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Abstract

Cross-correlations of ambient seismic noise are widely used for seismic velocity imaging, monitoring, and ground motion analyses.

A typical step in analyzing Noise Cross-correlation Functions (NCFs) is stacking short-term NCFs over longer time periods to

increase the signal quality. Spurious NCFs could contaminate the stack, degrade its quality, and limit its use. Many methods

have been developed to improve the stacking of coherent waveforms, including earthquake waveforms, receiver functions, and

NCFs. This study systematically evaluates and compares the performance of eight stacking methods, including arithmetic mean

or linear stacking, robust stacking, selective stacking, cluster stacking, phase-weighted stacking, time-frequency phase-weighted

stacking, $Nˆ{th}$-root stacking, and averaging after applying an adaptive covariance filter. Our results demonstrate that,

in most cases, all methods can retrieve clear ballistic or first arrivals. However, they yield significant differences in preserving

the phase and amplitude information. This study provides a practical guide for choosing the optimal stacking method for

specific research applications in ambient noise seismology. We evaluate the performance using multiple onshore and offshore

seismic arrays in the Pacific Northwest region. We compare these stacking methods for NCFs calculated from raw ambient noise

(referred to as Raw NCFs) and from ambient noise normalized using a one-bit clipping time normalization method (referred to

as One-bit NCFs). We evaluate six metrics, including signal-to-noise ratios, phase dispersion images, convergence rate, temporal

changes in the ballistic and coda waves, relative amplitude decays with distance, and computational time. We show that robust

stacking is the best choice for all applications (velocity tomography, monitoring, and attenuation studies) using Raw NCFs. For

applications using One-bit NCFs, all methods but phase-weighted, time-frequency phase-weighted, and $Nˆ{th}$-root stacking

are good choices for seismic velocity tomography. Linear, robust, and selective stacking methods are all equally appropriate

choices when using One-bit NCFs for monitoring applications. For applications relying on accurate relative amplitudes, both

the robust and cluster stacking methods perform well with One-bit NCFs. The evaluations in this study can be generalized to

a broad range of time-series analysis that utilizes data coherence to perform ensemble stacking. Another contribution of this

study is the accompanying open-source software, which can be used for general purposes in time-series stacking.
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S U M M A R Y
Cross-correlations of ambient seismic noise are widely used for seismic velocity imaging,
monitoring and ground motion analyses. A typical step in analysing noise cross-correlation
functions (NCFs) is stacking short-term NCFs over longer time periods to increase the signal
quality. Spurious NCFs could contaminate the stack, degrade its quality and limit its use.
Many methods have been developed to improve the stacking of coherent waveforms, including
earthquake waveforms, receiver functions and NCFs. This study systematically evaluates and
compares the performance of eight stacking methods, including arithmetic mean or linear
stacking, robust stacking, selective stacking, cluster stacking, phase-weighted stacking, time–
frequency phase-weighted stacking, Nth-root stacking and averaging after applying an adaptive
covariance filter. Our results demonstrate that, in most cases, all methods can retrieve clear
ballistic or first arrivals. However, they yield significant differences in preserving the phase
and amplitude information. This study provides a practical guide for choosing the optimal
stacking method for specific research applications in ambient noise seismology. We evaluate
the performance using multiple onshore and offshore seismic arrays in the Pacific Northwest
region. We compare these stacking methods for NCFs calculated from raw ambient noise
(referred to as Raw NCFs) and from ambient noise normalized using a one-bit clipping
time normalization method (referred to as One-bit NCFs). We evaluate six metrics, including
signal-to-noise ratios, phase dispersion images, convergence rate, temporal changes in the
ballistic and coda waves, relative amplitude decays with distance and computational time.
We show that robust stacking is the best choice for all applications (velocity tomography,
monitoring and attenuation studies) using Raw NCFs. For applications using One-bit NCFs,
all methods but phase-weighted and Nth-root stacking are good choices for seismic velocity
tomography. Linear, robust and selective stacking methods are all equally appropriate choices
when using One-bit NCFs for monitoring applications. For applications relying on accurate
relative amplitudes, the linear, robust, selective and cluster stacking methods all perform well
with One-bit NCFs. The evaluations in this study can be generalized to a broad range of time-
series analysis that utilizes data coherence to perform ensemble stacking. Another contribution
of this study is the accompanying open-source software package, StackMaster, which can be
used for general purposes of time-series stacking.
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1 I N T RO D U C T I O N

Cross-correlations of ambient seismic noise have been widely used
to image the Earth’s elastic (Shapiro et al. 2005; Yang & Gao 2018;
Feng & Ritzwoller 2019; Yang & Gao 2020; Wu et al. 2021) and
anelastic structure (e.g. Prieto et al. 2009; Liu et al. 2021a), model
ground motions (Denolle et al. 2013, 2014; Viens et al. 2017; Kwak
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et al. 2017; Denolle et al. 2018; Viens & Denolle 2019) and moni-
tor transient velocity changes in the shallow subsurface (Brenguier
et al. 2008a; Wang et al. 2017; Clements & Denolle 2018; Donald-
son et al. 2019; Olivier et al. 2019; Feng et al. 2021; Yang et al.
2022c). The noise cross-correlation functions (NCFs) are typically
computed in short-time windows (such as hours or days) after di-
verse pre-processing on the raw ambient noise waveforms (Bensen
et al. 2007; Feng & Ritzwoller 2019). Stacking of NCFs over a
longer period (such as weeks, months or years) is a common proce-
dure for most applications utilizing NCFs (e.g. Seats et al. 2012).
For seismic tomography, the final stack over the entire time period is
used to make waveform or traveltime measurements. Seismic mon-
itoring requires stacking over a subset of time windows, balancing
the temporal resolution and the coherence of the NCFs (Hadziioan-
nou et al. 2011). These applications rely on the phase information of
ballistic (first arrival) and/or coda waves. Studies of ground motion
prediction and attenuation tomography, on the other hand, require
accurate relative amplitude measurements between station pairs.
Because NCFs consist primarily of dispersive surface waves, pre-
serving the relative amplitude also preserves the spectral content.
Therefore, the performance of stacking and the preservation of ei-
ther phase or amplitude information are important to ensure the
robustness of the scientific results.

The most commonly used stacking method is the arithmetic mean
of the data over temporal or spatial samples, referred to as Linear
stacking. For NCFs, substantial temporal variation may exist across
individual short time windows, which could result from the seasonal
change of the location and strength of the microseismic sources
(Bensen et al. 2007; Ermert et al. 2016, 2021; Tian & Ritzwoller
2017; Yang et al. 2019; Li et al. 2020; Liu et al. 2021b), disruption
from tectonic signals (Baig et al. 2009) or unknown instrumental
failures. It is important to use an appropriate stacking method to ex-
tract coherent NCFs, particularly when strong variations of the data
quality are present. Many more advanced methods have been devel-
oped to improve the stacking of NCFs, and time-series data in gen-
eral and overcome the limitations of Linear stacking. Rückemann
(2012) provides a summary of the theoretical background of several
stacking methods to improve the common-mid-point gathers in seis-
mic reflection data. A systematical evaluation of the performance
of different stacking methods in processing real NCF data is highly
desirable and required for optimizing processing strategies.

In this paper, we compare eight algorithms used for stacking
NCFs and evaluate their performance for canonical research appli-
cations. These methods include: robust stacking (Pavlis & Vernon
2010), selective stacking (modified from Liu et al. 2009; Olivier
et al. 2015), cluster stacking (a new method), Phase-Weighted
Stacking (PWS; Schimmel & Paulssen 1997), time–frequency
Phase-Weighted Stacking (tf-PWS; Schimmel & Gallart 2007; Baig
et al. 2009; Schimmel et al. 2011; Thurber et al. 2014; Zeng &
Thurber 2016; Li et al. 2017), Nth-root stacking (Rückemann 2012;
Millet et al. 2019) and linear stacking after applying an adaptive
covariance filter (ACF; Nakata et al. 2015). We exclude the stack-
ing methods that use the curvelet transform (Stehly et al. 2011) and
singular value decomposition (Moreau et al. 2017), as these focus
specifically on short-term convergence alone. We assess the perfor-
mance of the eight algorithms using six different metrics relevant to
specific research applications. Because the one-bit pre-processing is
designed to reduce the influence of earthquake-like transient signals
and to improve the quality of individual NCFs (Bensen et al. 2007),
we benchmark our tests using both the raw and one-bit normaliza-
tion pre-processing techniques. The development of new methods
and computer codes and the performance tests from this study aim to

Figure 1. Seismic stations used in this study. The USArray Transportable
Array and Cascadia Initiative Ocean Bottom Seismographs (red open tri-
angles) form a composite data set that is referred to as the ‘Amphibious’
data set. The 1993–1994 Cascadia broad-band XZ linear array (blue dots) is
referred to as the ‘XZ’ data set. Labelled stations are used as virtual sources
and receivers in the examples in this paper.

guide the community in choosing the appropriate stacking method
for ambient-noise seismology use cases, though they can also be
generalized to process other time-series data.

2 A M B I E N T N O I S E
C RO S S - C O R R E L AT I O N S

This study uses the Pacific Northwest as a natural laboratory (Fig. 1).
We gather data from 29 Cascadia Initiative Ocean Bottom Seis-
mographs (OBS; network code: 7D; IRIS OBSIP 2011), 15 US
Transportable Array stations (network code: TA; IRIS Transportable
Array 2003) and 43 stations from the 1993 to 1994 Cascadia sub-
duction zone experiment (network code: XZ; Nabelek et al. 1993).
We group the data into two data sets: (1) the composite data set
from the Cascadia Initiative OBSs and onshore TA stations that
is referred to as the ‘Amphibious’ data set; (2) the data from the
east–west XZ linear array in northern Oregon that is referred to as
the ‘XZ’ data set. All data are publicly accessible from the seismic
data archive of the Incorporate Research Institutions for Seismology
Data Management Center (IRIS DMC).

We use the SeisGo Python toolbox to download the continuous
seismic waveforms and compute the NCFs (Yang et al. 2022b). The
cross-correlation function in SeisGo was modified from NoisePy
(Jiang & Denolle 2020). We download the vertical component
of the continuous waveforms in 12-hr segments. We select data
from 10/1/2011 to 7/31/2012 for the Amphibious data set and from
6/1/1993 to 5/31/1994 for the XZ data set. We remove the instrument
responses and convert the waveforms to displacements, followed by
downsampling to 5 Hz. We compute the NCFs in 6-hr windows
sliding every 3 hr. The data are demeaned and detrended for each
6-hr segment. We attempt to remove transient signals in the ambient
noise that will contaminate the noise cross-correlations by remov-
ing the windows with anomalous amplitudes. For that, we calculate
the maximum absolute raw noise amplitude of the segment and
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the standard deviation of the raw noise amplitudes of all segments.
We discard waveform segments with peak amplitudes greater than
10 times the standard deviation, as implemented in NoisePy.

We construct two sets of cross-correlations using the raw wave-
forms (Viens et al. 2017) and waveforms normalized in the time
domain using the sign function (e.g. Bensen et al. 2007; Shen et al.
2012). We denote the two data sets as Raw NCFs and One-bit NCFs,
respectively. To avoid spectral leakage, the short 6-hr time windows
are tapered using a Tukey window with a cosine fraction of 0.05.
We then apply a Fourier transform to the short-window segment
and compute the cross-correlation in the frequency domain using
the following equation:

X = F−1 (F∗(ds)F(dr )) , (1)

where X is the NCF between time-series ds (virtual source) and dr

(receiver), F is the Fourier transform operator, F∗ stands for the
complex conjugate of the Fourier transform and F−1 is the inverse
Fourier transform operator. For stacking analyses, we average the
computed NCFs within each 12-hr window to reduce the computa-
tional cost.

We show examples of the computed NCFs (bandpass filtered at
0.1–0.4 Hz) in Fig. 2 for both pre-processing strategies. The asym-
metry of the NCF is a known effect of noise source directionality
(Stehly et al. 2006). The first-order observation is that the individual
NCFs contain incoherent noise that may overwhelm the coherent
signals. The NCFs from the XZ land station pair all show clear bal-
listic phases over the entire period range of this analysis (Figs 2c and
d). For the amphibious station pair 7D.J33A-TA.G03D, clear ballis-
tic phases are present between 50 and 100 s for most of the NCFs
between October 2011 and April 2012, for both Raw (Fig. 2a) and
One-bit (Fig. 2b) NCFs. However, the ballistic phases are almost
invisible for the NCFs after May 2012. These ‘noisy’ NCFs may
contaminate the linear stack of the NCFs. The simple time-domain
representation in Fig. 2 only provides a qualitative visual assess-
ment. We later quantify the performance using different stacking
methods with multiple metrics.

3 S TA C K I N G M E T H O D S

This section describes the algorithms beyond the arithmetic mean
(or Linear stacking) for optimally stacking NCFs. Most of these
methods are adapted from the published literature. All methods can
be generalized as weighted stacking with various ways of computing
the stacking weight, which could be either trace weight or sample
weight. We express the weighted stacking scheme as:

b =
N∑

i=1

wi di , (2)

where b is the final stack. For trace-weighted stacking, di is the ith
NCF trace, wi is the stacking weight for the ith NCF trace satisfying∑

wi = 1 and N is the total number of NCF traces. For sample-
weighted stacking, di is the ith sample of the arithmetic average or
linear stack of all NCF traces, wi is the stacking weight for the ith
sample satisfying

∑
wi = 1 and N is the total number of samples in

each NCF trace. Under the stacking formulation of eq. (2), Linear
stacking is a special case of trace-weighted stacking where all traces
have the same weight (wi = 1). In the methods described in this
section, the Robust (Section 3.1), Selective (Section 3.2) and Clus-
ter (Section 3.3) stacking methods are all trace-weighted stacking

methods. The phase-weighted (Section 3.4), time–frequency phase-
weighted (Section 3.5), Nth -root (Section 3.6) and adaptive covari-
ance filter (Section 3.7) stacking methods are all sample-weighted
stacking methods. In the following subsections, we describe the
computation of the stacking weights for each method in detail.

3.1 Robust stacking

Pavlis & Vernon (2010) first introduced Robust stacking to improve
the accuracy of picking phase arrival times in seismograms from
distant earthquakes. We adapt this generic, iterative, weighted stack-
ing method to process NCFs. The weight in Robust stacking is based
on waveform decoherence and penalizes the NCF that deviates too
much from a reference stack. The weight wi of the ith NCF, di, for
the jth iteration is calculated as (Pavlis & Vernon 2010):

w
j
i = |b j · di |

||di ||||ri || , (3)

where bj is the reference stack of the jth iteration, |∗| is the L1-
norm operator, ||∗|| is the L2-norm operator and ri = bj − (bj ·
di)di is a modified residual quantifying the difference between the
current reference stack bj and the ith NCF scaled by the dot product
of the two time-series. The weight wi penalizes twice the data that
does not resemble the reference stack. The first element is the dot
product between the NCF and the stack: bj · di|/||di||. The second
is the modified residual ri: if it is high, the 1/||ri|| is small and wi

is low. The weights can be calculated over either the entire NCF or
a specific time window that contains the seismic phase of interest.
For the examples in this paper, we compute the weights over the
entire NCF, though our software package allows the user to specify
the time window. After computing the weights for all NCFs, we
normalize them to their sum and use them to produce the updated
stack.

The initial reference stack b1 is chosen as the median NCF, fol-
lowing the observation of Pavlis & Vernon (2010) that the median
is more representative of the concentration of data in the presence
of outliers. In our implementation, the users may specify another
trace as the initial stack, such as the Linear stack. The iterative pro-
cedure stops when a convergence criterion is satisfied. We adopt the
measure proposed by Pavlis & Vernon (2010):

|b j − b j−1|
||di ||M < ε, (4)

where M is the number of samples in each NCF time-series and ε

is a small number, with a default value of 10−5.

3.2 Selective stacking

In the presence of strong noise, it could be effective to stack only a
subset of the NCF ensemble that exceeds a quality threshold and to
ignore the low-quality NCFs. This concept, called selective stack-
ing, has been implemented in previous studies (e.g. Olivier et al.
2015; Thangraj & Pulliam 2021). The signal-to-noise ratio (SNR)
or the correlation to the reference can be used to evaluate the quality
of each NCF. Olivier et al. (2015) used the SNR around the expected
S-wave arrival time to reconstruct S waves in the stacked NCF. Liu
et al. (2009) proposed the weighted stack of common-midpoint
gather using the local correlation within the moving window to im-
prove the SNR and suppress the random noise in the stacked trace.
To enhance the coherence of the signal, we use a criterion based
on the similarity, quantified as the Pearson correlation coefficient in
our implementation, between each NCF and the reference NCF. In
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Optimal stacking 1603

Figure 2. Examples of ambient noise cross-correlation functions (NCFs) between (a, b) OBS station 7D.J33A and onshore station TA.G03D and (c, d) XZ
linear array stations XZ.A02 and XZ.A24. The NCFs are filtered at 0.1–0.4 Hz. The left-hand panels are NCFs computed with raw waveforms and the
right-hand panels are NCFs computed after applying one-bit time-domain normalization. The dashed cyan boxes mark the windows used for the analysis of
the preservation of transient phase changes (Section 4.4) using (a, b) coda waves and (c, d) ballistic phases. On the top of each panel, we show the linear stack
as arithmetic averages. The NCFs are colour-coded by the normalized amplitudes (red is 1, blue is –1).

our implementation, by default, the reference NCF is initialized as
the Linear stack of the entire ensemble (similar to Liu et al. 2009).
As in Robust stacking, the user can specify any trace, such as the
median NCF, as the reference stack and the window used to estimate
the similarity. Selective stacking sets the weights of low-similarity
NCFs to zero, computed as:

wi =
{

0, ρb,di ≤ ρt

1, ρb,di > ρt
, (5)

where ρb,di is the Pearson correlation coefficient between the in-
dividual trace and the reference NCF and ρ t is the user-defined
threshold. Note that the criterion used in this study is equivalent
to the global correlation described in Liu et al. (2009) rather than
the local correlation for simplicity in thresholding. A similarity
threshold allows us to discriminate the set of NCFs to keep or dis-
card (weight is set to zero). We then compute the Linear stack
over the subset of NCFs with a Pearson correlation coefficient
above the threshold and discard the NCFs below the threshold.
Similar to robust stacking, we implement the selective stacking
method in an iterative scheme, with the same convergence crite-
rion as in eq. (4). In our examples, we use a correlation coefficient
threshold of 0.

3.3 Cluster stacking

An alternative method to ranking waveforms according to a specific
similarity metric is to group them into clusters and perform the
stack for each cluster. Viens & Iwata (2020) proposed the idea
of clustering the NCFs using a dimensionality reduction technique
(principal component analysis), as exploited by Toghramadjian et al.
(2021). In our implementation, we use the Tslearn Python toolkit
(Tavenard et al. 2020) for k-means clustering of the NCF waveforms
based on the Euclidean distance. We impose two clusters to separate
NCFs with higher quality from those with lower quality.

After clustering the NCFs into two clusters, the final stack b is
computed as a weighted stack of the two cluster centres

b =
∑
i=1,2

wi Ci , (6)

where Ci (i = 1, 2) are the centres (sample averages or linear stacks)
of the two clusters and wi (i = 1, 2) are the weights of the cluster
centres. The centre stacking weights, wi (i = 1, 2), are computed
as

wi=1,2 =
⎧⎨
⎩

{
0, pi < max(p1, p2)
1, pi >= max(p1, p2)

, cc < h

pi/(p1 + p2), cc ≥ h
, (7)

where cc is the correlation coefficient between the two cluster cen-
tres C1 and C2, h is the similarity threshold specified by the user,
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1604 X. Yang et al.

and pi (i = 1, 2) is the relative peak amplitude of the cluster centre,
computed as the ratio of the maximum and root-mean-square of
the absolute amplitudes. The relative peak amplitude we use here
is an equivalent measure to the SNR of the cluster centre. In our
examples, p1 and p2 are computed over the entire NCF. Our imple-
mentation also allows the user to specify the window of interest to
compute the maximum of the absolute amplitudes. According to
eq. (7), the two centres are weighted by the relative peak amplitude
when their correlation coefficient exceeds the threshold (h = 0.75
for our examples). Otherwise, we use the centre with a higher peak
amplitude as the final stack.

3.4 Phase-weighted stacking

Phase-weighted stacking (PWS) computes the weight for each trace
by the coherency of the instantaneous phases (Schimmel & Paulssen
1997). Our implementation of the PWS method follows the de-
scription in Schimmel & Paulssen (1997). Readers are referred to
Schimmel & Paulssen (1997) for detailed equations and procedures
of the PWS method. The final stack is constructed as a non-linear
weighted stack where each sample is weighted by the instantaneous
phase. The key parameter for PWS is a harshness parameter that
quantifies the fall-off of the weight of each NCF with decreasing
similarity. We set the harshness to 2, as in Schimmel & Paulssen
(1997).

3.5 Time–frequency phase-weighted stacking

Schimmel & Gallart (2007) and Schimmel et al. (2011) proposed
an improved phase-weighted stacking method that computes the
weight in both the time and frequency domains. This method, re-
ferred to as tf-PWS, projects each seismic trace into the time–
frequency domain through the Stockwell transform (S-transform;
Stockwell et al. 1996), which can be thought of as a short-time
Fourier transform with a frequency-dependent time window. Baig
et al. (2009) adapted the stacking method based on a more effi-
cient discrete orthogonal S-transform (DOST) that is introduced
by Stockwell (2007). Readers are referred to Schimmel & Gallart
(2007) and Schimmel et al. (2011) for detailed formulation of the tf-
PWS stacking method. We implement tf-PWS with both the original
S-transform and the DOST. The implementation of DOST-based tf-
PWS in this study follows the description by Schimmel et al. (2011)
using a Python translation of the implementation of DOST by Bat-
tisti & Riba (2016). The two implementations produce comparable
stacking results overall (Fig. S1), though the tf-PWS method with
the original S-transform takes more than 103 times longer CPU
time. Therefore, considering the significantly lower efficiency us-
ing the original S-transform, the comparison and evaluation in this
study use the DOST-based tf-PWS. Similar to PWS, the tf-PWS is
primarily controlled by a harshness parameter that determines the
sharpness of the transition between phase similarity and dissimi-
larity. We set the harshness to 2 for our examples, as in Schimmel
et al. (2011).

3.6 Nth-root stacking

Nth-root stacking method is commonly used in array seismology
(Muirhead 1968; Kanasewich et al. 1973; Schimmel & Paulssen
1997; Rost & Thomas 2002; Rückemann 2012; Millet et al. 2019). It
is a non-linear stacking method that takes the Nth-root of the absolute
amplitudes of each individual trace and sums them together. The

summation is then raised to the power of N to assign the sample
weight. The polarity of each sample is recovered with a sign function
of the summation. Our implementation follows the description in
Millet et al. (2019; their eq. 18) and can be summarized as:

b = sign(r)|r|n, (8)

where b is the final stack, n is the specified order of root, r =
1
N

∑N
i=1 sign(di )|di |1/n , di is the ith NCF trace, and N is the total

number of NCF traces. We use the square root (i.e. n = 2) in our
examples.

3.7 Adaptive covariance filter stacking

Nakata et al. (2015) introduced an adaptive covariance filter (ACF)
to suppress incoherent noise in seismic data based on the adaptive
polarization filter (Samson & Olson 1981; Du et al. 2000). We
implement the ACF stacking method following Nakata et al. (2015),
which the readers are referred to for detailed formulations of the
method. The final stack is the Linear stack after applying the ACF.
We use 1 as the harshness of the filter.

4 E VA LUAT I O N A N D C O M PA R I S O N O F
S TA C K I N G A L G O R I T H M S

We implement the stacking algorithms described in Section 3 as a
standalone Python package StackMaster (Yang et al. 2022a). The
package is available as a repository on Python Package Index (PyPl).
It can be installed with: pip install stackmaster. In this pa-
per, we install StackMaster with the SeisGo toolbox (Yang et al.
2022b) under the same Anaconda environment. We apply the stack-
ing techniques to the Amphibious and the XZ data sets. Fig. 3 shows
the stacking results for the two station pairs in Fig. 2. Figs 4–6 and
S2–S4 in the supplement are the stacking results of all station pairs
from the virtual sources at 7D.J33A (Figs 4, 5, S2 and S3) and at
XZ.A02 (Figs 6 and S4).

We then evaluate and compare the performance of these stack-
ing methods. Recognizing that NCFs are used in multiple appli-
cations (e.g. seismic velocity tomography, monitoring and attenu-
ation/ground motion analysis), we evaluate the performance of the
algorithm over a range of metrics: (1) SNRs, (2) surface wave dis-
persion, (3) convergence of short-term stacks to the long-term stack,
(4) transient phase changes, (5) peak amplitudes of ballistic phases
and (6) computational expense. We compare the methods below
according to each metric. It is worth noting that there are multiple
parameters that can be tuned for each stacking method, though we
only focus on the most commonly used or suggested parameters in
this study. In Section 5, we discuss the choice of stacking methods
for different categories of applications using NCFs.

4.1 SNRs

We use the SNR of the ballistic phase as a proxy for the quality of
the NCF stack. In this study, we define the SNR, R, as

R =
[

rms(|Asignal|)
rms(|Anoise|)

]2

, (9)

where rms() is the root-mean-square operator, |Asignal| are the abso-
lute amplitudes within the signal window and |Anoise| are the absolute
amplitudes within the noise window. For the NCFs from amphibious
station pairs (Figs 3a, b, 4 and S2), the signal window is defined by a
fast wave travelling at 4.5 km s–1, a slow wave travelling at 2 km s–1,
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Optimal stacking 1605

Figure 3. Examples of the stacked NCFs between station pairs (a, b) 7D.J33A-TA.G03D and (c, d) XZ.A02-XZ.A24, using different methods. The left-hand
panels are the stacking results for Raw NCFs and the right panels are the stacking results for One-bit NCFs. All NCFs are filtered at 0.1–0.4 Hz after stacking.
The stacking algorithm is labelled on the left of each panel. The SNR in decibel scale (eq. 10) is indicated above each trace on each side of the correlations.
The thick solid and dashed lines mark the starts and ends of the signal and noise windows, respectively.

and we add 100 s to the end of the window. For OBS station pairs
(Figs 5 and S3), we use a velocity range of 0.5–1.0 km s–1 to predict
the signal window and add 60 s after the latest predicted arrival
time. For the XZ data set (Figs 3c, d, 6 and S4), the signal window is
defined by waves travelling between 2 and 3.7 km s–1, extending for
an additional 20 s. For both data sets, the noise window has the same
length as the signal window with an offset of 30 s after the end of
the signal window. Considering the relatively large dynamic range
of the computed SNRs, we convert the ratios to decibel scales for all
examples in this paper to assist the comparison and visualization,
with

SNR = 10 log10 R. (10)

It is worth noting that the SNR is unitless and the conversion in
eq. (10) is mainly for scaling.

We observe notable variations in the SNRs of the ballistic phases
retrieved using different stacking methods. From the single-pair
examples (Fig. 3), the ballistic phases are most prominent on the
positive lags from all stacking results, with relatively weaker phases
on the negative lags, shown as lower SNRs overall. For the Cascadia
amphibious station pair, the SNRs range from 9.9 to 35.2 for the
Raw NCFs and 9.1–31.7 for the One-bit NCFs (Figs 3a and b).

For the XZ station pair, the SNRs range from 10.9 to 25.3 for the
Raw NCFs and 11.2-40.5 for the One-bit NCFs (Figs 3c and d).
For all data sets, the highest SNRs are achieved with the PWS
method, while the ACF method produces the lowest SNRs. The
stacking results using the Nth-root method also show relatively high
SNRs. The SNRs of other stacking results are at a comparable
level.

The stacking results of all station pairs from the same virtual
source provide a more holistic comparison of the performance of
different methods (Figs 4–6 and S2–S4). We use the mean SNRs
across all station pairs to quantify the comparison of stacks with
different methods (Fig. 7). From the visual inspection of the moveout
plots (time-lags versus interstation distances), the stacks of Raw
(Figs 4 and 6) and One-bit (Figs S2 and S4) NCFs have comparable
quality overall for both the Amphibious and the XZ data sets. This
is also evident from the comparable mean SNR values of the two
pre-processing methods (Fig. 7). For the Cascadia Amphibious data
set, most of the NCFs from the OBS receivers are relatively noisy
(Figs 5 and S3), with mean SNRs lower than those from the onshore
receivers (Figs 7a and b). This may result from the contamination
of tilt and compliance noise at most OBS stations, a well-known
problem in offshore data (Tian & Ritzwoller 2017). Most of the
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1606 X. Yang et al.

Figure 4. Stacked Raw NCFs of the Cascadia amphibious array from 7D.J33A to other land receivers using different stacking methods, filtered at 0.1–0.4 Hz.
(a–h) The results using Linear, Robust, Selective, Cluster, PWS, tf-PWS, Nth -root and ACF stacking methods, respectively. The red solid lines and the blue
dashed lines outline the positive-lag signal window and the negative-lag signal window, respectively, used to compute the SNR in Fig. 7. The signal and noise
windows are determined with the same method as in Figs 3(a) and (b). See Fig. 1 for station locations.

Figure 5. Same as Fig. 4 but for NCFs from 7D.J33A to other OBS receivers. To contain the visually identified ballistic phases from these OBS station pairs,
we use a different velocity range (0.5–1.0 km s–1) here to predict the signal window of the weakly coherent signals. We extend the window for an additional
60 s after the latest predicted arrival. See Fig. 1 for locations of the OBS receivers.

stacked XZ NCFs show clear ballistic phases (Figs 6 and S4), with
much higher mean SNRs than those of the Amphibious data set
(Fig. 7). In all examples with land receivers, the ballistic phases
are dominantly visible at positive lag times, representing surface
waves propagating away from the virtual sources, which we focus
on for the following description. For all four data sets (land receivers
only for the Amphibious NCFs), the PWS method produces the
highest SNRs, while the standard deviation of the SNRs is also the
largest. For the Cascadia Amphibious NCFs (Figs 7a and b), Nth -
root stacking yields the second highest SNRs, while the SNRs of
other stacking results are at a comparable level of 0–10 for both

the Raw and One-bit NCFs. For the XZ NCFs (Figs 7c and d), the
lowest SNRs are observed with ACF stacking, though the ballistic
phases are still clearly retrieved (Figs 6h and S4h).

4.2 Surface wave dispersion

Surface waves are dispersive, which means that their wave speed
depends on the frequency of the wave. Lower-frequency (longer
period) surface waves generally travel faster than higher-frequency
(shorter period) waves and are more sensitive to greater depths.
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Optimal stacking 1607

Figure 6. Stacked Raw NCFs between the XZ linear array stations from XZ.A02 to other receivers, filtered at 0.1–0.4 Hz. (a–h) The results using Linear,
Robust, Selective, Cluster, PWS, tf-PWS, Nth -root and ACF stacking methods, respectively. The red solid lines and the blue dashed lines outline the positive
signal window and the negative signal window, respectively, used to compute the SNR in Fig. 7. The signal and noise windows are determined with the same
method as in Figs 3(c) and (d). See Fig. 1 for station locations.

Figure 7. Comparison between the mean signal-to-noise ratios (SNRs) for the NCFs shown in Figs 4–6 and S2–S4. (a, b) Mean SNRs for the Cascadia
amphibious array Raw and One-bit NCFs, respectively. The SNRs for the land (open circles and triangles) and OBS (dots and filled triangles) stations are
plotted separately. (c, d) Results for the XZ linear array NCFs from Raw and One-bit NCFs, respectively. The error bars show the standard deviations of the
SNRs.

This frequency–depth characteristic makes surface waves a popular
choice for elastic and anelastic seismic tomography of the subsur-
face. Preserving the surface wave dispersion in the stacked NCFs is,
therefore, one of the critical metrics to evaluate the performance of

different stacking methods. We assess this performance by extract-
ing and comparing the phase-velocity dispersion images. We use
the Raw and One-bit NCFs from the XZ linear array between the
virtual source at XZ.A02 and all other receivers (Fig. 6) to evaluate
this metric.
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1608 X. Yang et al.

Figure 8. Dispersion images extracted from the Raw NCFs between the virtual source at XZ.A02 and other receivers using the time-domain phase-shift method
through multichannel analysis of surface waves (e.g. Park et al. 1998, 1999; Ryden et al. 2004). (a–h) Results from the stacks using Linear, Robust, Selective,
Cluster, PWS, tf-PWS, Nth -root and ACF stacking methods, respectively. The colour scale shows the power sum normalized at each velocity value. The NCFs
are shown in Fig. 6.

We follow the phase-shift dispersion analysis procedure de-
scribed in Park et al. (1998, 1999) and Ryden et al. (2004). We
implement the procedure in the time domain through narrow-band
filters. We narrow bandpass the seismograms using a Butterworth
filter progressively between 1 and 10 s period, with a moving period
band of 2 s and a step size of 0.1 s. We then shift the seismogram
with a phase shift of r/v, where r is the interstation distance and v
is the phase velocity that varies between 1.5 and 5.5 km s–1, with
a step of 0.05 km s–1. We trim the data over an adaptive window
length, which scales with the central period, computed as

Li = ai Ti , (11)

where Li is the window length for the ith period Ti. ai is the scaling
factor, which is determined by

ai = amin + (i − 1)
amax − amin

NT
, (12)

where amin and amax are the minimum and maximum of the scaling
range and NT is the number of period steps. For our examples, amin =
1 and amax = 2. Finally, to extract the dispersion image, we calculate
the energy (sum of squared amplitude) of the windowed, filtered,
shifted and stacked seismograms. The images are shown in Figs 8
and 9.

We apply this procedure to all station pairs with the common
virtual source XZ.A02, with only results from the positive lags of
the NCFs being shown here. We only analyse the results from station
pairs with interstation distances of at least 1.5 times the wavelength
for each velocity-period pair to remain in the far-field regime.

The dispersion images from the One-bit NCF stacks are largely
similar to each other (Fig. 9). This contrasts with the great variabil-
ity of the dispersion images from the Raw NCF stacks (Fig. 8). We
use the average dispersion image of the One-bit results (Fig. 10a)
as a reference. We compute the Structural Similarity Index (SSI;
Wang et al. 2004) between the reference (Fig. 10a) and individual
dispersion images from the NCF stacks using different methods

(Figs 8 and 9). The SSI is widely used in the analysis of image
degradation or alteration, with 1 meaning the two images are iden-
tical and 0 meaning they are completely different. The SSI results
over the entire period range of 1–15 s for both the Raw and One-bit
dispersion images are shown in Fig. 10(b). To examine the perfor-
mance of different stacking methods at different period bands, we
also compute the frequency-dependent SSI, as shown in Fig. 11.

The reference dispersion image (Fig. 10a) resembles major fea-
tures of the One-bit dispersion images using different stacking meth-
ods (Fig. 9). Over the entire period range of 1–10 s, the dispersion
images using the PWS and Nth -root methods for One-bit NCFs
differ the most from the reference, with SSI below 0.8 (Fig. 10b).
All other stacking methods show higher SSI values. In contrast
with the One-bit results, most of the dispersion images for the Raw
NCFs possess relatively lower SSI values (<0.6), except for the
Robust stacking method, which shows an SSI of about 0.9. The
frequency-dependent results (Fig. 11) show that all One-bit NCF
stacks (Fig. 11b) and the Robust stack of Raw NCFs (Fig. 11a)
retrieve the most consistent dispersion images at the period range
of 4–9 s. For the One-bit NCFS, the SSI values outside this period
for the PWS and Nth -root stacks decrease dramatically. All stacking
results of Raw NCFs, except for the PWS result, show SSI values
of >0.6 in a narrow band of 3–6 s (Fig. 11a). In summary, the Ro-
bust stacking method preserves the dispersion information the best
for the Raw NCFs, with a dispersion image closest to the average
of One-bit NCF stacks. For the One-bit NCFs, the Linear, Robust,
Cluster and tf-PWS stacks perform comparably well in preserving
the dispersion information over the entire examined period range
from 1 to 10 s.
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Optimal stacking 1609

Figure 9. Same as Fig. 8 but for stacked One-bit NCFs as shown in Fig. S4 in the supplement.

Figure 10. Comparison of the dispersion images in Figs 8 and 9. (a) The average dispersion image of the One-bit NCF stacks in Fig. 9, which is used as the
reference for the comparison. (b) Structural Similarity Index (SSI) between individual dispersion images for Raw (dots) and One-bit (squares) NCF stacks and
the reference dispersion image as in (a). The dispersion images are shown in Figs 8 and 9.

Figure 11. Frequency-dependent comparison of the dispersion images with the average dispersion image of the One-bit NCF stacks (Fig. 10a). (a) Structural
Similarity Index (SSI) between individual dispersion images for Raw NCF stacks with a period bin of 2 s and a step of 0.1 s. The x-axis shows the central
period of each bin. (b) Same as (a) but for One-bit NCF stacks. The dispersion images are shown in Figs 8 and 9.
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1610 X. Yang et al.

Figure 12. Convergence to long-term stacks with the increasing number of NCFs, shown as the equivalent time span of NCFs in days. (a, b) Correlation
coefficients (CC) between the progressive stacking results and the stacks over the entire time period for Raw and One-bit NCFs between station pair 7D.J33A-
TA.G03D. The pre-stack NCFs are shown in Figs 2(a) and (b). We only use NCFs before 4/1/2012 for the convergence analysis to exclude the much noisier
data at later dates. All stacks are filtered at 0.1–0.4 Hz. (c, d) Same as (a) and (b) but for the XZ station pair XZ.A02-XZ.A24. The pre-stack NCFs are shown
in Figs 2(c) and (d). We use all NCFs for this station pair.

4.3 Convergence of short-term stacks to the long-term
stack

In measuring the temporal changes associated with the elastic
properties of the crust, we often stack a subset of the short-term
NCFs over an intermediate time period (e.g. Brenguier et al. 2008a;
Hadziioannou et al. 2011; Seats et al. 2012; Clements & Denolle
2018; Donaldson et al. 2019; Olivier et al. 2019; Yuan et al. 2021).
The time needed to reach convergence limits the temporal reso-
lution of the monitoring of the change in elastic properties. Here,
we quantify the rate of convergence as the time duration of NCFs
needed to achieve a certain threshold of the correlation coefficient
between the stack of the subset NCFs and the reference stack of
NCFs over the entire period. We compute the correlation coefficient
between the reference stack and the stack of a progressively grow-
ing subset of NCFs ordered by date and time with an increment of
5 NCFs (Fig. 12).

The rate of convergence varies among methods (Fig. 12). Over-
all, the PWS and Nth -root stacking results have the fastest con-
vergence to the reference stack (Figs 12a, b and d), except for the
Raw NCFs from the XZ station pair (Fig. 12c) where the PWS
method converges the slowest. The ACF stacking result converges
the slowest for the Raw NCFs of the Cascadia amphibious station
pair (Fig. 12a). The Cluster stacking method converges the slow-
est for the One-bit NCFs from both station pairs (Figs 12b and d),
though it shows a fast convergence rate for the Raw NCFs of the XZ
station par (Fig. 12c). The strong fluctuation of the correlation coef-
ficient using Cluster stacking may be due to the fact that the k-means
clustering method involves some random processes in assigning the
clusters. Most stacking results achieve relatively high (≥0.7) corre-
lation coefficients with more than about 20–40 d (Figs 12a and b).
For the XZ NCFs to achieve a similar correlation coefficient, it takes

about 15–70 d depending on the methods (Figs 12c and d). From
the results shown here, the rate of convergence depends strongly
on the stacking method and the quality of individual short-term
NCFs.

4.4 Transient phase changes

Seismic monitoring using ambient noise interferometry relies on the
phase difference of seismic waves measured at different lag times
(e.g. Brenguier et al. 2008a; Hadziioannou et al. 2011; Seats et al.
2012; Clements & Denolle 2018; Donaldson et al. 2019; Olivier
et al. 2019; Yuan et al. 2021). We analyse how these phase changes
are preserved with different stacking methods by estimating the
velocity changes (dv/v) over time. We utilize the trace stretching
method (e.g. Lobkis & Weaver 2003; Brenguier et al. 2008b; Ober-
mann et al. 2014; Yuan et al. 2021) to measure the dv/v between
the two example station pairs: 7D.J33A-TA.G03D and XZ.A02-
XZ.A24 (Fig. 13). The trace stretching method estimates dv/v by
maximizing the correlation coefficient between the individual NCF
coda with the reference coda through linearly stretching or squeez-
ing the waveform within the specified time window. The Python
function for trace stretching is built in the SeisGo interface (Yang
et al. 2022b). For all results shown in Fig. 13, we measure the veloc-
ity changes in the frequency range of 0.1–0.4 Hz. For all data sets,
we use a sub-stacking window length of 96 hr (4 d). The measur-
ing time windows are 86–106 s for 7D.J33A-TA.G03D to capture
the coda waves and 29–49 s for XZ.A02–XZ.A24 containing the
ballistic phases. The dv/v measuring windows for both data sets are
labelled in Fig. 2.

For each station pair, different stacking methods produce simi-
lar overall patterns of changes in dv/v over the entire data duration
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Optimal stacking 1611

Figure 13. Transient velocity changes (dv/v) using the trace stretching method measured from NCFs from (a) 7D.J33A-TA.G03D and (b) XZ.A02-XZ.A24.
The pre-stack short-term NCFs and the measuring windows are shown in Fig. 2. We use coda waves for the amphibious station pair (7D.J33A-TA.G03D) and
ballistic phases for the XZ station pair (XZ.A02-XZ.A24). The coda waves for the XZ station pair (both Raw and One-bit NCFs) are not coherent and produce
unstable dv/v measurements, regardless of the stacking method used. For 7D.J33A-TA.G03D, we only analyse the NCFs before 6/2/2012, during which we
have clear coda phases on most of the NCFs. We substack the NCFs over 96 hr (4 d) for all station pairs. We only plot dv/v results with the post-stretching
correlation coefficient (CC) of ≥0.6.

(Fig. 13). An exception is the dv/v measurements from the PWS
and tf-PWS stacking results of the Raw XZ NCFs, with stronger
variations and much lower after-stretching correlation coefficients
compared to other stacking results. For 7D.J33A-TA.G03D, a gen-
eral increase in seismic velocity from –1 per cent to 1.5 per cent
is observed from both Raw and One-bit NCFs using all stacking
methods (Figs 13a and b). For XZ.A02-XZ.A24, the dv/v fluctuates
between –0.5 and 0.5 per cent from June to July of 1993 (Figs 13c
and d). From August 1993 to the end of the observational period,
the dv/v varies between 0 and 1 per cent (Figs 13c–d). While we do
not intend to interpret these dv/v measurements, we note the great
similarity of the measurements across methods. All stacking meth-
ods show comparable results in preserving the phase differences
for coda waves from both Raw and One-bit NCFs and the ballistic
phases from One-bit NCFs.

4.5 Peak amplitudes of ballistic phases

Important information about the Earth’s anelastic structure can be
retrieved from the relative amplitudes of NCFs (e.g. Prieto et al.
2009; Liu et al. 2021a). Here, we focus on the amplitude decay with
distance and ignore the spatial variations in relative amplitudes that
are subject to additional uncertainties. The NCFs chosen in this
example are the same as in Fig. 6 and supplementary Fig. S3, fil-
tered at 0.1–0.4 Hz. The NCFs at each station pair are stacked over
the entire duration of data availability. We then measure the peak
absolute amplitudes of the predicted ballistic waves for each station
pair NCF stack within the time windows computed with a veloc-
ity range of 2.0–3.7 km s–1 (Figs 6 and S3). The XZ broad-band

network is an east–west trending linear array in central Oregon,
United States (Fig. 1). It is located at the active Cascadia conver-
gent margin, spanning from the Cascadia Volcanic Arc in the east to
the coastal mountains in the West. Considering that noise is domi-
nantly generated by the oceanic microseisms in this frequency range
(e.g. Webb 1998; Yang & Ritzwoller 2008), the XZ linear array pro-
vides an appropriate data set for analysing the attenuation of surface
waves extracted from NCFs, minimizing the azimuthal dependence
of noise sources. In this work, we only aim to compare the stability
of the relative amplitude information with different stacking meth-
ods and do not intend to advocate for an estimate of attenuation,
which might still depend on the distribution of noise sources (Stehly
& Boué 2017). The microseismic noise is generated by the ocean
and dominantly propagates eastward. Therefore, XZ.A02 is an ap-
propriate choice for a virtual source (Fig. 1). We only measure the
attenuation from the positive lags of the NCFs.

Assuming that the main signals of the NCF are fundamental-
mode surface waves, the maximum absolute amplitudes of the
stacked NCFs decay with distance following the relation:

A(D) = A0√
D

exp(−αD), (13)

where D is the interstation distance, A0 is a reference amplitude at
the virtual source and α is a measure of ‘attenuation’ that could
be attributed to intrinsic and scattering attenuation that further re-
duces the ground motion. To fit α, we correct for the geometrical
spreading by scaling the amplitudes with a factor of

√
D. The peak

absolute amplitudes are then fit to an exponential function y =
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1612 X. Yang et al.

Figure 14. Peak absolute amplitudes of the positive lags of the XZ Raw NCFs within the predicted ballistic arrival windows computed using a velocity range
of 2–3.7 km s–1 and corrected by

√
D, D is the interstation distance. In each panel, we only show the attenuation parameter, α, and its standard deviation, σ .

The exponential fit from this study is shown as the red-shaded area. For reference, we also show the amplitude decay estimated by Prieto et al. (2009) (P2009;
α = 0.0064 ± 0.0013; grey shaded area) and Mitchell (1995) (M1995; α = 0.002 ± 0.001; blue shaded area). See Fig. 6 for the moveout plots of the stacked
NCFs.

Figure 15. Same as Fig. 14 but for measurements from the XZ One-bit NCFs. See Fig. S3 in the supplement for the moveout plots of the stacked NCFs.

e−αx. We estimate the best fit through least squares linear regres-
sion of the peak amplitudes in a natural logarithmic space using the
following steps: (1) calculate the natural log peak absolute ampli-
tudes, (2) fit all data points using a least square linear regression
(scipy.stats.linregress), (3) correct the data with the best-
fitting model and measure misfit, (4) compute the mean and standard
deviation of the misfit, (5) remove the outliers (data points that are

more than one standard deviation away from the mean) and (6) use
the remaining subset of the data to repeat step-2 to get the final
linear fit parameters. The slope parameter in the linear regression
from Step-2 is the attenuation factor α. The standard error in the
slope, estimated by scipy.stats.linregress, is then used as
the uncertainty of α, as shown in Figs 14 and 15.
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Optimal stacking 1613

Figure 16. Comparison of the amplitude decay parameters (α) estimated using all-time NCF stacks (circles) and the mean bootstrap NCF stacks (triangles)
for (a) Raw and (b) One-bit data sets. See the amplitude fit results in Figs 14, S7 and S8. For reference, we also show the ranges of amplitude decays estimated
by Prieto et al. (2009) (P2009; α = 0.0064 ± 0.0013; grey shaded area) and Mitchell (1995) (M1995; α = 0.002 ± 0.001; blue shaded area).

We only use subsets of the NCFs in Figs 6 and S4 that have
interstation distances between 37 km, which is the wavelength of a
0.1 Hz wave travelling at a velocity of 3.7 km s–1, and 240 km. The
exponential fit and the uncertainties are shown as the red shaded ar-
eas in Figs 14 and 15. For comparison, we also plot the independent
attenuation measurements from Prieto et al. (2009) (α = 0.0064
± 0.0013), who used spectral methods to measure attenuation in
the Los Angeles basin in southern California using ambient noise
NCF filtered at 0.2 Hz, and Mitchell (1995) (α = 0.002 ± 0.001)
for active tectonic regions measured at 0.1–0.2 Hz using a global
compilation of earthquake surface waves.

The temporal variation in location and strength of noise sources
may affect the stability of the NCFs phases and amplitudes (e.g.
Li et al. 2020). To examine these effects with respect to stacking
methods, we conduct 1000 bootstrap stacking tests by randomly
choosing 80% of the NCFs for each station pair without repetition.
In Figs S5 and S6 in the supplement, we show the mean NCF
stacks from the bootstrap test for all station pairs between XZ.A02
and other receivers. We also analyse the variability of NCF stacks
compared to the bootstrapping mean stacks (see Text S1 and Fig. S7
in the supplement). We demonstrate that after taking into account
the variation of temporal weighting when stacking, the all-time
stacks are stable representations of the NCFs mostly within the
standard deviations. Following the same procedures and parameters
as using the all-time NCF stacks, we estimate the amplitude fit for
the average stacks from the bootstrapping test (Figs S7 and S8).
In Fig. 16, we compare the estimated amplitude decay coefficients,
α, for both the all-time NCF stacks and the bootstrap mean NCF
stacks.

From the all-time NCF stacks, the decay coefficient α can be
measured with all stacking methods and for all pre-processing tech-
niques. There is great variability in α among the methods (0.0024–
0.02 for Raw NCFs and 0.0023–0.0168 for One-bit NCFs; Figs 14–
16). For the Raw NCFs (Figs 14 and 16), the range of attenuation
parameters measured from the stacking results using the Linear,
Robust, Selective and Cluster methods all overlap with the val-
ues by Mitchell (1995). The coefficients using the Nth-root and
ACF methods are comparable to that found by Prieto et al. (2009).
The coefficient from the tf-PWS method falls in between the val-
ues provided by Mitchell (1995) and Prieto et al. (2009). For the
estimates from One-bit NCFs (Figs 15 and 16), the result using
the Robust method overlaps the most with the value proposed by

Mitchell (1995). The Linear, Selective, Cluster and tf-PWS stack-
ing results all fall in between the values by Mitchell (1995) and
Prieto et al. (2009). The estimates of α from the Nth-root and ACF
stacks are similar to that used by Prieto et al. (2009). Compared to
the attenuation measurements from the Raw NCFs, the attenuation
measurements from the One-bit NCFs seem to be more sensitive to
the choice of stacking methods, shown as larger variations among
different methods. For both data sets, the PWS method tends to
overestimate the attenuation factors, α, with much higher values
than other methods.

The deviation of the all-time NCF stacks from the bootstrap mean
NCF stacks lead to variability in the amplitude decay measurements
(Figs S7–S9 and 16). Fig. 16 shows that the amplitude decay param-
eters vary the most using the PWS method for both Raw and One-bit
NCFs, followed by the results using the tf-PWS, Nth -root and ACF
methods. The measurements using Linear, Robust, Selective and
Cluster methods fluctuate within the ranges of about 0.001–0.005
for Raw NCFs (Fig. 16a) and about 0.0005–0.007 for One-bit NCFs.
Considering the time-dependent variability of the NCF stacks, the
Linear, Robust, Selective and Cluster methods produce comparable
amplitude decay measurements for both Raw and One-bit NCFs.

4.6 Computational expenses

The computational efficiency varies notably among different stack-
ing methods ranging from 10−4 s to a few seconds. The computing
times are estimated from a single-core 3.6 GHz Intel Core i9 CPU.
We compare the compute time spent stacking subsets of the NCFs
(with an increment of 5 NCFs) using the different stacking methods
(Fig. 17). Linear stacking is the fastest method. The ACF stacking
method uses the most CPU time with about 4 s to stack 300 NCFs
(Fig. 17). This is because the ACF method needs to compute the
spectrum of each individual trace as well as the cross-spectrum in
moving windows. As discussed in Section 3.5 and shown in Fig. S1,
the tf-PWS method with the original Stockwell transform is much
slower than the methods shown in Fig. 17. Most of the time in tf-
PWS is spent on computing the Stockwell transform on individual
NCFs. The performance of the tf-PWS method implemented with
the more efficient DOST algorithm is comparable with that of the
Cluster method (Fig. 17). The Nth-root method is the second fastest
method following the Linear stack. These methods all scale nearly
linearly with the number of NCFs to stack.
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Figure 17. Computing times spent on stacking as a function of the number of NCFs to stack in a 5-step increment for (a) Raw and (b) One-bit NCFs from
station pair 7D.J33A-TA.G03D.

Table 1. Our recommendations of stacking methods for major research applications using NCFs based on the evaluation metrics in Section 4. For methods
denoted with (∗), see the appropriate sections for additional discussion.

Applications Evaluation metrics Recommendations

Velocity tomography
(Section 5.1)

Signal-to-noise ratio (Section 4.1), surface wave dispersion (Section 4.2)
and computational expenses (Section 4.6)

Raw: Robust One-bit: Linear, Robust,
Selective, ACF, Cluster

Monitoring (Section 5.2) Signal-to-noise ratio (Section 4.1), surface-wave dispersion (Section 4.2),
convergence of short-term stacks to the long-term stack (Section 4.3),
transient phase changes (Section 4.4) and computational
expenses (Section 4.6)

Raw: Robust One-bit: Linear, Robust,
Selective, tf-PWS

Anelastic properties
(Section 5.3)

Signal-to-noise ratio (Section 4.1), surface wave dispersion (Section 4.2),
peak amplitudes of ballistic phases (Section 4.5) and computational
expenses (Section 4.6)

Raw: Robust One-bit: Linear(∗), Robust,
Selective(∗), Cluster(∗)

5 C H O I C E O F S TA C K I N G M E T H O D S

In this section, we discuss the choice of stacking methods for differ-
ent applications that utilize NCFs. We focus on the following major
applications: (1) tomography of velocity structures, (2) monitoring
of transient velocity changes and (3) characterization of anelastic
properties. These three research applications extract different in-
formation from the NCFs: (1) seismic velocity tomography using
surface waves requires the dispersion information of the ballistic
surface wave phases, (2) seismic monitoring requires dispersion
and slight variations in phase information of the ballistic phases
and/or the coda waves and (3) the imaging of seismic attenuation
and prediction of strong ground motion relies on relative amplitudes
of the ballistic phases. Although the performance could vary with
different data sets, we provide here the advantages and limitations
of the stacking methods for each application in Table 1.

5.1 Stacking for tomography of velocity structures

Ambient noise tomography typically requires extracting the surface
wave dispersion information from the stack of all NCFs for each
station pair (e.g. Bensen et al. 2007). The fundamental mode surface
waves are most commonly visible in the data, though there are
some studies using higher modes for imaging (e.g. Wu et al. 2020;
Jiang & Denolle 2022). Our recommendation for seismic velocity
tomography is based on the following metrics: SNR (Section 4.1),
surface wave dispersion (Section 4.2) and computational expense
(Section 4.6).

Based on our examples in Section 4.1, except for the OBS-OBS
station pairs, the PWS method produces stacks with the highest
average SNRs, though with a large variance (see Figs 4–7 and

S2–S4 in the supplement). The stacks using the Nth -root method
also have relatively high SNRs. Other stacking methods perform
at a comparable level in terms of the SNRs of the ballistic phases.
The phase dispersion is better recovered using the Robust method
than others for Raw NCFs over the entire examined period of 1–
10 s (Fig. 10b), especially in the period range of 4–9 s (Fig. 11b).
For One-bit NCFs, all but the PWS and Nth -root methods perform
well overall in the dispersion analysis (Figs 9, 10b and 11b). In
summary, our recommendations for tomographic imaging are the
Robust stacking for Raw NCFs and the Linear, Robust, Selective,
Cluster, DOST-based tf-PWS and ACF methods for One-bit NCFs.

5.2 Stacking for monitoring of transient velocity changes

Seismic monitoring uses ballistic or coda wave interferometry to
infer small changes in the subsurface from short-time stacks of
NCFs (e.g. Lobkis & Weaver 2003; Brenguier et al. 2008a; Clements
& Denolle 2018; Donaldson et al. 2019; Obermann & Hillers 2019).
A faster convergence of the NCF would lead to a higher temporal
resolution in seismic monitoring. The convergence is often hindered
and thus limits the temporal resolution (Hadziioannou et al. 2011).
It is therefore important to find the optimal length of data that
yields a reasonable convergence of the NCF stack. Meanwhile,
time-lapse imaging requires that the dispersion of surface waves
remains stable through time (e.g. Bergamo et al. 2016). Therefore,
our recommendation for seismic monitoring using ambient noise
interferometry is based on the following additional metrics on top
of those for tomography (Sections 4.1, 4.2 and 4.6): convergence
of short-term stack to long-term stack (Section 4.3) and transient
phase changes (Section 4.4).
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Regarding the convergence metric, all stacking methods show
comparable performance (Fig. 12). The relatively large variability
in the rate of convergence using the Cluster stacking method may
lead to artifacts in monitoring. The ACF method is also relatively
slow in converging to the long-term stack. It is worth noting again
that the rate/time of convergence also depends on the quality of
specific data sets. The dispersion analyses are most stable using the
Robust method for Raw NCFs. For One-bit NCFs, all but the PWS
and Nth -root methods are appropriate choices (Figs 8–11).

For transient phase changes, all but the PWS and tf-PWS methods
perform comparably well for all of the four examined examples
(Fig. 13). In summary, our recommendations for seismic monitoring
are the Robust method for Raw NCFs and the Linear, Robust and
Selective methods for One-bit NCFs.

5.3 Stacking for characterization of anelastic properties

The relative amplitudes of NCFs have been used to characterize
the seismic attenuation properties of the Earth’s lithosphere (Prieto
et al. 2009) and the ground motion patterns (e.g. Denolle et al.
2013, 2014; Viens et al. 2017). Therefore, in addition to the metrics
pertinent to tomography (Sections 4.1, 4.2 and 4.6), our recommen-
dation for the characterization of anelastic properties using NCFs
also evaluates the stability of peak absolute amplitudes of ballistic
phases (Section 4.5).

Mitchell (1995) measured attenuation from a compilation of
global earthquake records from a variety of tectonic settings, in-
cluding active margins, which are similar to the setting for the XZ
linear array at the Cascadia margin. Because it is measured from
earthquake surface wave data, we argue that the attenuation param-
eter by Mitchell (1995) can serve as an independent benchmark
in our evaluation. With this criterion, the Linear, Robust, Selective
and Cluster stacking methods are ranked as the top four among
all of the methods for Raw NCFs (Figs 14 and 16a). However, the
requirement of a reliable measurement of frequency-dependent at-
tenuation and dispersion (Figs 8, 10a and 11a) would narrow the
choice down to Robust stacking for Raw NCFs. For One-bit NCFs,
the amplitude decay measured from the all-time NCF stacks using
the Robust stacking method overlaps the most with the value range
by Mitchell (1995) (Figs 15 and 16b). However, when considering
the bootstrapping mean NCF stacks and the uncertainties in ampli-
tude decay estimates, the performance of Linear, Robust, Selective
and Cluster methods are fairly comparable. Our recommendations
for attenuation and ground motion studies, or any applications uti-
lizing relative amplitudes, are the Robust method for both Raw and
One-bit NCFs, though the Linear, Selective and Cluster methods
are all reasonable choices for One-bit NCFs.

6 C O N C LU S I O N S

NCFs are widely used in seismic velocity and attenuation imaging,
monitoring and ground motion analyses. The stacking of NCFs over
longer time periods is needed for most applications utilizing NCFs
to increase the strength of the coherent signals. There have been
many temporal stacking methods developed to improve the stacking
of NCFs. We compare eight temporal stacking methods, including
Linear, Robust, Selective, Cluster, Phase-Weighted, time–frequency
Phase-Weighted, Nth-root and Adaptive Covariance Filter stacking
methods, to investigate their performance to enhance the quality
of the stacked NCF. We examine the performance of these meth-
ods with six metrics, including SNRs, surface wave phase velocity

dispersion, the convergence of short-term stacks to the long-term
stack, wave speed changes, peak amplitudes and computational ex-
penses. Our analyses demonstrate that although all methods are able
to retrieve clear ballistic phases, their spectral contents and peak am-
plitudes vary strongly across methods. Based on multiple evaluation
metrics, we recommend the Robust method for all three categories
of applications using Raw NCFs, including velocity tomography,
monitoring and attenuation studies. For tomography using One-
bit NCFs, all methods except for Phase-Weighted, time–frequency
phase-weighted and Nth-root stacking methods are good choices.
For monitoring using One-bit NCFs, the Linear, Robust and Se-
lective stacking methods are preferred choices, with the possibility
of using time–frequency Phase-Weighted stacking for processing
small data sets. For applications utilizing One-bit NCFs to extract
relative amplitude information, both the Robust and Cluster stack-
ing methods perform well. The findings in this study provide a
practical guideline for choosing the appropriate stacking method
for major applications utilizing NCFs. This work did not address
the validity and effects of pre-processing techniques on our various
use cases, but future work might address this (e.g. Fichtner et al.
2020). The open-source computer codes produced in this study can
also be used for general time-series stacking analyses.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Comparison of stacked noise cross-correlation functions
(NCFs) between station XZ.A02 and other stations in the XZ net-
work, using the time–frequency Phase-Weighted Stacking (tf-PWS)
method based on the original S-transform (ST; Stockwell et al.
1996) and the discrete orthogonal S-transform (DOST; Stockwell
2007). We show results using both Raw (top) and One-bit (bottom)
NCFs. The number in the title of each panel is the CPU time used
in stacking of all station pairs.
Figure S2. Stacked One-bit noise cross-correlation functions of the
Cascadia amphibious array from 7D.J33A to other land receivers
using different stacking methods, filtered at 0.1–0.4 Hz. (a–h) The
results using the Linear, Robust, Selective, Cluster, PWS, tf-PWS,
Nth -root and ACF stacking methods, respectively. The red solid lines
and the blue dashed lines outline the positive-lag signal window and
the negative-lag signal window, respectively, used to compute the
signal-to-noise ratios in Fig. 7 in the main text. The signal and noise
windows are determined with the same method as in Figs 3(a) and
(b) in the main text.
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Figure S3. Same as Fig. S2 but for NCFs from 7D.J33A to
other Ocean Bottom Seismograph (OBS) receivers. To contain the
visually identified ballistic phases from these OBS station pairs,
we use a different velocity range (0.5–1.0 km s–1) here to predict
the signal window of the weakly coherent signals. We extend the
window for an additional 60 s after the latest predicted arrival. See
Fig. 1 in the main text for locations of the OBS receivers.
Figure S4. Stacked One-bit NCFs between the XZ.A02 and other
receivers, filtered at 0.1–0.4 Hz. (a–h) The results using the Linear,
Robust, Selective, Cluster, PWS, tf-PWS, Nth -root and ACF stack-
ing methods, respectively. The red solid lines and the blue dashed
lines outline the positive signal window and the negative signal
window, respectively, used to compute the signal-to-noise ratios in
Fig. 7 in the main text. The signal and noise windows are determined
with the same method as in Figs 3(c) and (d) in the main text. See
Fig. 1 in the main text for station locations.
Figure S5. The average of the Raw NCF stacks between XZ.A02
and other receivers filtered at 0.1–0.4 Hz, with bootstrapping of
1000 times and 80 per cent resampling ratio without replacements.
(a–h) The results using the Linear, Robust, Selective, Cluster, PWS,
tf-PWS, Nth -root and ACF stacking methods, respectively. The red
solid lines and the blue dashed lines outline the positive signal
window and the negative signal window, respectively. The signal
and noise windows are determined with the same method as in
Fig. S4. See Fig. 1 in the main text for station locations.

Figure S6. Bootstrap mean NCF stacks same as Fig. S5 but for
One-bit NCFs.
Figure S7. Deviation index (DI) between the all-time NCF stacks
and the bootstrap mean NCF stacks for (a) Raw and (b) One-bit
NCFs. The deviation index of the NCF stack for each station pair
is computed with eq. (S1). The thick line shows the baseline value
when the difference is comparable to the standard deviation of the
bootstrapping test. We only compute the DIs for station pairs with
≥5 NCFs.
Figure S8. Amplitude fit same as Fig. 14 in the main text but with the
mean bootstrap stacks of Raw NCFs as shown in Fig. S5. See Fig. 14
and the main text for amplitude fitting procedures and parameters.
The exponential fit from this study is shown as the red shaded area.
For reference, we also show the amplitude decay estimated by Prieto
et al. (2009) (P2009; α = 0.0064 ± 0.0013; grey shaded area) and
Mitchell (1995) (M1995; α = 0.002 ± 0.001; blue shaded area).
Figure S9. Amplitude fit the same as Fig. S8 but with mean boot-
strap stacks of One-bit NCFs (see Fig. S6 for the NCF stacks).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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Text S1: NCF variability from bootstrapping test

The amplitudes and the standard deviations for different stacking methods could be on significantly different scales, making

it hard to directly compare the performance of different methods and the temporal variability by the standard deviations.

Therefore, to examine the deviation of the all-time NCF stack for each station pair from the average of the bootstrap mean

stacks, we define the deviations index (DI) of the NCF stack for a station pair as:

DI =

M∑
i=1

(|dalli − dbootstrapi |/σi), (S1)

where dalli and dbootstrapi are the amplitudes of the ith lag-time sample of the all-time stack and bootstrap mean stack, respec-

tively, and σi is the standard deviation of the ith sample computed from the bootstrapping test. Fig. S7 shows the distribution of

DIs for all station pairs with ≥5 NCFs. We observe that most of the DI values are below the baseline of 1.0 (thick line), which

means that the overall difference between the all-time and bootstrap mean NCF stacks falls within the standard deviation. The

DI values of some station pairs using the Cluster stacking method are above 1.0. The results using the linear and PWS methods

show the lowest DIs ranging from 0.01 to 0.05. In summary, taking into account the variation of temporal weighting when

stacking, we argue that the all-time stacks are stable representations of the NCFs within the standard deviations.
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Figure S1. Comparison of stacked noise cross-correlation functions (NCFs) between station XZ.A02 and other stations in the XZ network, using the time-

frequency Phase-Weighted Stacking (tf-PWS) method based on the original S-transform (ST; Stockwell et al., 1996) and the discrete orthogonal S-transform

(DOST; Stockwell, 2007). We show results using both Raw (top) and One-bit (bottom) NCFs. The number in the title of each panel is the CPU time used in

stacking of all station pairs.

Figure S2. Stacked One-bit noise cross-correlation functions of the Cascadia amphibious array from 7D.J33A to other land receivers using different stacking

methods, filtered at 0.1-0.4 Hz. (a-h) The results using the Linear, Robust, Selective, Cluster, PWS, tf-PWS, Nth-root, and ACF stacking methods, respectively.

The red solid lines and the blue dashed lines outline the positive-lag signal window and the negative-lag signal window, respectively, used to compute the

signal-to-noise ratios in Fig. 7 in the main text. The signal and noise windows are determined with the same method as in Fig. 3a-b in the main text.
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Figure S3. Same as Fig. S2 but for NCFs from 7D.J33A to other Ocean Bottom Seismograph (OBS) receivers. To contain the visually identified ballistic

phases from these OBS station pairs, we use a different velocity range (0.5-1.0 km/s) here to predict the signal window of the weakly coherent signals. We

extend the window for an additional 60 s after the latest predicted arrival. See Fig. 1 in the main text for locations of the OBS receivers.

Figure S4. Stacked One-bit NCFs between the XZ.A02 and other receivers, filtered at 0.1-0.4 Hz. (a-h) The results using the Linear, Robust, Selective, Cluster,

PWS, tf-PWS, Nth-root, and ACF stacking methods, respectively. The red solid lines and the blue dashed lines outline the positive signal window and the

negative signal window, respectively, used to compute the signal-to-noise ratios in Fig. 7 in the main text. The signal and noise windows are determined with

the same method as in Fig. 3c-d in the main text. See Fig. 1 in the main text for station locations.
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Figure S5. The average of the Raw NCF stacks between XZ.A02 and other receivers filtered at 0.1-0.4 Hz, with bootstrapping of 1000 times and 80%

resampling ratio without replacements. (a-h) The results using the Linear, Robust, Selective, Cluster, PWS, tf-PWS, Nth-root, and ACF stacking methods,

respectively. The red solid lines and the blue dashed lines outline the positive signal window and the negative signal window, respectively. The signal and noise

windows are determined with the same method as in Fig. S4. See Fig. 1 in the main text for station locations.

Figure S6. Bootstrap mean NCF stacks same as Fig. S5 but for One-bit NCFs.
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Figure S7. Deviation index (DI) between the all-time NCF stacks and the bootstrap mean NCF stacks for (a) Raw and (b) One-bit NCFs. The deviation index

of the NCF stack for each station pair is computed with Equation S1. The thick line shows the baseline value when the difference is comparable to the standard

deviation of the bootstrapping test. We only compute the DIs for station pairs with ≥ 5 NCFs.
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Figure S8. Amplitude fit same as Fig. 14 in the main text but with the mean bootstrap stacks of Raw NCFs as shown in Fig. S5. See Fig. 14 and the main text

for amplitude fitting procedures and parameters. The exponential fit from this study is shown as the red shaded area. For reference, we also show the amplitude

decay estimated by Prieto et al. (2009) (P2009; α=0.0064±0.0013; gray shaded area) and Mitchell (1995) (M1995; α=0.002±0.001; blue shaded area).

Figure S9. Amplitude fit the same as Fig. S8 but with mean bootstrap stacks of One-bit NCFs (see Fig. S6 for the NCF stacks).
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