 152 

using a modified z-score approach and the hourly 𝑇ୟ distributions. Then, sites for which the 153 

measured 𝑇ୟ, when correlated against the spatial median of monthly 𝑇ୟ, show Pearson’s 154 

correlation coefficients less than 0.9, are removed. These steps reduce the number of available 155 

stations to 95,084.  156 

Since we wanted to get representative values for July 2019, we also removed Netatmo stations 157 

with more than 20% missing data during this period, leaving 75,293 stations. This threshold was 158 

found sufficient to capture the monthly climatological state in a previous study (Venter et al., 159 

2021). We note that most of the quality-control procedure has been developed for 𝑇ୟ, not RH. 160 

However, since the Netatmo sensor module houses both 𝑇ୟ and RH sensors, issues related to 161 

sensor misplacement and instrumental errors would also minimize errors in measured RH. This 162 
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is also confirmed through validation of the CWS measurements (see corresponding subsection 163 

below). 164 

2.3 Calculating apparent temperature and other heat indices 165 

Since humans primarily thermoregulate through sweating, the moisture content of the air limits 166 

our body’s ability to dissipate heat, making it an important factor in addition to Ta when studying 167 

heat stress (Sherwood & Huber, 2010). There are multiple metrics of heat stress that account for 168 

moisture. In the present study, we use the heat index used by the US National Weather Service 169 

(NWS), also known as apparent temperature. This index (HI0) is calculated in multiple steps. We 170 

start with a simple formula whose results are consistent with those from Steadman, 1979 171 

(Steadman, 1979): 172 

HI0 = 0.5 ൈ [Ta + 61 + [(T-68) ൈ 1.2] + (0.094RH)]       ሺ1ሻ 173 

where 𝑇ୟ is in °F and RH is in percentage. If the average of Ta and this heat index is less than 80 174 

°F, this is the final equation used. It the average is equal to or above 80°F, the Rothfusz 175 

regression (Rothfusz, 1990) is used instead, given by: 176 

HI଴ ൌ െ42.379 ൅ 2.04901523𝑇ୟ ൅ 10.14333127RH െ 0.22475541𝑇ୟRH െ 6.83783
ൈ 10ିଷ𝑇ୟ

ଶ െ 5.481717 ൈ 10ିଶRHଶ ൅ 1.22874 ൈ 10ିଷ𝑇ୟ
ଶRH ൅ 8.5282

ൈ 10ିସ𝑇ୟRHଶ െ 1.99 ൈ 10ି଺𝑇ୟ
ଶRHଶ

ሺ2ሻ 

Similar to Eq. 1, the Ta is input in °F. Additional adjustments are made for low and high values 177 

of RH, consistent with the method used in operational heat warning systems by the US NWS 178 

(Rothfusz, 1990).  179 

To check the consistency of our results, we also consider several other empirical approximations 180 

of heat stress that combine the impact of Ta and moisture, including the humidex (Masterton & 181 

Richardson, 1979) and one of each functional forms of the heat index approximation in °C 182 

reviewed in Anderson et al. ( 2013) 183 

The humidex can be expressed as: 184 

Humidex ൌ 𝑇ୟ ൅ 0.5555 ൈ ቆ6.11 ൈ 𝑒
ହସଵ଻.଻ହଷൈ൬ భ

మళయ.భల
ି భ

మళయ.భఱశ೅ీ
൰

െ 10ቇ                     (3) 185 
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where TD is the dew-point temperature in °C and is given by: 186 

𝑇஽ ൌ
ଶସଷ.଴ସൈቄ௟௡ቀ౎ౄ

భబబ
ቁାభళ.లమఱൈ೅౗

మరయ.బరశ೅౗
ቅ

ଵ଻.଺ଶହିቄ௟௡ቀ౎ౄ
భబబ

ቁାభళ.లమఱൈ೅౗
మరయ.బరశ೅౗

ቅ
                                                                                             (4) 187 

Finally, the other four functional forms of the heat index considered here are denoted by HI1, 188 

HI2, HI3, and HI4 and given by: 189 

HIଵ ൌ 𝑇ୟ െ 1.0799𝑒଴.଴ଷ଻ହହ ౗்൫1 െ 𝑒଴.଴଼଴ଵሺ்ీିଵସሻ൯                                                            (5) 190 

HIଶ ൌ െ2.653 ൅ 0.994𝑇ୟ ൅ 0.0153𝑇ୈ
ଶ                                                                            (6) 191 

HIଷ ൌ െ8.7847 ൅ 1.6114𝑇ୟ െ 0.012308𝑇ୟ
ଶ 

             ൅RHሾ2.3385 െ 0.14612𝑇ୟ ൅ ሺ2.2117 ൈ 10ିଷሻ𝑇ୟ
ଶሿ 

             ൅RHଶሾെ0.016425 ൅ ሺ7.2546 ൈ 10ିସሻ𝑇ୟ ൅ ሺെ3.582 ൈ 10ି଺ሻ𝑇ୟ
ଶሿ                         (7) 192 

HIସ ൌ 𝑇௔ష0.55 ൈ ሺ1 െ 0.001RHሻሺ𝑇௔ష14.5)                                                                       (8) 193 

In addition to these heat indices, we also calculate the wet-bulb temperature (Tw), a 194 

thermodynamic measure of how effectively humans can cool down via sweating (Sherwood & 195 

Huber, 2010) and a metric for heat stress often used in climate-related studies (Mishra et al., 196 

2020; Raymond et al., 2020; L. Zhao et al., 2021), using the formulation proposed by Stull 197 

(2011). 198 

2.4 Research-grade weather station data 199 

To evaluate the CWS measurements, we acquired observations from the European Climate 200 

Assessment & Dataset (ECA&D) weather stations (ECA&D, 2013) for July 2019. The ECA&D 201 

dataset provides daily observations from meteorological stations throughout Europe. We extract 202 

daily Ta and RH from this network and calculate HI0 using Eqs 1 and 2.  203 

2.5 Reanalysis data 204 

We also extract hourly and monthly Ta, TD (RH is not provided by this dataset), surface pressure, 205 

and accumulated precipitation from the ECMWF (European Centre for Medium-Range Weather 206 

Forecasts) Reanalysis 5th Generation Land (ERA5-Land) dataset (Muñoz-Sabater et al., 2021). 207 

The ERA5-Land provides surface variables at high (≈9 km) resolution and is based on the tiled 208 

ECMWF Scheme for Surface Exchanges over Land incorporating land surface hydrology (H-209 

TESSEL) and is constrained by multiple observational datasets (Muñoz-Sabater et al., 2021). 210 
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The hourly RH is computed by dividing the saturation vapor pressure (es) at TD by the saturation 211 

vapor pressure at Ta, both calculated using the Clausius-Clapeyron equation (Iribarne & Godson, 212 

1981). Thus: 213 

RH = 100 ൈ ௘ೞሺ்ವሻ

௘ೞሺ்ೌ ሻ
 ሻ                                                                                          (9) 214 

𝑒௦ሺ𝑇ሻ ൌ 6.11𝑒
ቂಽೡ

ೃೡ
ቀ భ

మళయ.భఱ
ିభ

೅
ቁቃ

                 (10) 215 

where T is the temperature (either Ta or 𝑇஽) in Kelvin, 𝐿௩ is the latent heat of vaporization of 216 

water (2.501ൈ10-6 J kg-1), and 𝑅௩ is the specific gas constant for water vapor (461 J K-1 kg-1). 217 

2.6 Validating citizen weather station data 218 

Since the ECA&D weather stations are generally not set up in cities, we start by matching each 219 

ECA&D station with rural Netatmo stations that are within a buffer of 2000 m. Some of the 220 

ECA&D stations have daily mean RH of 100% for almost the entire month, which is physically 221 

implausible. These are removed from the analysis. For each day that measured 𝑇ୟ and RH are 222 

available for a valid ECA&D station, we choose the corresponding Netatmo stations that include 223 

all 24 hours of observations to reliably compute the daily means. The composite means for the 224 

whole period (July 2019) from ECA&D and the Netatmo sensors are then correlated (Figs. 2a to 225 

2c). A few of the Netatmo sensors show implausibly large differences in mean daily 𝑇ୟ (>10 °C) 226 

from the corresponding ECA&D measurements. To account for this in a statistically robust 227 

manner, we remove Netatmo stations whose difference in measured 𝑇ୟ and RH with its nearby 228 

ECA&D station is above 99 percentile or below 1 percentile of the whole distribution. These 229 

stations are not used for any of the subsequent analyses.  230 

Overall, the CWS-measured 𝑇ୟ and RH show strong correlations with ECA&D observations (r2 231 

= 0.8 and 0.53, respectively; Figs. 2a and 2b) during this period. The root-mean-square-error 232 

(RMSE) and mean bias error (MBE) are both reasonably small (RMSE = 1.85 °C and MBE = 233 

1.63 °C for 𝑇ୟ; 5.47% and -2.82% for RH). The Netatmo sensors overestimate 𝑇ୟ and 234 

underestimate RH, which would be expected if they often lack radiation shields (Da Cunha, 235 

2015). However, the distribution of HI0 is well captured by these sensors (Fig. 2c).  236 
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Assessment & Dataset (ECA&D) weather stations for the whole study period (July 2019). Sub-243 

figures d, e, f, g, h, i, j, k, and l show composite mean (d, e, and f), maximum (g, h, and i), and 244 

minimum (j, k, and l) Netatmo observations against corresponding ECMWF (European Centre 245 

for Medium-Range Weather Forecasts) Reanalysis 5th Generation Land (ERA5-Land) gridded 246 

values. Each dot represents a composite value and the corresponding metrics for evaluation are 247 

shown in the legend. 248 

The use of daily mean values for evaluation would underestimate the biases caused due to the 249 

lack of radiation shields during daytime. Although the ECA&D dataset includes maximum and 250 

minimum 𝑇ୟ for each station, it only includes daily mean RH, which would not allow us to 251 

calculate the maximum and minimum HI0. Instead, we use the maximum and minimum 252 

composite values (in addition to daily means) from ERA5-Land data to compare against the 253 

corresponding rural Netatmo measurements (Figs. 2d to 2l) after removing daily differences 254 

greater than 99 percentile and less than 1 percentile of the distribution. Consistent with the 255 

comparisons with ECA&D, the Netatmo measurements overestimate 𝑇ୟ and HI0 (Fig. 2d, 2f). 256 

The maximum composite 𝑇ୟ, which would be generally in the early afternoon (Fig. S1a), is 257 

overestimated more (MBE = 3.18 °C) than the mean composite 𝑇ୟ (MBE = 1.44 °C). For 258 

minimum values, generally during early morning, the biases are much smaller, with even smaller 259 

biases for HI0 (Fig. 2l). For all cases, there is compensation between the biases due to 𝑇ୟ and RH, 260 

leading to slopes closer to 1 for HI0 than for 𝑇ୟ. 261 

Note that the larger spread between the ERA5-Land and Netatmo is expected since these 262 

estimates are at different scales. A Netatmo measurement represents information for a small 263 

footprint around the CWS, while the ERA5-Land estimate is for a ≈9 km grid overlaying that 264 

Netatmo site. Although there are biases between the Netatmo data and the point and gridded 265 

estimates, the distributions are captured well by the CWSs, particularly for 𝑇ୟ and HI0, with 266 

slopes close to 1 (Fig. 2). Since we focus on the spatial distribution of these variables (within and 267 

between cities), not their absolute magnitudes, we are confident about our results.  268 

2.7 Decile neighborhoods of urban skin temperature 269 

To estimate the gradient of mean Ts within urban clusters during the study period, we first 270 

calculate the 10th to 100th percentile of Ts within each cluster using Moderate Resolution Imaging 271 
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Spectroradiometer (MODIS) observations (MYD11A1.006 and MOD11A1.006) (Wan, 2006). 272 

These percentile values are from the mean pixel-level information (by averaging available daily 273 

satellite scenes) for July 2019. Different percentile values are obtained for the four cases, namely 274 

Terra daytime overpass (≈10:30 am local time), Aqua daytime overpass (≈1:30 pm local time), 275 

Terra nighttime overpass (≈10:30 pm local time), and Aqua nighttime overpass (≈1:30 am local 276 

time). Of these, we focus mostly on the daytime values, particularly for the Aqua overpass, 277 

which is close to the time of maximum 𝑇ୟ and HI0 (Fig. S1). Using these percentile values as 278 

boundary conditions, we separate each urban cluster into 10 decile neighborhoods, with each 279 

neighborhood representing a decile of Ts variation. In other words, pixels with July mean Ts 280 

values between >0th and 10th percentile of all mean Ts values in a cluster are put into the 10th 281 

percentile neighborhood (or first decile neighborhood), and so on till the 100th percentile 282 

neighborhood or 10th decile neighborhood, which includes mean Ts values between >90th and 283 

100th percentile. The decile neighborhoods are different for Terra and Aqua as well as for days 284 

and nights. An example of these decile neighborhoods is shown for Madrid, Spain in Fig. 1b. 285 

Note that, for this particular cluster, the Ts gradient does not increase as we reach the city center. 286 

This is intended since our goal is to examine whether the decile neighborhoods, as determined by 287 

satellite observations (as has been frequently done in recent studies), is a reasonable proxy for 288 

the 𝑇ୟ and heat stress gradients.  289 

After the decile neighborhoods are generated, each Netatmo station is grouped into a 290 

neighborhood for the four cases corresponding to the satellite overpass times. All these 291 

geospatial analyses are done on the Google Earth Engine platform (Gorelick et al., 2017). 292 

2.8 Matching CWS data with satellite-derived estimates 293 

We extract the daily Ts and exact MODIS viewing time for each ≈1 km pixel corresponding to 294 

the Netatmo stations that are either in a Ts decile neighborhood or in the rural background. The 295 

satellite viewing time is then converted from local time to coordinated universal time (UTC) 296 

based on the recommendations in the MODIS user guide (Wan, 2006) of subtracting (in hours) 297 

the quotient when dividing the longitude of the pixel (in this case, the CWS location) by 15 298 

degrees and then adjusting by the daily hour bounds (>24 hours or <0 hours). The Netatmo 299 

observations are then matched with the daily MODIS Ts when the Netatmo observation time is 300 

within 30 minutes of the MODIS viewing time.  301 
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Similar to Ts, we also extract the Normalized Difference Vegetation Index (NDVI), a satellite-302 

derived proxy for live green vegetation (Rouse et al., 1974), from MODIS observations. This 303 

index takes advantage of the fact that plants absorb light in the red (RED) bands and reflect near-304 

infrared (NIR) radiation since it cannot be used photosynthesis, and is given by: 305 

NDVI = 
୒୍ୖିୖ୉ୈ

୒୍ୖାୖ୉ୈ
                                                                                                               (11) 306 

The NDVI values are derived from 16-day composites corresponding to each Netatmo station 307 

and daytime overpass (MYD13A2 and MOD13A2 for Aqua and Terra, respectively) and joined 308 

with all observations at that station. The monthly means of NDVI for July 2019 are used for the 309 

final analysis since daily variability is not as relevant for NDVI and urban surface vegetation 310 

would remain relatively unchanged within a single month. In all cases, only clear-sky pixel 311 

values are used for analysis and satellite observations for the days with missing Netatmo 312 

observations (both Ta and RH) due to quality-screening are also removed.  313 

We also calculate monthly precipitation rate corresponding to each cluster from the monthly 314 

composite generated from the passive-microwave observations from the Global Precipitation 315 

Measurement (GPM) mission (NASA Goddard Earth Sciences Data And Information Services 316 

Center, 2019). This is done to examine how urban-rural differences in the variables of interest 317 

(see below) vary with the moisture availability of the background climate.  318 

2.9 Urban-rural differences 319 

Netatmo stations within the urban clusters and their corresponding satellite-derived values are 320 

used to estimate the urban Ta (Ta,u), RH (RHu), HI0 (HI0,u), Ts (Ts,u), and NDVI (NDVIu). The 321 

corresponding rural variables, Ta,r, RHr, HI0,r, Ts,r, and NDVIr are from the stations in the 322 

background reference areas. Only those cases were considered for which there were at least 10 323 

stations in both the urban clusters and their surrounding references. This leaves 557 (603) urban 324 

clusters with 40560 (42745) unique stations for Aqua (Terra) daytime overpass. The urban-rural 325 

differences are thus: 326 

ΔTa = Ta,u െ Ta,r                                                                                                                                 (12) 327 

ΔRH = RHu െ RHr                                                                                                                            (13) 328 

ΔHI0 = HI0,u െ HI0,r                                                                                                                           (14) 329 
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ΔTs = Ts,u െ Ts,r                                                                                                                                 (15) 330 

ΔNDVI = NDVIu െ NDVIr                                                                                                              (16) 331 

Of these, ΔTa is equivalent to the commonly studied canopy urban heat island (CUHI) and ΔTs is 332 

the surface urban heat island (SUHI) (Bonafoni et al., 2015; Chakraborty et al., 2017; Du et al., 333 

2021; Venter et al., 2021). Although RH is a function of both absolute moisture content and 334 

ambient temperature, we call its urban-rural differences the urban dry island (UDI) effect since it 335 

is one of the variables used to estimate HI0 (Eq. 1). There is currently lack of consensus on a 336 

standard metric for urban moisture content, though it is commonly accepted that urban areas are 337 

drier due to removal of vegetation and pervious surfaces (Z. Wang et al., 2021). For comparison, 338 

we also calculate the difference in absolute humidity (AH) between urban areas and their 339 

background references by combining the Netatmo observations with surface pressure estimates 340 

from ERA5-Land (Muñoz-Sabater et al., 2021). During the Aqua daytime overpass, roughly 341 

54.3% of the urban clusters show lower AH than their background references with a mean ΔAH 342 

of -8.7×10-5 kg m-3, confirming the presence of UDIs using both RH and AH. Similar urban-rural 343 

differences are also calculated for the Humidex and the other heat indices. The use of the 344 

MODIS pixels overlaying the Netatmo locations to calculate ΔTs leads to reasonable apples-to-345 

apples comparison. This might explain why our correlation coefficient between ΔTs and ΔTa 346 

(Fig. 7a) is slightly higher than that in a previous study (Venter et al., 2021), which compared the 347 

Netatmo-derived ΔTa with urban cluster mean ΔTs.  348 

2.10 Intra-urban gradients 349 

Although the analysis above is done for co-located pixels, the threshold for the minimum number 350 

of stations used (10) is insufficient to represent the mean climatic state of the clusters. Moreover, 351 

it is important to also analyze how well Ts, which has been extensively used as a proxy for the 352 

intra-urban variability in urban temperatures (Benz & Burney, 2021; Chakraborty et al., 2019, 353 

2020; Hoffman et al., 2020; Hsu et al., 2021; Hulley et al., 2019), represents the within-city 354 

variability in HI0. To address this, we estimate the intra-urban gradients in Ts, Ta, RH, and HI0. 355 

The intra-urban gradient in station-level Ts is calculated by first choosing those clusters with at 356 

least 10 stations in every decile neighborhood as well as the rural background, and then 357 

averaging the daily pixel-level MODIS Ts in July 2019 that also had CWS measurements of Ta 358 

and RH for each region. This analysis allows us to check how well the Netatmo observations 359 
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capture the overall spatial variability in Ts, as represented by the decile neighborhoods, using the 360 

corresponding Ts pixels overlaying those stations. The average value of the satellite-derived Ts 361 

for the pixels overlaying the Netatmo stations increase for increasing decile neighborhoods in all 362 

clusters (Figs. 2, S4). Similarly, the gradients corresponding to these regions for Ta, RH, and thus 363 

HI0 are computed from the corresponding hourly Netatmo measurements. Figure 1c shows the 364 

total number of observations as well as the number of unique Netatmo stations considered when 365 

calculating these intra-urban gradients corresponding to the Terra and Aqua daytime overpass. 366 

Overall, we use 153 and 155 clusters to generate intra-urban gradients corresponding to Aqua 367 

and Terra daytime overpass.  368 

2.11 Statistical analysis 369 

To check whether the distributions of the chosen variables (Ts, Ta, RH, HI0, Humidex, HI1, HI2, 370 

HI3, and HI4) are statistically different between regions (either between urban clusters and their 371 

rural backgrounds or between the rural backgrounds and the decile neighborhoods), we use the 372 

Mann –Whitney two-sample test (Wilcoxon et al., 1992). This nonparametric test allows us to 373 

check if two samples come from the same population, with lower p-values supporting the 374 

rejection of the null hypothesis that both the distributions are same. We choose a significant level 375 

of 0.01 to reject the null hypothesis, but also specify when the p-value is below 0.001 and 0.0001 376 

in the summary tables (Tables S1, S2, S3, S4).  377 

In addition to simple linear regressions between pairs of variables to test for their correlation and 378 

sensitivity, we also separate the control of Ta and RH on the intra-urban gradient of HI0 within 379 

clusters by representing HI0 as a linear combination of Ta and RH: 380 

HI0 = α1Ta + α2RH                                                                                                                            (17) 381 

where α1 and α2 are the sensitivities of HI0 to Ta and RH, respectively, as determined using 382 

multiple linear regressions for each urban cluster (Fig. 3a). Since Ta and RH have widely 383 

different range of values, we also consider a standardized form of this representation, given by: 384 

HI0 = α1,std
౗்

்౗, ౨
 + α2,std

ୖୌ

ୖୌ౨
                                                                                                           (18) 385 

where 𝑇ୟ, ୰ and RH୰ are the corresponding mean values for the rural backgrounds and the 386 

standardized sensitivities are α1,std and α2,std (Fig. 3b). A similar linear model is also used to 387 

express ΔHI0 as a function of Δ𝑇ୟ and ΔRH. 388 
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constant. We find ΔTa to be over eleven times more important for modulating ΔHI0 than ΔRH 429 

(correlation coefficients of 1.37 and 0.12 for ΔTa and ΔRH, respectively, from a multiple linear 430 

regression). Although the compensating effects of Ta and RH on HI0 makes conceptual sense, 431 

what is surprising is that the urban-rural differences in HI0 is so close to zero for cities during a 432 

heatwave period, with less than a third showing statistically significant differences between the 433 

urban area and its rural reference. These results weaken a common premise in many previous 434 

studies where increased urban Ts is expected to indicate adverse urban impact on overall heat 435 

vulnerability (Hsu et al., 2021; Manoli et al., 2019; Mentaschi et al., 2022; L. Zhao et al., 2017).  436 

Consistent with previous observational and modeling estimates (Chakraborty & Lee, 2019; 437 

Manoli et al., 2019; L. Zhao et al., 2014), ΔTs is higher for wetter climate and lower for drier 438 

areas, as seen when binned by quartiles of precipitation rate or accumulated precipitation for the 439 

same period (Figs. S3a, S3e). However, this relationship with background climate weakens for 440 

ΔTa (Figs. S3b, S3f) and almost disappears for ΔHI0 (Figs. S3d, S3h), evidently due to 441 

thermodynamic moisture feedback through ΔRH (Figs. S3c, S3g). As such, generalized 442 

mitigation strategies derived from information about background climate (Manoli et al., 2019) 443 

may reduce ΔTs but would have a much smaller impact on ΔHI0. 444 

3.2 Spatial gradients in the urban thermal environment 445 

Several studies (Benz & Burney, 2021; Chakraborty et al., 2019; Hsu et al., 2021; Hulley et al., 446 

2019; Maimaitiyiming et al., 2014) have examined intra-urban variability in temperature using 447 

satellite-derived Ts. To test whether Ts is a useful proxy for urban heat stress variability within 448 

cities, we calculate the intra-urban gradients in Ts, Ta, RH, and HI0 using those clusters (153 for 449 

Aqua and 155 for Terra) with enough (>10) CWSs in each decile neighborhood and the rural 450 

background (see Methods; Fig. 5). During the Aqua daytime overpass, the gradient of Ta along 451 

the decile neighborhoods is weaker than that for Ts, with 121 of the 153 clusters showing a 452 

positive slope, which goes down to 114 for HI0. Higher Ts decile neighborhoods are generally 453 

drier, with RH showing a negative slope with increasing Ts in 83.6% (128) of the clusters (Fig. 454 

6a). Overall, the relationship between Ts and Ta, although positive (mean correlation coefficient r 455 

= 0.34), shows a sensitivity (given by the slope of the linear regressions) much lower than 1 456 

(mean slope = 0.12; Fig. 6a). This sensitivity decreases further for HI0 (0.09) due to the 457 



458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

 

compens

rises at ro

sensitivit

urban HI

(p<0.01) 

neighbor

and Ta, re

correspon

neighbor

Ta, RH, a

Fig. 5 Int

(Ts), air t

neighbor

of the dis

neighbor

reference

for ≈1:30

3.3 Role 

There is 

Chakrabo

is capture

ating effects

oughly half t

ty of HI0 to T

I0 in only two

from the HI

rhoods show

espectively. 

nding to the 

rhoods show

and HI0, resp

tra-urban gra

temperature 

rhoods acros

stribution of 

rhoods that s

e values are s

0 pm local tim

of urban ve

strong evide

orty & Lee, 

ed in our ana

s of decreasi

the rate of th

Ta being arou

o of the deci

I0 in the rura

 statistically

Similar resu

Terra daytim

ing statistica

pectively.  

adients of va

(Ta), relative

s the urban c

f the correspo

how statistic

shown using

me. 

egetation 

ence of the c

2019; Pasch

alysis. In 150

ng RH and i

he decrease i

und 7 times 

ile neighborh

l background

y significant 

ults are seen 

me overpass

ally significa

ariables. Dis

e humidity (R

clusters cons

onding varia

cally signific

g hatched den

ooling role u

halis et al., 20

0 of the 153 

increasing Ta

in standardiz

the sensitivi

hoods show 

d (Table S1)

differences f

for other he

 (Fig. S4), w

ant differenc

stributions of

RH), and he

sidered. The

able in the 1s

cant (p<0.01

nsity plots a

urban vegeta

021; Schwaa

clusters, the

Ta on HI0 (Fig

zed RH with

ity to RH (Fi

statistically 

). In contrast

from the bac

at indices (T

with 9, 2,7, a

ces from the 

f composite 

eat index (HI

e vertical das

st Ts decile n

1) difference

and darker sh

ation has on 

ab et al., 202

e normalized

g. 6b). The s

hin cities, wit

ig. 3). Conse

significant d

t, 9, 7, and 3

ckground cli

Tables S1, S2

and 0 of thes

background

mean surfac

I0) in each of

shed lines m

neighborhoo

es from the b

hades. All ca

Ts (Chakrab

21; Ziter et a

d difference 

standardized

th the linear

equently, the

differences 

3 of these 10

imate for Ts, 

2) and 

e 10 

d climate for 

ce temperatu

f the Ts decil

ark the medi

d. Decile 

background 

alculations a

borty et al., 2

al., 2019), wh

vegetation i

20 

d Ta 

r 

e 

0 

RH, 

Ts, 

 

ure 

le 

ian 

are 

2020; 

hich 

ndex 



21 
 

(NDVI), a satellite-derived proxy for vegetation cover and vigor, is inversely correlated with Ts 480 

(Fig. 6c). However, NDVI has weaker associations with Ta (mean r = -0.81 for Ts; -0.26 for Ta), 481 

with Ta also showing a lower sensitivity to NDVI (mean slope = -3.01 °C per unit NDVI) than Ts 482 

(-26.76 °C per unit NDVI). That vegetation has a weaker control on local-scale Ta than Ts is 483 

consistent with field-level observations (Novick & Katul, 2020). The association with NDVI 484 

weakens further for HI0, with roughly 30.7% of clusters showing a positive correlation with a 485 

weak mean sensitivity of around -2.15 °C per unit NDVI. Similar results are seen at ≈10:30 am, 486 

with 97.4% (151), 67.7% (105), and 63.2% (98) of the clusters showing a negative association 487 

with NDVI in the decile neighborhoods for Ts, Ta, and HI0, respectively (Fig. S5c). The mean 488 

sensitivities to NDVI at ≈10:30 am range between -22.71 °C for Ts to -2.81 °C for HI0. Similarly, 489 

the intra-urban variability in ΔHI0 is weakly associated with ΔNDVI for both the Aqua and Terra 490 

daytime overpasses (coefficient of determination r2 <= 0.02; Figs. 7h, S6h) compared to ΔTs (r
2 ≈ 491 

0.30; Figs. 7e, S6e). The associations between ΔHI0 and ΔNDVI are similarly weak at night (Fig. 492 

S7). 493 
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Fig. 7 Associations between variables across urban clusters. Associations between urban-rural 523 

differences in a radiative skin temperature (ΔTs) and air temperature (ΔTa), b ΔTs and relative 524 

humidity (ΔRH), c ΔTs and heat index (ΔHI0), d ΔTa and ΔHI0, e Normalized Difference 525 

Vegetation Index (ΔNDVI) and ΔTs, f ΔNDVI and ΔTa, g ΔNDVI and ΔRH, and h ΔNDVI and 526 

ΔHI0 across urban clusters in Europe. Each dot represents one cluster, and the lines and 527 

equations of best fit are shown. All calculations are for ≈1:30 pm local time. 528 

Furthermore, our analysis shows that the inter-urban variability in ΔHI0 is weaker still when 529 

correlated with that of satellite-derived ΔTs (r
2 = 0.04; Figs. 7c, S6c), making Ts a poor proxy for 530 

the urban impact on heat vulnerability. As such, any insights gained using Ts, whether using 531 

observations or models, may not be strongly relevant for mitigating urbanization-induced heat 532 

stress. Note that we examine urban-rural differences to isolate the urban influence on these 533 

variables, rather than absolute heat stress, which would regulate total heat-related hazard in cities 534 

(Martilli et al., 2020). This is done to account for differences in absolute heat stress in cities due 535 

to background climate.  536 

Coarse to medium-resolution Ts from satellites have been used for hotspot analysis within cities 537 

(Hulley et al., 2019; Maimaitiyiming et al., 2014). Several studies have taken advantage of the 538 

spatial continuity of satellite observations to map intra-urban variability of Ts across cities, with 539 

implications for environmental disparities (Benz & Burney, 2021; Chakraborty et al., 2019; Hsu 540 

et al., 2021). We find that for the cities considered here, Ts is a poor proxy for the intra-urban 541 

variability in HI0 or other heat indices (including Humidex, used in heat warning systems). Even 542 

the 95th and 98th percentiles of hourly HI0 (HI0,95 and HI0,98, respectively) do not show 543 

statistically significant differences from the background in most of the decile neighborhoods 544 

(Fig. S8 and Table S3). Future multi-city studies should focus on covariance of heat stress with 545 

socioeconomic variables to re-evaluate the magnitude of these environmental disparities, if any.  546 

This is not to say that examining Ts over cities is pointless. Nighttime ΔHI0 (≈1:30 am local 547 

time) is generally positive (Fig. S9), and moderately correlated with ΔTs (r
2 = 0.21; p < 0.01) 

548 

across (Fig. S7c) and within cities (Table S4), which might explain why previous studies have 549 

shown associations between nighttime Ts and heat-related mortality (Laaidi et al., 2012; Murage 550 

et al., 2017). Moreover, high Ts does increase radiant heat exposure and is the lower boundary 551 

for the atmospheric column, which consequently modulates the surface energy budget and local 552 
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weather (Arnfield, 2003). Ultimately, more accurate estimates of heat stress within cities requires 553 

more ground-level observations, not just of standard meteorological variables, but also exposure 554 

to radiation and wind speed, which are not available from these CWSs. Moreover, CWS sensors 555 

are not research-grade and frequently influenced by less-than-ideal placement, insufficient site 556 

metadata, and usually lack radiation shields (Venter et al., 2021), though that last issue has 557 

minimal impact since we primarily deal with distributions, not absolute values (Fig. 2).  558 

Urban climate research has generally encouraged urban tree planting due to their local 559 

evaporative cooling potential (Chakraborty & Lee, 2019; Li et al., 2019; Paschalis et al., 2021; 560 

Schwaab et al., 2021; Wong et al., 2021; Ziter et al., 2019). However, reductions in Ts through 561 

evaporation, which is the primary focus of these studies, do not imply equivalent reductions in Ta 562 

(Novick & Katul, 2020). This is further complicated when we consider HI0 due to the local-scale 563 

increase in RH due to vegetation (Krayenhoff et al., 2021; Meili et al., 2020). We find that the 564 

efficiency of reducing HI0 within cities using urban vegetation is weakened (-2.15 °C for a 565 

hypothetical unit change in NDVI, spanning half the physically possible range), as seen from the 566 

linear correlations, due to the competing effects of reduced Ta and enhanced RH. Moreover, the 567 

urban-rural differences in vegetation are not associated with the urban-rural differences in HI0 568 

across cities due to these same competing effects (Figs. 7f, 7g, S6f, S6g). However, note that 569 

shading effect of trees is also important and reduces the radiant heat exposure on pedestrians at 570 

the micro scale, although urban form can also serve this purpose (Middel et al., 2021; Q. Zhao et 571 

al., 2018). Moreover, there are several co-benefits of urban vegetation, from increased carbon 572 

sequestration to reduced air pollution to multiple beneficial health outcomes, beyond any 573 

reduction in local Ts (Fargione et al., 2018; Fong et al., 2018; Remme et al., 2021). Overall, 574 

mitigation strategies that rely on urban vegetation should carefully consider the realistic 575 

efficiency of street trees to improve thermal comfort at multiple scales (versus competing 576 

strategies) in addition to those other factors for cost-benefit analyses. As an aside, when the 577 

reduction in satellite-derived Ts due to surface vegetation is usually examined (Paschalis et al., 578 

2021; Schwaab et al., 2021; Wong et al., 2021), what is compared is the association of Ts of the 579 

top of the canopy (what the satellite sees) with some measure of vegetation. Since this is not 580 

physically equivalent to what a pedestrian would feel either underneath the tree canopy or near it, 581 

we need to be cautious about quantitative estimates of the cooling potential of urban vegetation 582 

derived from satellite measurements of Ts. Similarly, models used to examine urban heat stress 583 
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or urban heat mitigation must incorporate accurate urban vegetation to represent realistic cities, 584 

which is currently missing, simplistic, or still under development (Krayenhoff et al., 2020, 2021; 585 

Meili et al., 2020; L. Zhao et al., 2017, 2021).  586 

4.2 Relative importance of humidity for heat stress 587 

The role of humidity in human physiological response to heat is well-recognized in the 588 

epidemiological literature (Anderson et al., 2013). How important humidity is relative to Ta for 589 

heat stress is however still an open question (Anderson et al., 2013; Sherwood, 2018). For 590 

Europe, we find Ta to be around seven times more important than RH for capturing both the 591 

inter-urban and intra-urban variability in HI0 (Fig. 3). However, HI0 is known to have a low 592 

sensitivity to RH than many other heat indices (Sherwood, 2018). Moreover, most parts of 593 

Europe, even at their warmest, would have a further lower sensitivity of heat stress to RH due to 594 

the HI0 formulation (Eqs 1, 2; Fig. 8a). This is particularly apparent at night, when Ta and HI0 are 595 

found to be strongly coupled (Fig. S7d) since it uses the simple linear equation (Eq. 1) with 596 

much higher importance given to Ta. Since the impact of RH on HI0 increases non-linearly with 597 

increasing Ta (Fig. 8a), in warmer and more humid regions, such as in the tropics, decreasing RH 598 

due to urbanization could have more noticeable effect on moderating urbanization-induced heat 599 

stress (Mishra et al., 2020). As an aside, the similar magnitudes of changes in Ta and HI0, say 600 

when correlated with NDVI (Figs. 6c, 7f, 7h), can be misleading without contextualizing that 601 

unit changes in HI0 are not physiologically equivalent to a unit change Ta. For instance, changing 602 

Ta from 5 to 35 °C leads to changes in HI0 from 5 °C to over 70 °C (Fig. 8a). Ideally, these 603 

variables should be compared in the context of public health, though heat-related health-outcome 604 

data are generally not available at such scales.  605 
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impacts (Raymond et al., 2020; Sherwood & Huber, 2010). Tw is more strongly controlled by 621 

humidity than HI0, since it is essentially a measure of the moisture content of an air parcel. This 622 

higher sensitivity of Tw to RH can be illustrated by calculating urban-rural differences in Tw 623 

(ΔTw). ΔTw is slightly negative (-0.002 °C) and shows even weaker (and statistically 624 

insignificant) correlations with ΔTs and ΔNDVI (Figs. 8c, 8d). Moreover, none of the decile 625 

regions show statistically significant differences in Tw from the background (Fig 8b). As such, 626 

although the moderating effect of decreasing RH on heat stress is both conceptually and 627 

observationally apparent, in the absence of health outcome data, the magnitude of this effect 628 

would depend on the measure of heat stress used. For use of Tw as a heat index, it should be kept 629 

in mind that only higher absolute values (above 31 °C) are valid for describing human 630 

physiological response under specific conditions (completely wet and unclothed; Sherwood, 631 

2018). 632 

4.3 Implications 633 

The results of the present study do not necessarily imply that urban areas have no additional heat 634 

stress compared to their surroundings or that we should not target cities for heat mitigation. 635 

Urban areas tend to have positive nighttime ΔTa and ΔHI0, which contributes to mortality and 636 

morbidity during heatwaves (Laaidi et al., 2012; Murage et al., 2017). Even during daytime, we 637 

find large variabilities in ΔHI0, and the positive ΔHI0 would disproportionately impact public 638 

health given the high population densities in cities. Moreover, a source of uncertainty with CWS 639 

data is that they have sampling biases, with most sensors set up in residential areas, not in 640 

commercial districts where it is usually hotter (Hulley et al., 2019). Thus, we may be 641 

systematically avoiding non-residential areas when using CWS data, where pedestrians may still 642 

be exposed to higher-than-expected heat stress.  643 

The caveats above do not undermine the observation that within cities, urbanization-induced 644 

lower RH partly compensates for the higher Ta when it comes to heat stress, and the spatial 645 

variability in this heat stress is poorly captured by satellite observations for the corresponding 646 

overlaying pixels. Although cities in other parts of the world may show differences in the 647 

strength, or lack thereof, of associations between these variables, on a conceptual level, we 648 

speculate that we will get qualitatively similar results, with Ts showing stronger variability than 649 

Ta and heat stress across scales. However, more observations are necessary to confirm this 650 
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hypothesis. In summary, we find compelling observational evidence that relying on Ts to 651 

generate large-scale insights on the magnitude of urban heat stress and recommendations for 652 

urban heat mitigation may be inappropriate. On a positive note, this mediating effect of the 653 

urbanization-induced heating and drying suggest that less effort may be needed to reduce urban 654 

thermal discomfort compared to their surroundings, leading to relatively higher benefits of 655 

urban-scale mitigation strategies that focus on heat stress. It is often said that “You can't manage 656 

what you can't measure.” Our present study suggests that we may be measuring the wrong 657 

variable for quantifying and mitigating the heat-related public health consequences of 658 

urbanization. In spite of the logistic and methodological simplicity of satellite-derived Ts, we 659 

need more in situ observations of Ta, RH, wind speed, radiant heat, etc. to more accurately 660 

characterize the urban thermal environment and quantify the efficiency of heat stress mitigation 661 

strategies as we prepare for a warmer, wetter, and more urban future (Chen et al., 2020; W. 662 

Wang et al., 2021).   663 
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 16 

Fig. S1 Diurnal composites of citizen weather station data. Diurnal composites of Netatmo a air 17 
temperature (Ta), b relative humidity (RH), and c heat index (HI0) from all stations in rural buffers 18 
considered in the present study. The upper and lower lines represent the 75% and 25% percentile 19 
of the measurements, and the middle line is for the mean from all the observations by hour of the 20 
day. The dashed horizontal line in sub-figure c shows the threshold below which the simplified 21 
equation is used for calculating HI0 (Eq. 1 in Methods).  22 
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24 

 25 

Fig. S2 Urban-rural differences for Terra day across urban clusters in Europe. Spatial distribution 26 

of urban-rural differences in a surface temperature (ΔTs), b air temperature (ΔTa), c relative 27 

humidity (ΔRH), and d heat index (ΔHI0) for urban clusters in Europe with sufficient data 28 

corresponding to the Terra satellite daytime overpass (≈10:30 am local time) for July 2019. The 29 

stars represent clusters with statistically significant (p<0.01) differences between the urban and 30 

rural values. 31 
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 36 

Fig. S3 Urban-rural differences in variables for precipitation quartiles. Distributions of urban-37 

rural differences in a surface temperature (ΔTs), b air temperature (ΔTa), c relative humidity 38 

(ΔRH), and d heat index (ΔHI0) corresponding to the Aqua daytime overpass (≈1:30 pm local 39 

time) for quartiles of satellite-derived precipitation rate in July 2019. Sub-figures e, f, g, and h are 40 

similar, but use quartiles of accumulation precipitation in July 2019 from the ERA5-Land 41 

reanalysis dataset.  42 
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 44 

Fig. S4 Intra-urban gradients of variables for Terra day. Distributions of composite mean surface 45 

temperature (Ts), air temperature (Ta), relative humidity (RH), and heat index (HI0) in each of the 46 

Ts decile neighborhoods across the urban clusters considered. The vertical dashed lines mark the 47 

median of the distribution of the corresponding variable in the 1st Ts decile neighborhood. Decile 48 

neighborhoods that show statistically significant (p<0.01) differences from the background 49 

reference values are shown using hatched density plots and darker shades. All calculations are for 50 

the Terra daytime overpass (≈10:30 am local time) for July 2019. 51 

 52 
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53 

 54 

Fig. S5 Associations between variables within urban clusters for Terra day. Sub-fig a shows the 55 

distributions of the correlation coefficient (r) of linear regressions between surface temperature 56 

(Ts) and air temperature (Ta), Ts and heat index (HI0), Normalized Difference Vegetation Index 57 

(NDVI) and Ts, NDVI and Ta, and NDVI and HI0, respectively, for urban clusters in Europe. Each 58 

data point is from a linear regression between pairs of variables for a cluster. The linear 59 

regressions have a sample size of ten (one for each Ts decile neighborhood). Sub-fig b and c show 60 

the distributions of the slope of those linear regressions, or the sensitivity of one variable to unit 61 

changes in the other. The unit of sensitivity in Sub-fig c is °C per unit NDVI. All calculations are 62 

for the Terra daytime overpass (≈10:30 am local time) for July 2019. 63 
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 65 

Fig. S6 Associations between variables across urban clusters for Terra day. Associations between 66 

urban-rural differences in a surface temperature (ΔTs) and air temperature (ΔTa), b ΔTs and 67 

relative humidity (ΔRH), c ΔTs and heat index (ΔHI0), d ΔTa and ΔHI0, e Normalized Difference 68 

Vegetation Index (ΔNDVI) and ΔTs, f ΔNDVI and ΔTa, g ΔNDVI and ΔRH, and h ΔNDVI and 69 

ΔHI0 across urban clusters in Europe. Each dot represents one cluster and the lines and equations 70 

of best fit are shown. All calculations are for the Terra daytime overpass (≈10:30 pm local time) 71 

for July 2019. 72 
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 74 

 75 

Fig. S7 Associations between variables across urban clusters for Aqua night. Associations 76 

between urban-rural differences in a surface temperature (ΔTs) and air temperature (ΔTa), b ΔTs 77 

and relative humidity (ΔRH), c ΔTs and heat index (ΔHI0), d ΔTa and ΔHI0, e Normalized 78 

Difference Vegetation Index (ΔNDVI) and ΔTs, f ΔNDVI and ΔTa, g ΔNDVI and ΔRH, and h 79 

ΔNDVI and ΔHI0 across urban clusters in Europe. Each dot represents one cluster and the lines 80 

and equations of best fit are shown. All calculations are for the Aqua nighttime overpass (≈1:30 81 

am local time) for July 2019. 82 

 83 

 84 
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 86 

Fig. S8 Intra-urban gradients of extremes. Distributions of the 95th and 98th percentile of hourly 87 

observations in July 2019 of air temperature (Ta) and heat index (HI0) in each of the Ts decile 88 

neighborhoods across the urban clusters considered. The vertical dashed lines mark the median of 89 

the distribution of the corresponding variable in the 1st Ts decile neighborhood. Decile 90 

neighborhoods that show statistically significant (p<0.01) differences from the background 91 

reference values are shown using hatched density plots and darker shades.  92 
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94 

 95 

Fig. S9 Urban-rural differences for Aqua night across urban clusters in Europe. Spatial 96 

distribution of urban-rural differences in a surface temperature (ΔTs), b air temperature (ΔTa), c 97 

relative humidity (ΔRH), and d heat index (ΔHI0) for urban clusters in Europe with sufficient data 98 

corresponding to the Aqua satellite nighttime overpass (≈1:30 am local time) for July 2019. The 99 

stars represent clusters with statistically significant (p<0.01) differences between the urban and 100 

rural values. 101 
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 Table S1. P-values of the Mann –Whitney two-sample statistic between the observations 104 
corresponding to the Aqua daytime overpass (≈1:30 pm local time) in the background reference 105 
region and the observations in the decile neighborhoods for surface temperature (Ts), air 106 
temperature (Ta), relative humidity (RH), US National Weather Service heat index (HI0), four 107 
additional estimates of heat index (HI1 to HI4), and the humidex for July 2019.  108 

 109 

110 

Group Ts Ta RH HI0 HI1 HI2 HI3 HI4 Humidex 
          

1st decile <0.01 0.16 0.25 0.26 0.21 0.24 0.21 0.18 0.23 
2nd decile 0.25 0.23 0.06 0.25 0.27 0.25 0.32 0.23 0.39 
3rd decile 0.01 0.43 0.38 0.39 0.40 0.38 0.42 0.41 0.46 
4th decile <0.0001 0.38 <0.01 0.74 0.72 0.74 0.94 0.43 0.91 
5th decile <0.0001 0.09 <0.01 0.25 0.23 0.24 0.34 0.1 0.43 
6th decile <0.0001 0.01 <0.01 0.05 0.05 0.05 0.09 0.02 0.14 
7th decile <0.0001 0.02 <0.0001 0.13 0.11 0.13 0.24 0.03 0.37 
8th decile <0.0001 <0.01 <0.0001 0.05 0.04 0.05 0.11 <0.01 0.20 
9th decile <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.01 <0.0001 <0.01 
10th decile <0.0001 <0.0001 <0.0001 <0.01 <0.01 <0.01 <0.01 <0.0001 0.03 
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Table S2. P-values of the Mann –Whitney two-sample statistic between the observations 111 
corresponding to the Terra daytime overpass (≈10:30 am local time) in the background reference 112 
region and the observations in the decile neighborhoods for surface temperature (Ts), air 113 
temperature (Ta), relative humidity (RH), US National Weather Service heat index (HI0), four 114 
estimates of heat index (HI1 to HI4), and the humidex for July 2019. 115 

 116 

  117 

Group Ts Ta RH HI0 HI1 HI2 HI3 HI4 Humidex 
          

1st decile <0.0001 0.27 0.27 0.25 0.27 0.29 0.26 0.28 0.25 
2nd decile 0.49 0.41 0.08 0.55 0.58 0.49 0.70 0.44 0.80 
3rd decile <0.001 0.85 0.06 0.86 0.82 0.89 0.60 0.91 0.49 
4th decile <0.0001 0.28 <0.01 0.50 0.58 0.48 0.81 0.32 0.98 
5th decile <0.0001 0.44 <0.001 0.81 0.86 0.74 0.85 0.52 0.70 
6th decile <0.0001 <0.01 <0.0001 0.04 0.04 0.04 0.09 <0.01 0.16 
7th decile <0.0001 0.05 <0.001 0.15 0.17 0.14 0.33 0.07 0.49 
8th decile <0.0001 0.03 <0.0001 0.13 0.14 0.12 0.31 0.04 0.47 
9th decile <0.0001 0.01 <0.0001 0.06 0.07 0.06 0.18 0.02 0.29 
10th decile <0.0001 <0.01 <0.0001 0.03 0.04 0.02 0.09 <0.01 0.16 
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 118 

Table S3. P-values of the Mann –Whitney two-sample statistic between the 95th and 98th 119 
percentile of hourly observations in July 2019 of air temperature (Ta) and US National Weather 120 
Service heat index (HI0) for CWSs in the background reference region and the corresponding 121 
observations in the decile neighborhoods. 122 

 123 

  124 
Group Ta,95 Ta,98 HI0,95 HI0,98 

     
1st decile 0.48 0.36 0.63 0.41 
2nd decile 0.40 0.34 0.54 0.69 
3rd decile 0.06 0.05 0.15 0.18 
4th decile 0.01 <0.01 0.04 0.02 
5th decile 0.05 0.03 0.13 0.11 
6th decile 0.03 <0.01 0.11 0.06 
7th decile 0.01 <0.01 0.06 0.03 
8th decile <0.001 <0.0001 <0.01 <0.01 
9th decile <0.001 <0.0001 <0.01 <0.01 
10th decile <0.001 <0.0001 0.01 <0.01 
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Table S4. P-values of the Mann –Whitney two-sample statistic between the observations 125 
corresponding to the Aqua nighttime overpass (≈1:30 am local time) in the background reference 126 
region and the observations in the decile neighborhoods for surface temperature (Ts), air 127 
temperature (Ta), relative humidity (RH), US National Weather Service heat index (HI0), four 128 
additional estimates of heat index (HI1 to HI4), and the humidex for July 2019. 129 

 130 

Group Ts Ta RH HI0 HI1 HI2 HI3 HI4 Humidex 
          

1st decile <0.0001 0.27 0.12 0.21 0.21 0.20 0.16 0.26 0.14 
2nd decile 0.14 0.42 0.01 0.46 0.48 0.30 0.57 0.43 0.61 
3rd decile 0.79 0.15 <0.01 0.18 0.18 0.21 0.25 0.16 0.28 
4th decile 0.01 0.02 <0.01 0.02 0.02 0.56 0.02 0.02 0.03 
5th decile <0.001 0.01 <0.01 0.01 0.01 0.38 0.02 0.01 0.02 

6th decile <0.0001 <0.0001 <0.0001 
<0.000

1 <0.0001 0.45 <0.0001 <0.0001 <0.0001 

7th decile <0.0001 <0.0001 <0.0001 
<0.000

1 <0.0001 0.63 <0.0001 <0.0001 <0.0001 

8th decile <0.0001 <0.0001 <0.0001 
<0.000

1 <0.0001 0.56 <0.0001 <0.0001 <0.0001 

9th decile <0.0001 <0.0001 <0.0001 
<0.000

1 <0.0001 0.47 <0.0001 <0.0001 <0.0001 

10th decile <0.0001 <0.0001 <0.0001 
<0.000

1 <0.0001 0.02 <0.0001 <0.0001 <0.0001 
          


