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Abstract

Seismic event classification can be challenging in the regions where different types of seismicity overlap in space, time, and

magnitude. In this paper, I evaluate the performance of a supervised machine learning technique called Random Forest for the

discrimination of icequakes and earthquakes in southeast Alaska at 15 stations surrounding the region. I train the Random

Forest on about 3000 icequakes and earthquakes that occurred in the region over the last 17 years. For each event, absolute

frequency spectrum values are considered as input features. The accuracies at different stations range from 75 to 95% with an

average of about 90%. I conducted tests for selecting the optimum number of decision trees in the RF model and compared

the results obtained by applying bandpass filters of different frequency bands on input waveforms. I further experiment by

reducing the dimensions of input features by applying Principal Component Analysis (PCA), and conducted test for selecting

the minimum number of components and the frequency band that gives the best results. The application of PCA resulted in

slightly better results and a final model that gave the best results among all the tests was chosen. The accuracy results of the

final model were further analyzed with respect to the amount of available dataset, the average distance of a station from all the

glaciers, and the local geology.
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Abstract  
Seismic event classification can be challenging in the regions where different types of seismicity 

overlap in space, time, and magnitude. In this paper, I evaluate the performance of a supervised 

machine learning technique called Random Forest for the discrimination of icequakes and earthquakes 

in southeast Alaska at 15 stations surrounding the region. I train the Random Forest on about 3000 

icequakes and earthquakes that occurred in the region over the last 17 years. For each event, absolute 

frequency spectrum values are considered as input features. The accuracies at different stations range 

from 75 to 95% with an average of about 90%. I conducted tests for selecting the optimum number of 

decision trees in the RF model and compared the results obtained by applying bandpass filters of 

different frequency bands on input waveforms. I further experiment by reducing the dimensions of 

input features by applying Principal Component Analysis (PCA), and conducted test for selecting the 

minimum number of components and the frequency band that gives the best results. The application of 

PCA resulted in slightly better results and a final model that gave the best results among all the tests 

was chosen. The accuracy results of the final model were further analyzed with respect to the amount 

of available dataset,  the average distance of a station from all the glaciers, and the local geology.     
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1. Introduction  

                                                                                                               

Since the last decade, the amount of available seismic data has grown exponentially in volume and 

variety. Both the coverage and density of many seismic networks have increased. For example – 

According to Incorporated Research Institutions in Seismology Data Management Centre’s (IRIS 

DMC) statistics report (https://ds.iris.edu/data/distribution/), the seismic data archive of IRIS DMC has 

mailto:akharita1999@gmail.com
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registered a growth from 100 Tebibytes (TiB) in 2009 to 800 TiB in 2022. As the technology has 

progressed, instruments with better sensitivity and comparatively low cost are being developed and 

deployed (e.g. Anthony et al., 2019)⁠. This increasingly available data has been very advantageous for 

improving our understanding of earthquake source processes as well as the earth’s structure. However, 

it also comes with a plethora of challenges. As the sensitivities of recording instruments have been 

improved, comparatively more quantity and types of events are being detected, which makes the task of 

manual processing, and interpretation difficult. Seismological observatories around the world have 

begun to use automatic/semi-automatic methods to facilitate the detection, processing and 

interpretation of the available data. These methods often take advantage of growing computational 

infrastructure and are developed with the aim of being time and cost-effective, accurate, and suitable 

for big datasets. However, there are often different kinds of challenges that hamper the accuracy and 

effectiveness of these methods.   

                                                                 

One of the main problems that seismologists face is of discriminating tectonic events such as 

earthquakes from non-tectonic events that have different source processes but generate similar seismic 

waveforms. These non tectonic events could be either natural (e.g. icequakes,  volcanic tremors) (Dahm 

& Brandsdóttir, 1997; Qamar, 1988b)⁠ or man-made (e.g. nuclear explosions, quarry blasts, mining 

induced earthquakes)(Gitterman et al., 1998; Tibi et al., 2018; Zhao et al., 2015)⁠ or both. While these 

events are usually small in magnitude and shallow in depth, naturally occurring earthquakes can be of 

any size and occur at any depth ranging from near surface to the base of the upper mantle (700 Km) 

depending on the seismo-tectonic settings and the orientation of prevailing stress fields in the area. It 

becomes a complicated task to discriminate non-tectonic events from earthquakes in the regions where 

they overlap in space, time, and magnitude. If incorrectly classified, non-tectonic events may 

accumulate in the earthquake catalogs that contaminate their quality and result in erroneous estimates 



of rates of seismicity and consequently, of seismic hazard (Astiz et al., 2014; Gulia, 2010; Mackey et 

al., 2003; Marzen et al., 2021)⁠   

                                                                                                                                                    

Discriminating non-tectonic events from tectonic events has been a subject of intensive studies for a 

long time. In particular, the topic of discrimination of man-made explosions from earthquakes of 

comparable magnitudes has garnered special attention (Koper et al., 2016; Kuyuk et al., 2011; 

O’Rourke et al., 2016; Stump et al., 2002; Zeiler & Velasco, 2009)⁠. Considering the seismic signatures 

of nuclear tests, mining explosions and quarry blasts are very similar, It is important to discriminate 

and identify the origin of a shallow seismic event both at local and teleseismic distances to ensure the 

effective implementation of the Comprehensive Nuclear-Test-Ban Treaty(Bowers & Selby, 2009)⁠. 

Similarly, in volcano seismology, the ways for accurate classification of different types of volcanic 

seismicity have been researched for a long time (Hibert et al., 2014; Maggi et al., 2017b)⁠. In view of 

this, both the statistical and machine learning based methods have been developed and applied; these 

methods usually involve deriving a set of features from the event waveforms as a first step and then 

applying different classification techniques to these features. Statistical approaches include 

discriminating the events based on the ratio of amplitudes of different seismic phases (Rodgers & 

Walter, 2002; Taylor, 1996; Kim, 1997; Walter et al., 2018)⁠, high and low frequency spectral 

amplitudes (Walter, 1995; Wang et al., 2021)⁠, misfits of P-wave spectra to standard earthquake source 

model(Allmann et al., 2008)⁠, and different kind of magnitudes(Holt et al., 2019; Koper et al., 2016; 

Wang et al., 2021)⁠. While statistical approaches have shown a great promise for the events at 

teleseismic distances and the events with moderate to high magnitudes, their efficiency plunges at local 

to regional distances and for events of small magnitude (O’Rourke et al., 2016; Pyle & Walter, 2019)⁠. 

Recently, Machine Learning methods have been increasingly applied to seismic event discrimination 

problems. Both the supervised methods and unsupervised methods have been applied. These methods 

commonly involve the extraction of features from the waveforms that distinguish different types of 



events as a first step and then finding a classification boundary governed by the chosen machine 

learning algorithm. The extracted features can be physics-based (e.g. Magnitude, P/S Spectral ratio 

etc.) (Falcin et al., 2021; Dowla, 1990; Hammer et al., 2013; Maggi et al., 2017a)⁠ or automatically 

extracted features with no apparent physical meaning (Kong et al., 2019; Linville et al., 2019; Tibi, 

2021)⁠. Examples of supervised machine learning methods include the use of Convolutional and 

Recurrent Neural Networks (Beyreuther & Wassermann, 2008; Lara et al., 2021; Linville et al., 2019; 

Tiira, 1996)⁠, Self Organizing Maps and  Support Vector Machines(Hammer et al., 2013; Kortström et 

al., 2016; Masotti et al., 2006)⁠ while examples of unsupervised methods include the use of k-means, 

Principle Component Analysis and Gaussian Mixture Models(Kuyuk et al., 2011, 2012)⁠.                              

Typically the performance of a machine learning technique improves with an increased training dataset. 

This can cause challenges in the region with sparsely available datasets. Further, if the models are 

trained on the automatically extracted features they cannot be generalized and may be effective only in 

a specific region of interest (Zeiler & Velasco, 2009)⁠. 

 

In this study, I evaluate the performance of a supervised machine learning algorithm called Random 

Forest (RF) for discriminating icequakes and earthquakes located within 50 km from the Columbia 

glacier in southeast Alaska at 15 broadband seismic stations located within 100 km from the glacier 

(Fig. 1).  

RF algorithm has proven to be very effective in the problems of seismic event detection and 

classification. Previously, It has been used for detection and classification of different kind of volcanic 

events (Dempsey et al., 2020; Clément Hibert et al., 2017; Maggi et al., 2017b)⁠, landslides(Rubin et al., 

2012)⁠, geysers (Yuan et al., 2019)⁠and aftershocks(Aden-Antoniów et al., 2022)⁠. I used the values in the 

absolute frequency spectrum as input features and experimented by applying filters in different 

frequency bands to select the frequency band that gives the best results. I further experiment by 

reducing the dimensions of the features using Principal Component Analysis (PCA) to compare the 



model performance with the original model. My analysis revealed that application of the PCA 

improved the performance of our original model and significantly decreased the computation time. The 

accuracy at different stations ranges from 75 to 96% and it is influenced by the amount of training 

dataset, distance from the glaciers, and the effects of the local geology between the event and the 

receiver. Since I choose the values in the absolute frequency spectrum as input features, my model can 

be used as a general effective tool to discriminate icequakes from earthquakes at any glacier.   

 

 

2. Icequakes in Southeast Alaska 
                                                        

Icequakes at four glaciers in southeast Alaska are considered in this study – the Columbia, Meares, 

Yale, and the Harvard Glacier. Columbia glacier is a 51 km long, temperate, tidewater glacier, located 

approximately 30 km west of Valdez in southeastern Alaska (Fig. 1(a)). It descends from the height of 

about 3050 meters down the flanks of Chugach Mountains and ultimately flows into Prince William 

Sound via a narrow inlet. It consists of two initial branches – one smaller branch that lies west of the 

Great Nunatak peak and the bigger main branch that lies east to the peak. These branches merge to 

form one larger branch which terminated near the northern edge of Heather Island until 1980, following 

which it began retreating rapidly (Meier & Post, 1987)⁠. Before the 1980s, the glacier was held at a 

stable position by the shoreline on one end and the underwater moraine – the accumulated debris 

carried and deposited by the glaciers, on the other end. As the glacier retreated off the moraine, 

probably due to the initial nudge provided by climate changes, it freed from the moraine, and the 

icebergs started calving off the glacier.  The retreat of this glacier continues to the present day, though 

at an uneven pace. Satellite images and airborne altimetric measurements 

(https://earthobservatory.nasa.gov/world-of-change/ColumbiaGlacier) show that there has been a huge 

loss in volume of this glacier as it retreated. This single glacier is considered to be responsible for about 

50% of snow loss in the Chugach mountains. Snow is mainly lost through the shedding of large chunks 

https://earthobservatory.nasa.gov/world-of-change/ColumbiaGlacier


of icebergs caused by the calving events. Over the years, the retreating terminus progressively thinned 

and the Columbia glacier is now split into two separate glaciers corresponding to two initial branches 

with calving now occurring at two different fronts. (Enderlin et al., 2018; Post et al., 2011)⁠ 

Meares Glacier is a 10 km long tidewater glacier at the head of the Unakwik Inlet that connects 

Chugach National forest to Prince William Sound (Fig. 1(a)). Unakwik Inlet is often known to be 

nearly ice-free which makes it an ideal location for glacier visitors. Meares is currently one of the two 

advancing glaciers that flow in the Prince William Sound, the other one being the Harvard glacier 

(Trabant et al., 2002)⁠. Yale glacier is a 32 km long glacier immediately west of the Meares and is 

separated from the Harvard glacier by the College fjord (Figure 1(a)). While Yale glacier has been 

retreating since the early nineteenth century with varying retreating rates, Harvard Glacier has been 

advancing since 1905 and possibly earlier (Sturm et al., 1991)⁠. The striking contrast between the 

terminus behavior of the Yale and Harvard glacier that parallel the same fjord and derive from the same 

snowfield, suggest that the terminus behavior is more likely the result of dynamic controls related to 

the fjord depth, ice thickness, and calving rate with climate change playing a secondary role (Sturm et 

al., 1991)⁠. 



                      

Figure 1: (a) Map of the glaciers along with their flowing paths, (b) location of all the icequakes, 

(c) location of all the earthquakes and the recording seismic stations considered in the study and, 

(d) number of icequakes and earthquakes available at each station for the period considered in 

the study.  

 

Over the last decade, the study of Icequakes has emerged as an important tool for monitoring the 

terminus behavior of glaciers and the rise in seawater levels (Bartholomaus et al., 2012; Podolskiy & 

Walter, 2016; West et al., 2010)⁠. Icequakes in southeast Alaska have been very well documented and 

they generate from a wide variety of mechanisms including basal sliding, calving, and surface 



crevassing (Neel et al., 2007; Podolskiy & Walter, 2016; Qamar, 1988b)⁠. The icequakes caused by 

basal sliding or calving events contain mostly low dominant frequencies and are readily distinguishable 

from the surface crevassing events that generate high frequency waveforms. In this research, I focus on 

low frequency icequakes mostly caused by the calving of the icebergs at the terminal of a retreating 

glacier where it enters the ocean although recent research has demonstrated that significantly big 

icequakes can even occur inland due to calving in the presence of lakes formed by the meltwater 

trapped between glaciers and their moraines. Icequakes show high seasonal dependence with their 

numbers ramping up during the summer season and falling in the winter season. The duration and the 

size of these events vary depending on the duration of the calving and the size of the calved icebergs. A 

calving event and correspondingly its seismic signal can last anywhere between the 30s to over 20 

minutes(Bartholomaus et al., 2012; Neel et al., 2007; Podolskiy & Walter, 2016)⁠. However, regardless 

of style, size and duration, calving events show some common spectral characteristics such as (i) 

emergent mostly monochromatic waveforms, (ii) weakly developed P and S phases, and (iii) low 

dominant frequencies between 1-3 Hz compared to earthquakes of similar magnitudes (Fig. 2) (Neave 

& Savage, 1970; Neel et al., 2007; Qamar, 1988a; West et al., 2010)⁠.  

                                                        

Earthquakes are often automatically detected by the ratio of the short-term and long-term average 

amplitude of the seismogram. The arrival of an earthquake is often marked by a sharp increase in 

amplitude in the form of a P-wave and therefore whenever the STA-LTA ratio exceeds a user-defined 

threshold, it would indicate the detection of an event. However, in the presence of emergent waveforms 

such as those produced by icequakes, the STA-LTA detection may not work. A frequency domain 

power spectral density based icequake detector was developed by Neel et. al, (2007) to detect 

icequakes. The detector consists of the computation of power spectral densities from windows of time 

series overlapped by 50%, filtered in different frequency bands i.e. 10-20 Hz, 1-3 Hz, and 0.0833-0.033 

Hz, and then a statistic (mean, median or standard deviation) is computed, if that statistic passes a user-



defined value, the event is detected. This detection method is validated by the evidence from the 

correlation of the detected event with the changes in terminus geometry, correspondence of seismic 

data with visual records of calving, and location of hypocentres of detected events near the glacier 

terminus. Icequakes were mostly detected in the 1-3 Hz filter band. However, even detections in this 

band are often contaminated by atleast10-20% from the events that are not generated by calving. These 

could be local, regional, or teleseismic earthquakes, events caused by basal sliding and hydraulic 

transients. 

  

Figure 2: Major differences between icequake and earthquake. (a) Normalized waveforms, five 

minutes in duration since the origin of the event (b) Normalized Frequency spectrum and (c) 



Spectrogram of both the events. The events are of same magnitude and occurred at similar 

distance from the recording station.                                                                                                                                                                                                                                                                                             

In this study, all the available waveforms, five minutes in duration since the origin time of 2650 

icequakes that occurred within the radius of 50 km from the center of the Columbia glacier in the 

period of about 17 years between 2005-04-07 and 2022-04-22 were downloaded from the IRIS Data 

Management Centre for 15 broadband seismic stations lying within one degree radius from the centre 

of the Columbia glacier (Fig. 1(b)). To maintain a well-balanced dataset, similar data was downloaded 

for the latest 3000 earthquakes out of a total of 12283 earthquakes that were obtained in the catalog 

provided by the United States Geological Service Advanced National Seismic System service (Fig. 

1(c)). The magnitude of earthquakes was kept in the range of zero to three, similar to the magnitude 

range of icequakes. The number of icequakes and earthquakes varies at different stations due to uneven 

availability and period of operations (Fig. 1(d)). All the seismic stations are broadband with a sampling 

rate of 50 Hz and are part of ‘AK’ network which is maintained by the Alaska Earthquake Center (Fig. 

1(c)). 

                                                                                                                                                                                    

3. Methods      

 

 

The problem statement of this research study is simple – each automatically detected event needs to be 

classified either as an earthquake or an icequake i.e. it is a binary classification problem. My approach 

to solving this problem is - At each seismic station, firstly, train a random forest classifier on certain 

features extracted from the waveforms, after training, the random forest algorithm will learn the  

boundaries in the feature space that distinguish the two type of the events and secondly, apply the 

trained model on the test dataset and analyze the model performance under various conditions. 

I use the input features as all the values obtained in the normalized absolute frequency spectrum since it 

is one of the important characteristics that distinguish icequakes from earthquakes. So if a waveform is 



of duration ‘t’ seconds and the sampling rate is ‘n’ Hz. Then for each waveform, we have nxt features. 

if we have a total of l events. Then the feature matrix to the random forest classifier algorithm can be 

written as a matrix of shape (l, nxt) and the output (label) matrix can be written as a vector of shape (l, 

1). Priliminary experiments showed that accuracy results were approximately the same for different 

components, I chose to proceed with the waveforms from the E component because it effectively 

captures surface waves and have higher signal-to-noise ratio. Further, I chose the duration of the 

waveforms used to be of five minutes from the origin of the event as It accounts for varying event-

station distances and ensures most of the seismic energy has arrived at the stations. Given the sampling 

frequency at each station considered in this study was 50 Hz, we have 300x50 = 15000 features for 

each event (Figure 3).      

A summary of the workflow is shown in Figure 3. For a given station, the total amount of available 

data was split into training and test data with a ratio of 7:3. I trained a random forest classifier on these 

features and analyze the performance for different number of decision trees in the random forest, under 

application of bandpass filter in different frequency bands i.e. 1-20, 1-10 and 3-10 Hz, these frequency 

bands were chosen after considering the spectral properties of icequakes and earthquakes, ambient and 

anthropogenic sources of noise (Neel et al., 2007; Podolskiy & Walter, 2016)⁠. Model performance here 

refers to the accuracy which is defined as the number of event predicted correctly divided by the total 

number of events. After determining the optimum number of decision trees and selecting the frequency 

band that gives the most accuracy. Since 15000 features are large number of features and many of these 

features may not be important at all, I repeat the same experiment but by reducing the dimensions of 

features using PCA to see whether using the reduced number of features give comparable results to the 

original model or not. After selecting the best performing model from the above experiments, I 

compared its performance at different stations with different amount of training datasets, with the 

average distance from the center of the four glaciers considered in the study and with the propagation 

medium between events and station.  



 

Figure 3: Workflow illustrating the steps for the experiments performed for the selection of the 

final model. Once the final model is selected, Results are analyzed with respect to the average 

distance of station from the glaciers, amount of the available dataset, and the local geology. 

                                      

3.1 Random Forest                                                                                                          



Random forest classification involves taking the most frequent decision of an ensemble of the decision 

trees to avoid overfitting issues (Breiman, 2001)⁠. A decision tree is a model that classifies the data by 

greedy selection of the best split point at each step. however, individual decision trees suffer from the 

problem of high variance which makes them work well only for the specific dataset. To reduce this 

variance, multiple models from the random subsets of the dataset can be build and their average 

decisions can be taken, a technique called bootstrap aggregation or bagging, but the trees that form can 

be highly correlated meaning very similar splitting points can be chosen in each tree, making different 

trees very similar which defies the original purpose (Hastie et al., 2001)⁠. The Random Forest algorithm 

involves a tweak in the bagging algorithm by constraining the number of features that decision trees 

can evaluate at each point. This ensures the trees are uncorrelated. RF can also determine the relative 

importance of the features based on how often they appeared in decision trees (Breiman, 1996)⁠. The RF 

algorithm can be summarised in the following steps. First, subsets of the samples are randomly selected 

with replacements from the training dataset, a decision tree is trained for each subset. Only a random 

subset of features are selected. Then each decision tree predicts the random subset of the testing dataset 

and then for each sample in the test dataset, the most frequent prediction is selected as the final 

prediction.    

                                                                                                            

3.2 Principal Component Analysis 

Principal Component Analysis is one of the most commonly used feature extraction technique. Feature 

extraction refers to extracting the new set of features from the existing ones such that the newly formed 

set of features hierarchically captures most of the information stored in the original set of features. 

Sometimes, when there are large number of features, it may lead to the problem of overfitting. 

Moreover, many features may be correlated or redundant and may not necessarily contribute in the 

classification. In these cases, it is often advantageous to reduce the number of features (also known as 



Dimensionality) by applying feature extraction techniques (or Dimensionaliy Reduction) and selecting 

the small number of features that capture most of the information stored in the original dataset.  

In principal, PCA is defined as an orthogonal linear transformation that transforms the data to a new 

coordinate system in a way that each new coordinate successively inherit maximum variance of the 

data. (Wold et al., 1987)⁠  

Let X be a nxs matrix consisting of ‘n’ series, each series containing ‘s’ elements. The rows of X are 

individual series and ith column contains the ith element of each series, Then PCA involves the 

transformation of matrix X into matrix T of size nxl such that  

T =  Xw                                                    (i) 

where w represents a transformation matrix of size sxl, each column of w represents a weightage vector 

and is constrained to be of unit magnitude. Equation [1] can be written in the matrix form as 

 [

𝑇11𝑇12. 𝑇1𝑙
𝑇21𝑇22. 𝑇2𝑙

. . . .
𝑇𝑛1𝑇𝑛2. 𝑇𝑛𝑙

]

𝑛𝑥𝑙

= [

𝑋11𝑋12. 𝑋1𝑠
𝑋21𝑋22. 𝑋2𝑠

. . . .
𝑋𝑛1𝑋𝑛2. 𝑋𝑛𝑠

]

𝑛𝑥𝑠

[

𝑤11𝑤12. 𝑤1𝑙

𝑤21𝑤22 . 𝑤2𝑙

. . . .
𝑤𝑠1𝑤𝑠2. 𝑤𝑠𝑙

]

𝑠𝑥𝑙

                                         (ii) 

The first column of T is known as first principle component, the second column represents second 

principle component and so on. The weights (wij) are chosen such that first principle component 

inherits the maximum variance of the data, the second principle component inherits second maximum 

variance and it goes on till the last column of T.  

Since ‘l’ is usually kept lower than ‘s’, after transformation of X to T, the dimension of each series is 

reduced from higher dimension ‘s’ to lower dimension ‘l’, this way PCA can be used to reduce the 

dimensions of a series while preserving as much variance as possible                                                                                                                                                             

 

4. Results and Discussion 
 

4.1 Deciding the number of trees. 



The number of decision trees in a random forest classifier can significantly impact the model 

performance. Since the random forest algorithm uses bagging technique i.e., only a small subset of 

samples and a small subset of features are evaluated by each tree, if the number of observations is very 

large and the number of decision trees is very small, then some of the samples may be missed. It is 

beneficial to have the large number of decision trees as it improves the predictive power of the model, 

however, the computational costs are also significantly increased. To determine the optimal number of 

trees in a random forest model, I compared the accuracies obtained for different numbers of decision 

trees from 50 to 500 at two stations with the smallest (BAW) and largest (SCM) amount of available 

training dataset (Figs 4a and b). Results for both stations indicate that the accuracies did not vary 

significantly with the number of trees hence the number of decision trees (Figs 4a and b) in the model 

was chosen to be 50.  

 

4.2 Deciding the frequency band 

Since each value in the absolute frequency spectrum is considered as a feature in our model, the 

classification results will likely vary with the application of filters of the different frequency bands. 

Accuracy results for three frequency bands 1-20, 1-10, and 3-10 Hz (Figure 4c) were compared with 

each other and with the results obtained for the case without the application of any filter.  Results for 

different frequency bands did not vary significantly. A maximum difference in the results of five 

percent was observed for stations EYAK, HIN, and PS12 (Fig. 4c). Overall, accuracies for the case of 

no filter appeared to be highest at all the stations except BAW, BAE, and PS12.   

Our simple Random Forest classifier based on the absolute frequency spectrum as features show 

appreciable results for different stations which are located at different distances away from the events 

and were trained on different amounts of the data (Fig. 4c). The highest accuracy of 95 percent was 

obtained for the station SCM and the lowest accuracy of 75 percent for the station EYAK. Several 

factors appear to influence the accuracy, however, before analyzing those factors, I experiment with the 



ways to improve the model. First, I apply PCA to reduce the dimensions of features and compare the 

results. If the lesser number of features extracted from the original features using PCA gave  

comparable results, it will be considered a better model because of the lesser computational time and 

costs associated with it.  

  

Figure 4: Variation of accuracies and time took with the number of decision trees in the RF model 

for stations (a) BAW with the least amount of training dataset and (b) SCM with the most 

amount of training dataset. (c) Accuracies at different stations when RF is directly applied on the 

features bandpass filtered under different frequency bands. Variations of accuracies was also 

measured when RF was trained on the different number of principal components for stations (d) 

BAW and (e) SCM. The vertical line is drawn at 10 principal components. (f) Accuracies at 

different stations when RF was trained on 10 principal components that were obtained by 

applying PCA on the original features filter under different frequency bands                                                                                                                                                        

  

4.3 Deciding the minimum number of components 



The minimum number of principal components required were determined by comparing the accuracies 

obtained for the different number of principal components from 1 to 100 for the station BAW and SCM 

without the application of any filter as done previously (Figs 4d and e). Results for the station BAW 

show that the accuracies jump steeply by 18% after 10 components and then become almost constant, 

oscillating up and down by two percent. For station SCM, accuracies show a steeper jump of about 

30% after five components, become maximum for 10 components, and then decrease modestly by 

about five percent from 10 to 100 components (Figs 4d and e). This suggests that at least ten principal 

components are required to capture sufficient information from the original features. Hence, further 

experiments were done by reducing the original features into ten principal components.  

 

4.4 Deciding the frequency band 

The same experiment with the application of filters with different frequency bands as before but with 

new reduced 10 principle components as features was repeated to determine the frequency band that 

gives the best results (Fig. 4f). Unlike previous results, Accuracies for different frequency bands vary 

significantly in this case. For example, accuracy range from about 65% for no filter case to 90%  for a 

filter band of 1-10 Hz  at station PAW (Fig. 4f). The best results were obtained for the frequency band 

of 1-10 Hz, followed by 1-20, 3-10, and no filter (Fig. 4f).  

                                                                                                                                                                

Application of PCA to extract the features improved the original random forest classifier. A comparison 

of accuracies from the best results obtained in (section 4.2) and (section 4.4) revealed that applying 

random forest classification on the 10 components obtained after PCA with a filter band of 1-10 Hz 

frequency produced very similar and in some cases, even better results than the random classifier 

applied on the original features (Fig. 5a). Another advantage is the significantly reduced computational 

time. In the next section, I will analyze the performance of this improved model as a function of the 

mean distance of a station from the center of all the considered glaciers, amount of dataset, and local 



geology. The uncertainties in the accuracies of the model are computed using the normal approximation 

interval method (Raschka, 2018)⁠.                                           

 

Figure 5: (a) Comparison of accuracies among the best results obtained from experiments 1 and 

2.  (b) Analysis of the accuracies with number of events and (c) with the average distance of a 

station from the glaciers. (d) Map of the study area along with all the events and stations 

considered in the study. Each station is color-coded according to the accuracies and sized 

according to  the amount of available dataset.     

A comparison of accuracies obtained for different stations revealed that it shows moderately positive 

dependence on the  amount of training dataset used (Fig. 5b). The Pearson Correlation Coefficient (CC) 

between the accuracy and the amount of the total dataset came out to be 0.26 (Fig. 5b). Accuracies 



gradually increase from 82% at station BAW with the least amount of dataset to 96% at station SCM 

with the most amount of dataset except at stations VMT, EYAK, and HIN where accuracies deviate 

from the observed trend. The positive dependence of accuracy on the amount of training data used is 

not unusual. It is obvious that increasing the training dataset should increase the predictive power of the 

model. 

The deviation of the accuracies at VMT, EYAK, and HIN could be the effect of distance or local 

geology, or both. The performance of the model is dependent on the differences in the absolute 

frequency spectrum of the icequakes and earthquakes. Greater the difference between the absolute 

frequency spectrum of the events, the easier it will be for the model to predict accurately. If the station 

is located at larger distances, high frequencies will be attenuated by the time waves reach the station 

with the amount of attenuation depends on the nature of the propagating medium. This will make the 

frequency content of the icequakes and earthquakes more similar and impact the performance of the 

model. The accuracies show a moderately negative correlation (CC = -0.31) with the average distances 

of a station from all the glaciers (Figs 5b, c, and d). For a given average distance, accuracies are higher 

for the higher amount of training dataset and vice versa (Figs 5b, c, and d).   

 

However, station PS12, despite being located at similar average distances as EYAK and HIN and 

having about half the amount of training dataset as the two, shows a much higher accuracy of 90% 

compared to the other two (74 and 76% at EYAK and HIN respectively). This could be related to the 

differences in the local geology. Station PS12 is located at a pump station no. 12 of the Trans-Alaska 

Pipeline System (TAPS) which lies in the northeast of the glaciers while stations EYAK and HIN are 

located on Cordova and the Hinchinbrook Island respectively which lie southeast of the glaciers (Fig. 

5d). The seismic waves have to pass through the oceanic crust to reach stations EYAK and HIN while 

the waves will reach the PS12 by traveling through the continental crust only. The difference in the 



properties of the propagating medium and how they affect the frequency content of the propagating 

waves could be the reason for the observed differences in accuracies.   

                                                                                                                                                                                                  

 

5. Conclusion 
In this work, the performance of the Random Forest algorithm with absolute frequency spectrum values 

as input features is evaluated for discrimination of earthquakes and icequakes in southeast Alaska at 15 

seismic stations. Experiments were performed to determine the optimum number of decision trees, 

frequency band, and the minimum number of principal components. Results suggest that there is a 

moderately positive correlation between the amount of training data and the accuracy. This implies that 

higher training data would lead to higher accuracies. Further, accuracies at different stations show a 

similar but negative correlation with average distances from the glacier. Some stations show deviations 

in accuracies from the commonly observed trend, these deviations are probably caused by the effect of 

differences in the local geology. Overall, accuracies at most stations are close to 90% indicating the 

robustness of the model. One of the main advantages of this model is that it is not limited to a specific 

region. Future studies would need to be conducted to evaluate the performance of this model in the 

discrimination of other types of event that occur in different regions.     
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