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Abstract

It is generally agreed that the resolution of a regular quadrilateral mesh is the side length of quadrilateral cells. There is

less agreement on what is the resolution of triangular meshes, exacerbated by the fact that the numbers of edges or cells on

triangular meshes are approximately three or two times larger than that of vertices. However, the geometrical resolution of

triangular meshes, i.e. maximum wavenumbers that can be represented on such meshes, is a well defined quantity, known from

solid state physics. These wavenumbers are related to a smallest common mesh cell (primitive unit cell), and the set of mesh

translations that map it into itself. The wavenumbers do not depend on whether discrete degrees of freedom are placed on

vertices, cells or edges. The resolution is defined by the height of triangles.
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Key Points:5

• Geometrical resolution of an equilateral triangular mesh is defined by the height6

of its triangles.7

• Quadrilateral and triangular meshes with the same number of vertices have ap-8

proximately the same resolution.9
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Abstract10

It is generally agreed that the resolution of a regular quadrilateral mesh is the side length11

of quadrilateral cells. There is less agreement on what is the resolution of triangular meshes,12

exacerbated by the fact that the numbers of edges or cells on triangular meshes are ap-13

proximately three or two times larger than that of vertices. However, the geometrical14

resolution of triangular meshes, i.e. maximum wavenumbers that can be represented on15

such meshes, is a well defined quantity, known from solid state physics. These wavenum-16

bers are related to a smallest common mesh cell (primitive unit cell), and the set of mesh17

translations that map it into itself. The wavenumbers do not depend on whether discrete18

degrees of freedom are placed on vertices, cells or edges. The resolution is defined by the19

height of triangles.20

Plain Language Summary21

Some models used in climate studies are formulated on triangular computational22

meshes. We discuss how to determine the smallest scales that are resolved on such meshes.23

They are referred to as a mesh resolution. The notion of mesh resolution is used to re-24

late climate model components formulated on different meshes.25

1 introduction26

Several recent global ocean circulation models are formulated on unstructured tri-27

angular meshes (Wang et al. (2014), Danilov et al. (2017), Korn (2017)) or their dual,28

quasi-hexagonal meshes (Ringler et al. (2013)). Unstructured-mesh models are also widely29

used in coastal applications (see, e.g., Chen et al. (2003), Zhang et al. (2016), Fringer30

et al. (2006), Androsov et al. (2019)). Triangular and hexagonal meshes are also com-31

mon in atmospheric modeling (see, e.g., Wan et al. (2013), Kühnlein et al. (2019), Ska-32

marock et al. (2012), Gassmann (2013), Dubos et al. (2015)). A question often arises on33

how to compare their resolution to that of the models formulated on regular quadrilat-34

eral meshes. In contrast to quadrilateral meshes, the number of cell and the number of35

vertices differ by the factor of two on triangular meshes, which creates an ambiguity.36

The concept of ’resolution’ discussed here is a geometrical one, i.e. we are inter-37

ested in the largest wavenumbers that characterize discrete data on a given triangular38

(or hexagonal) mesh. The geometrical resolution should not be mixed with the effective39

resolution, as in Soufflet et al. (2016), which characterizes the scales where dynamics are40

not affected by dissipation. These scales depend not only on the mesh, but also on the41

details of discretization and numerical algorithm. We will briefly touch the aspect of ef-42

fective resolution as concerns the effect of various placement of discrete variables.43

In fact, the question on the resolved wavenumbers is addressed in numerous text-44

books on solid state physics (see e.g. Kosevich (2005)). This note only repeats the known45

answers as applied to modeling on triangular meshes.46

The key concept is that of mesh translations that leave the mesh unchanged. They47

define a primitive unit cell (unit cell further), which is the smallest repeating element48

of the mesh. The invariance of mesh to these translations leads to a reciprocal lattice49

in wavenumber space, and wave vectors become defined up to translations along the re-50

ciprocal lattice. Section 2 introduces the notions of unit cell, reciprocal lattice, and the51

first Brillouin zone of triangular (hexagonal) mesh. The first Brillouin zone defines the52

maximum resolved wavenumber.53

The area of unit cell turns out to be equal to that of median-dual control volume54

on triangular meshes or hexagonal cell on dual meshes, i.e., the unit cells are directly re-55

lated to vertex (cell) degrees of freedom (DOFs) on triangular (dual hexagonal) meshes.56
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The placement of discrete DOFs at vertices, cells or edges results in different num-57

bers of discrete DOFs because the ratio of vertices to cells to edges is approximately 1:2:358

on triangular meshes and 2:1:3 on dual meshes. A naive expectation is that the resolved59

wavenumbers become larger if the placement with more DOFs is used. This expectation60

lies behind such definitions of resolution as the square root of triangle area for cell DOFs61

on triangular meshes, in analogy to quadrilateral meshes, where this is obviously the case.62

Sections 2 and 3 explain that the resolved wavenumbers and hence geometrical resolu-63

tion for the cell and edge placement on triangular meshes are defined by the reciprocal64

lattice and are the same as for the vertex placement. Instead of larger wavenumbers, ex-65

tra DOFs on cells or edges lead to the formation of numerical modes. Generally these66

modes are artifacts of discretizations. However, despite their presence and unchanged67

geometrical resolution, the cell or edge placement may ensure more accurate represen-68

tation of physical mode, i.e., a higher effective resolution, because of smaller numerical69

stencils.70

The concluding section concentrates on practical aspects.71

2 Resolved wave numbers72

Resolved wave numbers are related to the smallest translationally invariant element
of the mesh. Consider a regular infinite triangular mesh composed of equilateral trian-
gles in plane geometry. We introduce coordinates x, y with origin at one of the mesh ver-
tices and, for definiteness, orient the triangles so that all vertices are obtained through
the set of translations z = {zm,n},

zm,n = ma1 + na2, a1 = (1, 0)a, a2 = (1/2,
√
3/2)a, (1)

where a is the triangle side length, and m,n integer numbers. A rhombus, defined by73

vectors a1 and a2, is a unit cell of the triangular lattice (see Fig. 1). The selection of vec-74

tors a1 and a2, and therefore the selection of rhombi is not unique, however all possi-75

bilities correspond to the same set of translations z. Note that one needs to combine a76

pair of nearest triangles, one pointing upward/north and one pointing downward/south77

in the plane of Fig. 1, to obtain a unit cell. Instead of triangular mesh one may consider78

a dual mesh, obtained by connecting circumcenters of triangles with a common edge (the79

Voronoi tesselation). One deals with the same set of translations z in these cases.80

Consider a Fourier harmonic T = Tke
ik·x of scalar field T , where Tk is the am-

plitude, k = (k, l) is the wave vector, and x the position vector. For simplicity, we sam-
ple this field at vertices of triangular mesh. The values of this field at the vertices xm,n =
zm,n will be the same if k is replaced by k+ q, where q is such that

eiq·z = 1.

As a consequence, if the vertex values of T are used to find the wave vector k, this can
be done only up to vectors q. The equation above implies that q is a set of wave vec-
tors {qr,s} in the wavenumber space,

qr,s = rb1 + sb2, (2)

where r and s are integer numbers and the vectors b1 and b2 are such that

ai · bj = 2πδij ,

which gives
b1 = (2π/a)(−1, 1/

√
3), b2 = (2π/a)(0, 2/

√
3).

Here, δij is the Kronnecker delta, and i, j = 1, 2. The lattice formed by the points qr,s81

is called a reciprocal lattice (Fig. 1). A unit cell of the reciprocal lattice is a rhombus formed82
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a2
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 k-space

a1

b2b1

2π/h
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unit cell

reciprocal unit cell 

1st Brillouin zone

Figure 1. Triangular mesh, a unit cell, the reciprocal lattice and the first Brillouin zone.

Left: Vectors a1 and a2 describe possible translation and define a unit cell of triangular mesh

(the orange rhombus). Right: In k-space, this leads to the set {qr,s} of wavevectors (blue cir-

cles) creating a reciprocal lattice. A Voronoi cell of this lattice is the first Brillouin zone (the

yellow hexagon). Wavevectors in reciprocal unit cell (orange rhombus) can be brought to the first

Brillouin zone by translations q. The triangle formed by dashed lines and the edge of hexagon,

together with five similar triangles (not shown) form the second Brillouin zone.

by b1 and b2 (painted orange in the right panel of Fig. 1). Same as with the physical83

space, the unit cell is not uniquely defined, however all possibilities correspond to the84

same reciprocal lattice.85

Because the wave vector k is defined up to qr,s, it is sufficient to consider k only86

within a unit reciprocal cell containing q0,0. However, a rhombic unit cell does not in-87

clude all directions of wave vector, and is not suited to answer the question on geomet-88

rical resolution. One needs a set of k-points that are closer to q0,0 than to any other qr,s.89

A polygon bounding this set is the Voronoi cell around q0,0. The cell is referred to as90

the first Brillouin zone of the reciprocal lattice. It is colored yellow in Fig. 1. The wave91

vectors in the unit cell (orange) and in the first Brillouin zone (yellow) either coincide92

or differ by a wave vector from q and are indistinguishable on the triangular mesh. The93

first Brillouin zone contains wavenumbers that are closer to q0,0 than to any other qr,s94

and thus defines maximum resolvable wavenumber. The Voronoi tesselation is produced95

by drawing lines perpendicular to the edges of triangular mesh through the edge mid-96

points. These lines also bound triangles lying outside the first Brillouin zone adjacent97

to its edges (one is shown by dashed lines in Fig. 1). These triangles cover the first Bril-98

louin zone if displaced by appropriately chosen qr,s. Taken together, they are referred99

to as the second Brillouin zone.100

The longest wavevector bounded by the first Brillouin zone depends on the direc-
tion. The worst case corresponds to the directions of vector b1 or b2:

|k|max = |b1|/2 = 2π/(
√
3a) = π/h,

i.e., the geometrical resolution of equilateral triangular mesh is given by the height of tri-101

angles h. The resolution is higher in the direction of a1, but one is using the radius of102

the inscribed circle assuming isotropy.103
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T4

T5T6 Tc

T2

T1

T3

T6

Tc
u

d

Figure 2. The stencils of neighbors of u and d triangles are oriented differently, leading to

different discrete differential operators.

At this place it is instructive to apply the same reasoning to a quadrilateral mesh104

with a cell side a. We obviously have a1 = (1, 0)a, a2 = (0, 1)a and b1 = 2π(1, 0)/a,105

b2 = 2π(0, 1)/a, and conclude after drawing the Voronoi cell around q0,0 that the worst106

case is |k|max = π/a. This is what is commonly referred to as the maximum wavenum-107

ber on a quadrilateral mesh.108

On a regular triangular mesh obtained by splitting quadrilateral cells in two tri-109

angles, one will continue to deal with two lattice vectors, the unit cells and reciprocal110

lattice of the quadrilateral mesh. The maximum wavenumber will be π/a, same as for111

the quadrilateral mesh.112

The geometrical resolution is defined by the reciprocal lattice, which in turn is de-113

fined by the set of translations z. The latter does not depend on the placement of dis-114

crete DOFs unless the placement and discretization formally corresponds to a finer mesh.115

(For example, placing DOFs at vertices and mid-edges and treating all these DOFs sim-116

ilarly corresponds to a finer mesh obtained by splitting each triangle in four by connect-117

ing mid-edges.) As a result, the geometrical resolution is independent of the placement118

of DOFs if z is not redefined.119

3 What happens if DOFs are placed on triangles120

There are more cells (triangles) and edges than vertices on triangular meshes, and121

the statement at the end of the previous section is counterintuitive. The intention of this122

section is to explain what happens using an example of cell placement.123

Figure 2 shows the nearest neighborhood of triangles pointing upward (u triangles)124

and downward (d triangles) in the plane of Fig. 2. Because of the difference in the ori-125

entation of the stencil of neighbors, all discrete operators depend on whether they are126

computed on u or d locations. For definiteness, we consider the Laplacian of scalar field127

T given at cell locations.128

For an equilateral triangular mesh the discrete Laplacian operator can be written
as

(LT )c =
4

a2

∑
n∈N (c)

(Tn − Tc),

where N (c) is the set of (three) triangles neighboring triangle c (sharing edges). For Fig.129

2, (LT )uc = (4/a2)(T1 + T2 + T3 − 3Tc) for the left panel, and (LT )dc = (4/a2)(T4 +130

T5+T6−3Tc) for the right panel. It can be readily shown that the expression for the131

Fourier symbol of L depends on the kind of triangle.132
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Indeed, let us take T as a single Fourier harmonic T = Tke
ik·x. Inserting this ex-133

pression in the expressions for the Laplacian, we find134

(LT )uc = (4/a2)(−3T̄k + V T̄k)e
ik·xc , (3)

(LT )dc = (4/a2)(−3T̄k + V ∗T̄k)e
ik·xc , (4)

where V = e−2ilh/3 + e−ika/2+ilh/3 + eika/2+ilh/3 and the asterisk denotes complex135

conjugate. The exponents appearing in V take into account the phase differences between136

triangle c and its neighbors.137

In the expressions for the Laplacian (3) and (4) we factored out the phase multi-138

plier eik·xc . This would have ensured that the amplitude of the Laplacian is independent139

of location if we were performing similar computations for quadrilateral cells. However,140

the complex-valued amplitudes of the Laplacian operator in (3) and (4) differ at u and141

d locations because V is complex-valued, so that V ̸= V ∗. This means that the field142

of Laplacian due to a single Fourier harmonic is double-valued if we factor out the phase143

multiplier eik·xc : the result depends on whether it is assessed on u or d triangles. We144

would have arrived at the same conclusion using Taylor’s series expansion of the discrete145

operators at u and d triangles or considering other differential operators.146

As a consequence of this behavior, any evolving discrete field T defined on trian-
gles will contain a mode of variability between u and d triangles. An analog of single Fourier
harmonic in this case is the pair

Tu
c = T

u

ke
ik·xc , c ∈ Cu,

T d
c = T

d

ke
ik·xc , c ∈ Cd,

where Cu and Cd are the subsets of triangles with the same orientation and T
u

k and T
d

k147

are respective amplitudes. Now note that in the computations of the Laplacian above,148

the result on a u location depends on the neighboring values of T on d locations and vice149

versa.150

Thus, the Fourier symbol is the matrix

Lk = (4/a2)

(
−3 V
V ∗ −3

)
.

It connects the amplitudes of Laplacian operator at u and d locations with the ampli-
tudes of Fourier harmonic, (

(LT )
u

k

(LT )
d

k

)
= Lk

(
T

u

k

T
d

k

)
.

The eigenvalues of Lk are

λ± = (4/a2)(−3±
√
V V ∗), (5)

with the eigenvectors v+ = (
√
V ,

√
V ∗)T and v− = (

√
V ,−

√
V ∗)T . One readily finds151

that λ+ tends to −k2 − l2 if ka, lh → 0, i. e., it approximates the Fourier symbol of152

the continuous Laplacian operator. The other eigenvalue tends to −24/a2; it does not153

provide an approximation. The first eigenvector tends to v+ → (1, 1)T for small wavenum-154

bers. In contrast, v− → (1,−1)T = (1, eiπ)T for small wavenumbers, i.e. it corresponds155

to a checkerboard pattern (oscillations within unit cells). This pattern is generally well156

controlled in numerical applications.157
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Figure 3. The dimensionless eigenvalues a2λ, a2λ+ and a2λ− of discrete Laplacians in the

case of vertex (light gray) and cell (dark gray and black) placement. k is at π/6 to the x-axis.

The dashed line corresponds to the continuous case −a2(k2 + l2), and the black line corresponds

to the spurious mode.

One can readily see that λ+ ̸= λ− at the boundary of the first Brillouin zone (ex-158

cept for the corners), as illustrated in Fig. 3 (the dark gray and black lines). For this159

reason λ− cannot be a mapping from the second Brillouin zone to the first one and is160

a numerical mode. (If λ+ and λ− and the related eigenvectors were coinciding at the bound-161

ary of the first Brillouin zone, the distinction between u and d amplitude would be re-162

dundant.)163

Thus by placing DOFs on cells instead of vertices (and doubling the number of dis-164

crete DOFs) one does not make the geometrical resolution finer, but creates a numer-165

ical mode in addition to the physical one. This behavior is general enough: extra DOFs166

add modes of variability that correspond to oscillations within unit cells (except when167

these DOFs formally imply smaller unit cells). These modes depend on many additional168

details in the case of staggered discretizations of primitive equations, their analysis is be-169

yond the scope of this note.170

Why then one might be interested in using discretizations relying on cell or edge
placement? The answer is that despite losing DOFs to numerical modes such discretiza-
tions commonly offer a higher accuracy for the physical mode than the discretizations
using the vertex placement. An obvious reason is that numerical stencils used to com-
pute differential operators imply smaller distances between the DOFs for the cell or edge
placement. Staying in the context of the example considered in this section, Fig. 3 com-
pares the eigenvalues of discrete Laplacian for the cell DOFs (5) with that of vertex dis-
cretization. The Laplacian for vertex DOF is approximated as

(LT )v = (1/2h2)(−6Tv +
∑

n∈N (v)

Tn),

where v is the vertex index, and N (v) is the set of vertices neighboring v. Its Fourier171

symbol is λ = (1/2h2)(2 cos(ka) + 2 cos(ka/2 + lh) + 2 cos(−ka/2 + lh)− 6). Despite172

(LT )v relies on more discrete values, the eigenvalue for vertex placement (light gray curve)173

is less accurate than λ+ (dark gray curve). The thick black curve corresponds to the spu-174

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

rious mode λ−. As mentioned above, there is a gap between it and λ+ at the maximum175

wave number (the boundary of the Brillouin zone).176

It is therefore the effective resolution, and not the geometrical resolution that might177

be improved by using cell or edge placement provided that numerical modes are controlled.178

We will not discuss the topic of effective resolution any further; it requires special stud-179

ies and an account for numerous additional details (see, e.g., Soufflet et al. (2016)). As180

one more (albeit similar) illustration, we mention the analysis of the behavior of the di-181

vergence of sea-ice stresses for discretizations based on vertex, cell and edge velocities182

in Danilov et al. (2022). It demonstrates a substantial increase in accuracy of the phys-183

ical mode despite the presence of numerical modes. Le Roux (2012) and Danilov & Kut-184

senko (2019) provide some further details on discretizations and numerical modes.185

4 Conclusions186

The geometrical resolution of triangular meshes is defined by the size of the first187

Brillouin zone and corresponds to the wavenumber π/h for meshes based on equilateral188

triangles and π/a for meshes obtained by splitting quadrilateral cells in a regular way.189

Since triangles on meshes used in practice commonly tend to equilateral, we provide some190

further detail assuming that we deal with such meshes. The discussion will be also rel-191

evant for dual (hexagonal) meshes, in which case a is the distance between cell centers.192

Given quadrilateral and triangular meshes with the cell side a, the maximum wavenum-193

ber for an equilateral triangular mesh is 2/
√
3 times higher than on the quadrilateral mesh.194

If S is the area of the computational domain, it will be covered by Nq = S/a2 quadri-195

lateral cells and Nt = (2/
√
3)S/a2 unit cells of triangular mesh. For Nt = Nq, a tri-196

angular mesh provides (2/
√
3)1/2 better resolution (about 9%) than its quadrilateral coun-197

terpart. The reason is a higher mesh symmetry. Thus, quadrilateral and triangular meshes198

are approximately equivalent in terms of geometrical resolution if they have close num-199

bers of vertices, not cells (but cells have to be used to compare hexagonal and quadri-200

lateral meshes). It is customary to characterize the size of computational triangular meshes201

by the number of vertices. For orientation, a typical 1/4 degree quadrilateral ocean mesh202

contains about 1M of wet vertices, and there are about 9M wet vertices on a 1/12 de-203

gree quadrilateral mesh.204

If a triangle side (or the distance between cell centers on dual meshes) is used to205

estimate the resolution, the estimate is too conservative, because a ≈ 1.16h for equi-206

lateral triangles. On the other hand, if the square root of triangle area is used as a mea-207

sure of resolution for a discretizations placing DOFs on cells, it gives the estimate 3−1/4h ≈208

0.75h which is 25% finer than the real resolution. The discrepancy becomes even worse209

if the distance between triangle centers is taken (2h/3). While each of such estimates210

can be acceptable under certain circumstances, they can be misleading in a general case.211

A rather good estimate is provided by the square root of the area of unit cell (twice the212

triangle area or area of the dual cell) which is only 9% coarser than the real resolution.213

Although the analysis above relies on the uniformity of meshes, it is hoped to pro-214

vide relevant estimates on smoothly varying unstructured meshes.215

As a final remark we note that despite geometrical resolution is widely used to dis-216

tinguish between coarse, eddy-permitting or eddy resolving meshes, it provides a very217

imprecise measure. The same geometrical resolution may still imply different effective218

resolution. Studying the effective resolution for practically used triangular-mesh discretiza-219

tions is a topic of future work.220

5 Open Research221

This work does not rely on any specific software or data.222
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