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Abstract

Flow recession analysis, relating discharge Q and its time rate of change -dQ/dt, has been widely used to understand catchment

scale flow dynamics. However, data points in the recession plot, the plot of -dQ/dt versus Q, typically form a wide point cloud

due to noise and hysteresis in the storage-discharge relationship, and it is still unclear what information we can extract from

the plot and how to understand the information. There seem to be two contrasting approaches to interpret the plot. One

emphasizes the importance of the ensembles of many recessions (i.e., the lower envelope or a measure of central tendency), and

the other highlights the importance of the event scale analysis and questions the meaning of the ensemble characteristics. In

this study, we examine if those approaches can be reconciled. We utilize a machine learning tool to capture the point cloud

using the past trajectory of discharge. Our results show that most of the data points can be captured using 5 days of past

discharge. We show that we can learn the catchment scale flow recession dynamics from what the machine learned. We analyze

patterns learned by the machine and explain and hypothesize why the machine learned those characteristics. The hysteresis in

the plot mainly occurs during the early time dynamics, and the flow recession dynamics eventually converge to an attractor in

the plot, which represents the master recession curve. We also illustrate that a hysteretic storage-discharge relationship can be

estimated based on the attractor.
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Key Points:8

• A machine learning tool captures time-variable flow recession dynamics that iden-9

tify scanning curves of the storage-discharge relationship.10

• Machine learned individual flow recession curves converge to a common attrac-11

tor in the recession plot, revealing the master recession curve.12

• It leads to a novel way of analyzing the recession plot, unifying the event-based13

analysis and the analysis of ensemble characteristics.14
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Abstract15

Flow recession analysis, relating discharge Q and its time rate of change −dQ/dt,16

has been widely used to understand catchment scale flow dynamics. However, data points17

in the recession plot, the plot of −dQ/dt versus Q, typically form a wide point cloud due18

to noise and hysteresis in the storage-discharge relationship, and it is still unclear what19

information we can extract from the plot and how to understand the information. There20

seem to be two contrasting approaches to interpret the plot. One emphasizes the impor-21

tance of the ensembles of many recessions (i.e., the lower envelope or a measure of cen-22

tral tendency), and the other highlights the importance of the event scale analysis and23

questions the meaning of the ensemble characteristics. In this study, we examine if those24

approaches can be reconciled. We utilize a machine learning tool to capture the point25

cloud using the past trajectory of discharge. Our results show that most of the data points26

can be captured using 5 days of past discharge. We show that we can learn the catch-27

ment scale flow recession dynamics from what the machine learned. We analyze patterns28

learned by the machine and explain and hypothesize why the machine learned those char-29

acteristics. The hysteresis in the plot mainly occurs during the early time dynamics, and30

the flow recession dynamics eventually converge to an attractor in the plot, which rep-31

resents the master recession curve. We also illustrate that a hysteretic storage-discharge32

relationship can be estimated based on the attractor.33

1 Introduction34

Flow recession analysis (e.g., Barnes, 1939; Hall, 1968; Anderson & Burt, 1980; Brut-35

saert & Nieber, 1977) has been extensively utilized to understand flow dynamics at the36

catchment scale (e.g., Vogel & Kroll, 1992; Clark et al., 2009; Jachens et al., 2020). Flow37

recession is a “data-based” catchment scale signature that encapsulates information about38

catchment characteristics and dynamics (e.g., Troch et al., 2013). The flow recession anal-39

ysis also provides ways to estimate a type of the storage-discharge relationship (e.g., Kirch-40

ner, 2009; Dralle et al., 2018). Typically, the recession plot is constructed by plotting41

the rate of change in discharge −dQ/dt versus discharge Q in log-log scale, and patterns42

in the plot have been analyzed and linked to catchment scale processes and properties43

(e.g., Brutsaert & Nieber, 1977; Troch et al., 2013).44
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Brutsaert and Nieber (1977) showed that some patterns of data points in the flow45

recession plot can be explained by a hydraulic groundwater model, viz. the Boussinesq46

model. The explanatory power of the model implies that catchment scale properties, such47

as the saturated hydraulic conductivity and the drainable porosity, can be estimated through48

the flow recession analysis (Brutsaert & Nieber, 1977; Troch et al., 2013). Other stud-49

ies showed that the data points can also be explained by other mechanisms and mod-50

els, such as a two parallel bucket model and a model using superposition of multiple lin-51

ear reservoirs (e.g., Clark et al., 2009; Harman et al., 2009; Gao et al., 2017). Biswal and52

Marani (2010) showed that the geometry of drainage network also can explain some pat-53

terns. While which model represents reality better probably varies from site to site, it54

is clear that the recession analysis helps hydrologists develop hypotheses about catch-55

ment scale flow dynamics.56

However, there still remains a fundamental issue on what is the “right” informa-57

tion we can extract from the signature. The data points in the recession plot usually form58

a wide point cloud due to the measurement noise in Q (e.g., Rupp & Selker, 2006), the59

auto-correlation in observation errors, and time-varying catchment dynamics and exter-60

nal forcings (e.g., Harman et al., 2009; Shaw & Riha, 2012; Jachens et al., 2020). Be-61

fore proposing hypotheses about catchment scale dynamics, we need to decide how to62

interpret the wide point cloud.63

Brutsaert and Nieber (1977) suggested using the lower envelope of a point cloud.64

They used the lower envelope to capture the ensemble characteristics of many recessions65

(Brutsaert, 2005) and suggested determining the slope of the lower envelope b among the66

values that can be explained by the Boussinesq model instead of estimating the slope67

directly using data. The Boussinesq model used in their original study predicts two slopes68

(b = 1.5 for the late time recession and b = 3.0 for the early time recession), and the69

predicted lower envelope has a lower slope in the lower discharge range. Alternatively,70

Vogel and Kroll (1992) performed an ordinary regression analysis to fit a line to the data71

as a measure of the central tendency (centrality). Similarly, Kirchner (2009) suggested72

binning the data and performed a weighted linear regression to account for the uncer-73

tainty associated with each bin.74

However, recent studies have questioned the use of the lower envelope and the mea-75

sure of central tendency and have emphasized the importance of analyzing the slope b76
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of each recession event (e.g., Shaw & Riha, 2012; Tashie et al., 2020; Jachens et al., 2020).77

The slope fitted to the data points of each event is event-specific, and it seems that the78

lower envelope does not represent an ensemble of recession dynamics but is a collection79

of endpoints of each event (Tashie et al., 2020; Jachens et al., 2020). Such event-to-event80

differences are often attributed to catchment memory effects (e.g., Harman et al., 2009;81

Tashie et al., 2020; Jachens et al., 2020) or to seasonal dynamics (Shaw & Riha, 2012).82

Spatial and temporal pattern of external forcings, such as evapotranspiration and pre-83

cipitation, may also affect the event-to-event variability (Wang & Cai, 2010; Szilagyi et84

al., 2007). Besides, the slope of each event is in general much steeper than the slope es-85

timated as a central tendency or derived from the Boussinesq model (e.g., Tashie et al.,86

2020; Jachens et al., 2020). Tashie et al. (2020) further argued that many of the trajec-87

tories of each event in the recession plot have a higher slope at the lower discharge range,88

except for some dry and flat catchments, casting doubt on the applicability of the Boussi-89

nesq model.90

There seem to be two contrasting approaches. One emphasizes the importance of91

analyzing the ensembles of many recessions (i.e., the lower envelope or a measure of cen-92

tral tendency), and the other highlights the importance of the event scale analysis and93

questions the meaning of the ensemble characteristics that are represented by the lower94

envelope or the measure of central tendency. In this study, we examine if those approaches95

can be reconciled. We utilize a machine learning tool to capture dynamics represented96

in the recession plot using the past trajectory of flow. We anticipate that the tool can97

learn both the time-variability (i.e., the event-by-event variability) and the ensemble of98

recession dynamics, if both exist. We report the machine learning model results and ex-99

plain some patterns that the machine learning tool exposed. We finally show that the100

contrasting approaches can be combined into a single one. While the focus of our study101

is not on examining underlying hydrological processes in detail, we also infer and hypoth-102

esize underlying hydrological processes. In addition, we illustrate that a hysteretic storage-103

discharge relationship can be estimated using a characteristic trajectory that appears104

in the recession plot. In the discussion section, we treat the recession plot as a phase space105

plot, and links to other phase space plots are also discussed.106
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2 Theoretical background, methods, and study site107

2.1 Flow recession analysis108

Originally, flow recession analysis used a plot of −dQ(t)/dt versus Q(t). In this study,109

we use an alternative function:110

g(t) = −dQ(t)

dt
/Q(t) (1)

The function g(t), instead of −dQ/dt, is plotted versus Q(t). The function g is iden-111

tical to the catchment sensitivity function of Kirchner (2009). (Note that the catchment112

sensitivity function expresses the sensitivity of discharge to changes in storage S; i.e.,113

g = dQ/dS = (dQ/dt)/(dS/dt) (Kirchner, 2009). The formulation in (1) is a simpli-114

fied form for the case of negligible precipitation and evapotranspiration during recession115

periods that has been utilized predominantly instead of fully considering dS/dt.) We will116

use the term recession plot interchangeably for either the g vs. Q plot or the −dQ/dt117

vs. Q plot. When a power function is used to characterize the original recession plot (i.e.,118

−dQ/dt = aQb), the power function still holds in the g vs. Q plot with the exponent119

decreased by 1: g(Q) = aQb−1 (Kirchner, 2009).120

The catchment sensitivity function can be used to characterize flow recession dy-121

namics and estimate a type of storage-discharge relationship. The inverse of g, 1/g, is122

a time scale of the flow recession. When the flow recession over time is approximated123

using an exponential function as Q = Q0e
−t/tc , where tc is the e-folding time of the ex-124

ponential decay, 1/g is constant and is the e-folding time; i.e. tc = 1/g . Otherwise, the125

decay rate 1/g depends on time. Also, assuming there is a one-to-one and invertible func-126

tion that relates g to Q, the function g(Q) can be utilized to estimate a relationship be-127

tween the active storage and discharge using: Sa(Q) =
∫ Q

Q0
(1/g(Q))dQ, where Sa is the128

“active” storage (relative to a certain storage at Q0) which is the portion of the storage129

that drives discharge (e.g., Kirchner, 2009; Troch et al., 2013). (Note that the active stor-130

age is sometimes referred to as “dynamic” storage (Staudinger et al., 2017), “direct” stor-131

age (Dralle et al., 2018), or “hydraulically-connected” storage (Carrer et al., 2019).)132

Several methods have been suggested to estimate dQ(t)/dt using the discrete time133

series of Q. One simple way is to estimate it at a constant time step (CTS): dQ(t+∆t/2)/dt =134

(Q(t + ∆t) − Q(t))/∆t, where ∆t is the time step and Q(t + ∆t/2) = (Q(t + ∆t) +135
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Q(t))/2 (Brutsaert & Nieber, 1977). However, the method is sensitive to discharge mea-136

surement resolution and noise, especially at low flow (Rupp & Selker, 2006). Roques et137

al. (2017) suggested the exponential time step (ETS) method, where the time step in-138

creases in each recession event and an exponential function is fitted to discharge, which139

is then used to estimate its (smoothed) time derivative.140

Also, several criteria to determine recession periods have been suggested. Brutsaert141

and Nieber (1977) originally proposed using data for periods of dQ/dt < 0 and at least142

5 days after any precipitation event, with the expectation that it would eliminate as much143

as possible direct surface recession flow. Recent studies have refined the criteria. For ex-144

ample, in the event-by-event analysis, a sufficient number of samples is required for each145

event to fit a statistically meaningful (power) function. Dralle et al. (2017) suggested us-146

ing events that have strictly decreasing Q for more than four days (when one uses daily147

time step data). The start and end times of each event can be determined using a time148

series of precipitation J (Lamb & Beven, 1997; Dralle et al., 2017) or based on the tran-149

sition from decreasing discharge to increasing discharge and vice versa (Dralle et al., 2017;150

Jachens et al., 2020). Those event-based studies either do not exclude any periods af-151

ter peak flow (Dralle et al., 2017; Tashie et al., 2020) or exclude only one day after the152

peak flow (Jachens et al., 2020). In addition, Lamb and Beven (1997) suggested filter-153

ing out periods with significant (potential) evapotranspiration. For the catchment sen-154

sitivity function, Kirchner (2009) proposed using the Q >> J and Q >> ET crite-155

ria, where ET is the evapotranspiration rate, to rule out the effects of those climate forc-156

ings.157

As mentioned earlier, the function g(Q) (or −dQ/dt) has been parameterized us-158

ing single discharge values Q. However, according to some studies that explain the event-159

to-event time-variability as memory effects (e.g., Harman et al., 2009; Jachens et al., 2020;160

Tashie et al., 2020), it seems more natural to parameterize g using the past trajectory161

of measurable variables. In this study, we use the past trajectory of discharge to better162

characterize g, rather than using single discharge values.163

By doing so, we capture a type of hysteresis in the flow dynamics that can be ob-164

served during flow recession periods. One way to define hysteresis in hydrology is to de-165

fine it as a phenomenon where the output of a system depends not only on the current166

state of the system but also on the past trajectory of system states or inputs (Davies &167

–6–
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Beven, 2015). For catchment scale flow dynamics, discharge is the output, and storage168

can be used to represent the state of a catchment. The hysteresis in the catchment scale169

flow dynamics then manifest as a hysteretic storage-discharge relationship. The wide point170

cloud in the recession plot illustrates the hysteresis between the “active” storage Sa and171

discharge Q during flow recession periods if the spread is not due to measurement er-172

rors (see Figure 1). Theoretically, if there is no hysteresis between the active storage and173

discharge, the data points in the recession plot should align on a single curve (see Fig-174

ure 1A). Earlier we introduced that parameterizing g using Q, i.e., g(Q), leads to a non-175

hysteretic active storage-discharge relationship. Its inverse is also true; if the active stor-176

age discharge relationship is non-hysteretic, g only depends on Q (see appendix A1). Thus,177

capturing the point cloud is identical to capturing the hysteretic flow dynamics during178

flow recession periods (see Figure 1B). Taking the well-known hysteresis in the soil wa-179

ter retention curve as an example, what we do in this study as to which part of the hys-180

teresis we are looking at is similar to looking at only the drying part of the hysteresis181

in the soil water retention curve (i.e., the drying scanning curves). We should expect hys-182

teresis in the catchment scale storage-discharge dynamics as a result of differences in the183

celerity and velocity responses to inputs. This also suggests that the hysteresis should184

be scale dependent (Beven & Davies, 2015; Beven, 2020b).185

While the complete picture of the hysteresis cannot be examined, it is still mean-186

ingful as the recession part of the hysteresis can be seen mainly based on discharge data,187

which is arguably much less uncertain at the catchment scale than other fluxes (e.g., J188

and ET ) (Kirchner, 2009). Other fluxes become much more important if we look at the189

complete picture of the hysteresis. Nevertheless, in the later discussion, we will also briefly190

show a possibility of estimating the (relative) total storage-discharge relationship using191

a modified catchment sensitivity function, assuming the evapotranspiration rate is re-192

liable.193

The model to estimate g using the past trajectory of discharge can be written as:194

g = H(
←−
Q) (2)

where H is a non-linear hysteretic function, and
←−
Q is the past trajectory of dis-195

charge. Specifically, we configure the model to estimate the half-step ahead g, g(t+∆t/2),196

using Q(t), Q(t−∆t), · · · , Q(t−m∆t), where m+ 1 is the length of the past trajec-197
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Figure 1. Illustration of the recession plot and the corresponding storage-discharge rela-

tionship (A) without hysteresis and (B) with hysteresis. The dots in the recession plot are few

selected data points. The lines in the recession plot shows the trajectory of each event. The line

color in (B) distinguishes events. When there is no hysteresis between the active storage and

discharge, the data points in the recession plot align on a single curve. Otherwise, the hysteresis

between the active storage and discharge leads to the scattered data points in the recession plot.

The subset figures in both recession plots illustrate the past trajectories of discharge for events

at the timings indicated by the black circles in the recession plot. The timing for each event was

chosen when discharge is similar at about 1.5 mm/day. (The green event was excluded since dis-

charge did not decrease to the value during the event.) We anticipate that the difference in g at

similar discharge can be characterized by the past trajectory of discharge as shown in the subset

figure. Note that the subset figure includes the rising limb of discharge for the red event because

it includes the trajectory of discharge before the recession starts.
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tory of discharge. (Note that while g is estimated for the flow recession periods, the past198

trajectory of discharge can include rising limbs). During the flow recession periods, the199

model can estimate the one-step ahead discharge Q(t+∆t) using g(t+∆t/2) as: Q(t+200

∆t) = 2−g(t+∆t/2)∆t
2+g(t+∆t/2)∆tQ(t), assuming that dQ/dt is constant between the two time steps.201

The functional form is similar to Beven’s Holy Grail problem (Beven, 2006b), that202

is to find a scale dependent hysteretic function for estimating discharge using the past203

trajectory of precipitation J and other relevant inputs at the scale of interest. In this204

study, we use the past trajectory of Q rather than J . One reason is that, often, discharge205

data is more accurate than catchment scale estimation of J . Also, it is more consistent206

with the previous studies where Q is used to characterize the function g (or −dQ/dt).207

Following Young and Beven (1994), model (2) is a “data-based” model in a sense208

that the model structure is not determined a priori as opposed to models in which those209

structure is determined, for example, the multiple reservoir models (e.g., Clark et al.,210

2009; Harman et al., 2009; Gao et al., 2017) or spatially-resolved continuum equation211

based models such as the Richards equation based models. A priori determined model212

structure may adversely affect interpretation of hydrologic dynamics based on model re-213

sult due mostly to the uncertain model structures (e.g., Beven, 2006a; Kirchner, 2006;214

Kim & Troch, 2020). The “data-based” modeling approach utilizes the transfer function215

model (which is originally introduced in control theory; O(t) = (
∑j

i=0 biz
−i/(1+

∑k
i=1 aiz

−i))I(t),216

where O is the output time series, I is the input time series, z is the backward opera-217

tor, ai, bi, j, k are the model parameters), as it has a general form that relates input and218

output time series (e.g., Young, 2011). As we focus only on capturing the dynamics dur-219

ing recession periods, the transfer function model may reduce to the auto-regressive (AR)220

model where the output time series O(t) is modeled using its past history (i.e., (1+
∑k

i=1 aiz
−i)O(t) =221

0). Model (2) is similar to the auto-regressive model in that the model utilizes the past222

history of output time series. While model (2) estimates g(t+∆t/2) not Q(t+∆t) as223

our interest is on g, we showed above that Q(t+∆t) can be estimated using g(t+∆t/2).224

The wide point cloud in the recession plot implies that the parameters of the AR model225

might need to vary over time to account for the non-linearity of the flow recession dy-226

namics. Instead of estimating the time-variable parameters in classic ways, we utilize a227

machine-learning tool to consider the non-linearity (see the next section for more details).228
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Also, model (2) can be thought of as a generalization of the model developed by229

Fleming (2007). Fleming (2007) developed a machine-learning based model that predicts230

one step ahead discharge, Q(t+∆t), using Q(t), where the relationship between the two231

variables depends on Q(t). Again, while model (2) estimates g(t+∆t/2) not Q(t+∆t),232

Q(t+∆t) can be estimated using g(t+∆t/2) by linear interpolation. The important233

difference between model (2) and that of Fleming is the use of the past trajectory of Q234

in model (2) to capture the hysteretic flow recession dynamics. Fleming’s model uses only235

Q(t) to estimate Q(t+∆t), while our model utilizes longer past trajectory of Q.236

2.2 A machine learning tool: Long Short-Term Memory model237

Given the variability in g(t) we use a machine learning tool to learn the function238

H using data. Machine learning tools have been applied to model several hysteretic hy-239

drologic dynamics that are represented in, for example, the rating curve (Tawfik et al.,240

1997) and the soil water retention curve (Jain et al., 2004). We choose the LSTM model241

as a machine learning tool. The LSTM model is a supervised learning algorithm and a242

type of recurrent neural network, that has been applied successfully to reproduce catch-243

ment scale flow dynamics (e.g., Kratzert et al., 2018; Shen et al., 2018). Compared to244

the classic (or vanilla) recurrent neural networks, the LSTM model has several advan-245

tages. The most well known advantage is the improved ability of the LSTM model in246

remembering past information in memory (Greff et al., 2017).247

A LSTM model can be configured with multiple layers such as the recurrent LSTM248

layer, the dropout layer, and the dense layer (see Figure 2). The recurrent LSTM layer249

consists of multiple LSTM cells, and a LSTM cell processes an internal state h and a cell250

state (or a cell memory) c using input data I and three gates: a forget gate f , an input251

gate i, and an output gate o. The states h and c are vectors of length n, where n ≥ 1252

is referred to as the number of LSTM units. A set of forward operations in a LSTM cell253

can be written as:254

–10–
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Figure 2. (Left) An example of a LSTM model structure with the dropout layer and the

dense layer. The model has two layers of the recurrent LSTM layer with the dropout layer in

between. Input time series It is fed into the first LSTM layer. The output of the second LSTM

layer is fed into the dense layer, which estimates an output Ot of the model. (Right) A detailed

structure inside a LSTM cell. ht is the internal state and ct is the cell state at time t. f , i, and

o denote the forget gate, the input gate, and the output gate, respectively. c̃ is the cell input

(modified from Greff et al. (2017)).

ft = σ(WfIt + Ufht−1 + bf )

it = σ(WiIt + Uiht−1 + bi)

ot = σ(WoIt + Uoht−1 + bo)

c̃t = tanh(WcIt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

(3)

where ft, it, ot, and c̃t are activation vectors (of length n) of the forget gate, the255

input gate, the output gate, and the cell input at time t, respectively, ct is the cell state256

vector of length n, ht is the internal state vector of length n, σ is the sigmoid function,257

the operator ◦ denotes the Hadamard product (element-wise product), It is the input258

feature vector of size m at time t, where m is the number of input features (or variables),259

W matrices (Wf , Wi, Wo, and Wc) are n×m weight matrices, U are n×n weight ma-260

trices, and b vectors are the bias vector of length n. The W and U matrices and the b261

vectors need to be learned using a dataset.262
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The dropout layer is to prevent the weights from co-adapting too much and reduce263

overfitting (e.g., Hochreiter & Schmidhuber, 1997). The layer randomly sets a fraction264

of variables (e.g., input sequence, output sequence, or the recurrent state of the previ-265

ous time step) to zero at each iteration during training. The dropout rate, a hyperpa-266

rameter associated with the layer, determines the fraction. The dense layer is a deeply267

connected neural network layer, and it estimates: Ot = k(Wd◦xt+bd), where Ot is an268

output sequence of length q, xt is a length q input sequence to the layer, Wd is a p ×269

q weight matrix, bd is a bias vector of length q, and k is an activation function such as270

the linear function k(x) = x.271

For example, the model shown in Figure 2 has two layers of the recurrent LSTM272

layer with the dropout layer in between. The dense layer receives the output of the sec-273

ond LSTM layer as an input sequence. The illustrated model uses N+1 days (or time274

steps) of input data (discharge Q) to estimate an output g, i.e., It = Q(t) and m = 1275

for the first layer, and Ot = g(t) with q = 1. Again, while g is estimated for recession276

periods, the model input It can include discharge data in the rising limb. The number277

of LSTM units for the first and the second layers are hyperparameters that need to be278

determined by the modeler, and p is equal to the number of LSTM units of the second279

LSTM layer.280

The model needs to be trained using data to estimate the W and U weight ma-281

trices and the bias vectors b. Usually, a neural network model is trained over the whole282

data many times, where the number of iteration over the whole dataset is referred to as283

the number of epochs. One epoch includes the whole dataset, and an epoch consist of284

several batches that are a fraction of the dataset. For each batch, the forward pass and285

the backward pass are performed to train the model using a loss function. The forward286

pass is what Figure 2 and equation (3) describe; that is the update of the cell state for-287

ward in time and according to the direction illustrated in the figure. The backward pass,288

also called backpropagation, operates in the reverse manner compared to the forward pass.289

It determines the gradient of the weights in those matrices and the vectors to improve290

the model performance, and those weights are updated based on the gradient and a gra-291

dient descent optimization algorithm. The learning rate, a hyperparameter, determines292

the step size of the update at each iteration.293
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Compared to the usual data based approach where the transfer function (or the294

auto-regressive model) is used, our approach using the ML model is different in a way295

that non-linearity is considered in the model. While several methods, such as estimat-296

ing time-variable or state-dependent parameters of the model, were developed to impose297

non-linearity in the transfer function model (or the AR model), those methods have their298

own disadvantages. For example, the time-variable parameter estimation method can-299

not track true time-variability of the parameters if that time-variability is rapid (Young,300

2011). In our model, the non-linearity of the model is determined by the LSTM model301

structure and the associated parameters.302

2.3 Study Site and Data303

We use discharge data measured at the Calawah River near Forks, WA, USA (lat-304

itude 47◦57’30”, longitude 124◦23’30”, USGS gauge 12043000). The 334 km2 catchment305

is illustrated in Figure 3A. The elevation ranges from about 40 m to 1200 m, and the306

average topographic slope of this catchment is 0.36 (Falcone, 2011). The catchment is307

listed in USGS Gages-II as one of the reference catchments, the least-disturbed catch-308

ments within the framework of broad regions (Falcone, 2011). Over 90% of the land cover309

is forest and about 5% is grass/shrub (see Figure 3B). The town of Forks, located near310

the catchment outlet, has a development area covering about 1% of the catchment area.311

The land cover of some parts of the catchment has changed over time. From the three312

land cover maps shown in Figure 3B, a transition from grass/shrub to forest is observed313

at the east side of the upslope between 1985 and 2015 as forest recovers from clearing.314

The recovered area accounts for about 5% of the catchment area. Another logging started315

in the north side of the catchment around 2000 and continued, with about 5% of the catch-316

ment having been cleared in 2015. Correspondingly, the land cover in that region has317

changed from forest to grass/shrub. Regardless of the land cover change, the proportion318

of each land cover did not change much during 1985-2015; grass/shrub covers 4-6% of319

the total area, and forests cover 91-93% of the total area during the period.320

The CAMELS dataset (Addor et al., 2017) provides daily precipitation and poten-321

tial evapotranspiration rates for this catchment, derived from the 1 km resolution Daymet322

data (Thornton et al., 2016). The CAMELS dataset also provides an estimated actual323

evapotranspiration rate using the Sacramento Soil Moisture Accounting (SAC-SMA) model324

(Newman et al., 2015). The period of data provided in the CAMELS dataset is between325
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1980 and 2014, but some portions of data is missing if, for example, discharge is not mea-326

sured. As a significant portion of discharge data before March 1984 is missing for this327

catchment, our study period is from March 1984 to December 2014. For the study pe-328

riod, the average precipitation rate is 3,005 mm/year and the mean discharge rate is 2,819329

mm/year. The estimated actual evapotranspiration rate is 476 mm/year. Figure 3C shows330

the precipitation, the discharge, and the actual evapotranspiration rates. This catchment331

is wet with an aridity index of 0.25. The mass-balance does not close due to an overes-332

timation of the actual evaporation rate in the SAC-SMA model (as the model underes-333

timated discharge), but note that the recession analysis does not rely on the mass-balance334

and the quality of the actual evaporation time series. Also, while the actual evaporation335

rate is similar to that is reported for the region (Sanford & Selnick, 2013), the actual evap-336

oration rate might be low for a forest catchment due perhaps to the underestimated pre-337

cipitation rate in the Daymet data. Note that the amount of precipitation does not af-338

fect the flow recession analysis, whereas the timing of precipitation may have a limited339

influence on the analysis. Missing precipitation event would result in including misplaced340

data points in the recession plot if the precipitation event was significant enough to af-341

fect the flow recession dynamics. Nevertheless, by only using periods with decreasing dis-342

charge in the analysis, the effect of missing precipitation events that are significant enough343

to increase discharge can be eliminated. Note also that many studies do not use the pre-344

cipitation data and rely only on discharge data when determining recession periods (e.g.,345

Shaw & Riha, 2012; Jachens et al., 2020).346

We use daily data in this study, as daily datasets are more commonly available than347

higher temporal resolution datasets. However, when using a daily dataset, applying the348

criterion Q >> ET , that is used to estimate the catchment sensitivity function in Kirchner349

(2009), can exclude a lot of low flow data. Thus we do not use that criterion, and in terms350

of the catchment sensitivity function, our analysis can be seen as analyzing the function351

in which the effect of evapotranspiration is included implicitly.352

2.4 Applied methods and model setup353

We used the precipitation time series and the criterion of dQ/dt <= 0 to deter-354

mine the recession period. Periods with dQ/dt = 0 were included since actual decreases355

in discharge might not be recorded due to the measurement resolution. We have not ap-356

plied the recession event length-based criterion as we do not perform statistical analy-357
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Figure 3. Catchment topography, land cover maps, time series, and the flow recession plots.

(A) Topography of the Calawah catchment. This digital elevation map is available through the

3D Elevation Program (3DEP) managed by USGS, and its resolution is 1/3 arc-second. The

color illustrates elevation and is shaded with the position of light source at altitude 45◦ and az-

imuth 315◦. (B) Land cover maps. The LCMAP (Land Change Monitoring, Assessment, and

Projection) products managed by USGS were used. (C) Time series of the precipitation J , the

discharge Q, and the actual evapotranspiration ET . (D) The recession plots that were estimated

using (D-1) the CTS method and (D-2) the ETS method. Note that data points with dQ/dt = 0

are not shown in these log-log scale plots. The dotted lines in (D-2) are the lower envelope of

(Brutsaert & Nieber, 1977) that were placed close to the lower envelope of the major data points

by visual inspection.
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sis for each recession event separately. We applied both CTS and ETS methods to es-358

timate the function g. We focus on analyzing the CTS-based estimation since our pur-359

pose is analyzing data and because the ETS method involves data smoothing. Never-360

theless, we present the ETS-based estimation for comparison.361

The LSTM model was constructed with the same structure as described in Figure362

2. The model has two recurrent LSTM layers and the dropout layer in the middle. There363

is also the dense layer after the second recurrent LSTM layer. The mean absolute error364

(MAE) was used as the loss function. The training period was from March 1984 to De-365

cember 2000, and the validation period was from January 2001 to December 2014. About366

55% of the estimated g values were included in the training period, and another 45% of367

the values were included in the validation period. The number of LSTM units in each368

cell in the first layer nu,1 and the second layer nu,2 were determined using the grid search,369

and the hyperparameters that minimize the MAE in the validation period were chosen.370

The values tested in the first grid search were 1, 3, 5, 10, 15, 20, 30, 40, and 50. Addi-371

tional values of 60, 70, 80, 90, and 100 were tested when the minimum MAE was found372

at the maximum value explored in the first search. The grid search was performed for373

several lengths of the past discharge trajectory: 1, 2, 3, 5, 7, and 10 days. The number374

of trainable parameters np is determined by the model structure, nu,1, and nu,2 as: np =375

4(n2
u,1+n2

u,2+2nu,1+nu,2(nu,1+1))+nu,2+1. The Adam solver (Kingma & Ba, 2017)376

was used for training, and the learning rate was 0.001. The iteration was set to stop if377

the loss function of the validation set did not improve over 200 iterations. The dropout378

rate was 0.5. The use of early stopping criteria and the high dropout rate are to reduce379

overfitting. Also, the model performance during the validation period was checked to en-380

sure that the model performs reasonably well outside of the training period. TensorFlow381

(Abadi et al., 2015) was used to implement the model.382

Here we note that assessing the advantages of the LSTM model over simpler ML383

models, such as the vanilla recurrent neural network model, is not the focus of our study.384

A well-known advantage of the LSTM model over simpler neural network models is that385

the LSTM can utilize longer past data without causing a problem in the parameter es-386

timation, but our application might not take full advantage of the LSTM model if the387

past trajectory that we need to consider to model flow recession dynamics is relatively388

short. While how long the past trajectory should be to take the advantage of the LSTM389

model depends on the properties of the data, there is a chance that we may implement390
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a more complex model than is necessary to efficiently capture the flow recession dynam-391

ics. Nevertheless, there are not many benefits to using simpler ML models, especially when392

our focus is on capturing patterns in data (and not on prediction) and when our focus393

is not on interpreting the model parameters directly.394

3 Results395

This section reports the estimated function g and the function learned using the396

LSTM model. We also show the results of using the central tendency for comparison.397

Figure 3D shows the recession plots. The catchment sensitivity function g was estimated398

for 3498 time steps for the CTS method and 2556 time steps for the ETS method. The399

number of data estimated using the ETS method is less because of the increase of the400

time step. As expected, the data points are widely scattered. The CTS method-based401

estimates show a diagonal pattern with its slope of -1 in the low discharge range due to402

the measurement resolution. The estimation based on the ETS method does not display403

the pattern as the discharge data was smoothed out. The lower envelope of Brutsaert404

and Nieber (1977) appears to approximate the lower envelope of the data cloud, with405

b = 3 for high flow and b = 1.5 for low flow.406

Figure 4A shows the fitted power functions as a measure of central tendency us-407

ing the binned data. The binned data was estimated using the method suggested in Kirchner408

(2009) using the CTS method-based estimation. The slope of the fitted line is close to409

the slope of the lower envelope at low flow and is much lower than the trajectories of each410

event that are indicated by the gray lines connecting the data points of each event. The411

coefficient of determination r2 between the data points and the modeled values using the412

fitted line is -0.00. Figure 4C shows that there is a structure in the model error. In the413

modeled value versus the observed value plots, many dots are densely located right above414

the 1:1 line, and the other dots are very sparsely located under the line. This pattern415

in the plot, along with the low r2 values, means that the fitted lines do not represent the416

data well.417

The half-step ahead prediction results of the LSTM model (i.e., g(t + ∆t/2) es-418

timated using Q(t) and its past values) are shown in Figure 4B. The model results are419

shown for different lengths of discharge trajectories (1 day and 5 days) that were used420

in the function H. The LSTM model performance was similar for both training and val-421
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Figure 4. Estimated flow recession dynamics and model performance. The top panels show

the estimated flow recession dynamics using (A) the central tendency and (B) the LSTM model.

The grey dots are the observed data points, and the grey lines connect the points of each re-

cession event. The yellow circles in (A) are the binned data with the error bar indicating the

standard deviation of each bin. The dotted line is the power function fitted to the binned data.

In (B), the blue dots are the ML model estimation and the blue lines connect the blue dots of

each event. Panel (C-1) illustrates the MAE and the r2 between the CTS method-based estima-

tion of g(Q) and the modeled g(Q) using the central tendency model and the LSTM model with

several lengths of past discharge trajectory as the model input. The chosen values of nu,1 and

nu,2 are displayed in the format (nu,1, nu,2). (C-2) illustrates the modeled g and the observed g.

The dotted black lines are 1:1 lines.
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idation periods (e.g., with the mean absolute error of 0.013 day−1 for both periods when422

5 days of discharge was used), and the illustrated LSTM results are for both periods. The423

similar mean absolute error for both periods indicates that overparameterization is un-424

likely. The plot of the mean absolute error at each iteration during the LSTM model train-425

ing also does not show any consequences of overparameterization (see Figure S1 for the426

LSTM model using 5 days of the past discharge). We only show the results estimated427

using the past trajectory of discharge up to 5 days since there was no significant improve-428

ment when we increased the number of days to more than 5 days (see Figure 4C). The429

chosen number of LSTM units that minimizes the MAE for each case are also illustrated430

in Figure 4C.431

The model results are similar to the pattern of the binned data when only a sin-432

gle discharge value is used, but the model improves significantly as longer past trajec-433

tories of discharge are used. The coefficient of determination r2 is 0.14, 0.88, and 0.92434

for the model using 1 day, 3 days, and 5 days of discharge, respectively. Figure 4C shows435

that the model results are significantly improved compared to the central tendency model.436

In the modeled value versus the observed value plots, the dots are distributed close to437

the 1:1 lines.438

Figure 5 shows the simulated flow recession dynamics for 16 events. (Note again439

that the LSTM model can simulate one-step ahead discharge Q(t+∆t) using the half-440

step ahead g, g(t+∆t/2), as described earlier.) In this analysis, we chose events longer441

than 30 days so that we can see enough recession dynamics for each event. We select events442

if the condition of dQ/dt < 0.025 mm/day2 holds for more than 30 days, assuming that443

the discharge increase of 0.025 mm/day over one day is insignificant. Also, the precipitation-444

based criterion was not applied. As expected, the one-step ahead prediction of Q is close445

to the observed discharge. When the model is used as a forward model (updating the446

model input with the modeled Q as it becomes available), the model performance de-447

grades when the first few estimations are biased because the LSTM model was trained448

for the prediction of the half-step ahead g. Nevertheless, the model tracks patterns of449

the event trajectories in the recession plotwell as they vary from event to event. (Also,450

see Figure S2 that illustrates the event-to-event variation more clearly.)451
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Figure 5. Forward modeling result of the LSTM model for the 16 events. (A) The simulated

discharge time series, and (B) the simulated trajectory in the recession plot. The forward model

was run after the largest rain event (see the vertical dotted lines in (A)). The red dots represent

the one-step ahead or the half-step ahead predictions, and the orange lines illustrate the forward

model predictions.
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4 Discussion: Learning from the machine452

The results indicate that the machine has learned the non-linear hysteretic func-453

tion H during the flow recession periods. But converting the machine-learned function454

into a human-readable format is currently a daunting task (e.g., Nearing et al., 2021).455

It is not easy to interpret the U and W matrices and the b vectors in a physically mean-456

ingful way. Nonetheless, our results indicate that the hysteretic recession dynamics can457

be determined by the last few days of discharge (about 5 days to get r2 ≈ 0.9). We can458

also investigate some machine-learned characteristics and deduce why the machine learned459

those features. In this study, we focus on analyzing machine-learned characteristics that460

we observe in the recession plot including the trajectories of each recession event illus-461

trated in the plot as the machine-learned trajectories display patterns that were not clear462

in the data (see Figure 4). For the discussion, we will treat the recession plot as a phase463

space plot so that we can leverage terminology and methods developed to explain the464

trajectory of system dynamics. The result of the LSTM model using 5 days of discharge465

and the CTS method-based estimation is used for the following analysis. We focus on466

analyzing the half-step ahead estimation of g instead of the forward model estimation467

because the half-step ahead estimation is closer to the data (see Figure 5B). Neverthe-468

less, most of the analysis presented in this section are still valid with the forward mod-469

eling estimation.470

4.1 Recession plot as a phase space plot471

In this discussion, we treat the recession plot as “phase space plot”. Phase space472

plots show dynamics of a set of state variables that describe the system state. In other473

words, phase space plots show (a part of) the phase space where every degree of free-474

dom is represented as an axis in a multidimensional space. The set of state variables of475

a system is projected as a point in the phase space plot, and its time evolution is rep-476

resented as a trajectory. Analyzing the trajectory helps understand system dynamics.477

For example, some systems show an “attractor” in the phase space plot, toward which478

a system tends to evolve (e.g., Ruelle & Takens, 1971). The phase space plot has been479

utilized to describe system dynamics in many fields. In classical mechanics, the position480

and momentum of a particle are used as state variables (e.g., Goldstein, 1980). In ther-481

modynamics and statistical mechanics, macroscopic variables such as pressure and tem-482

perature are used as state variables, as considering states of every single particle, i.e.,483
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microstates, in a system is not feasible. For example, pressure-volume diagrams have been484

viewed as describing parts of the phase space. Phase space plots have also been employed485

occasionally in hydrology. While system-scale variables (macroscopic variables) of hy-486

drologic system that we can measure are limited, several studies utilized phase space plots487

to analyze catchment dynamics based on measurable or estimable variables (Porporato488

& Ridolfi, 1997; Duffy & Cusumano, 1998; Beven & Davies, 2015). For example, Duffy489

and Cusumano (1998) used the concentration-discharge plot as a phase space plot. Beven490

and Davies (2015) utilized variables such as storage, discharge, and water residence time491

and transit time, to construct phase space plots.492

Discharge is a measurable surrogate variable that indicates a state of a catchment.493

Its time rate of change (or the rate of change divided by discharge; i.e., g) indicates how494

fast the state evolves. Thus, the recession plot can be viewed as the phase space plot that495

illustrates a part of the phase space of a catchment. In addition, the recession plot can496

be thought of as a plot showing a part of the reconstructed phase space based on the method497

of time delay embedding. Takens’ delay embedding theorem asserts that information about498

the hidden states (unobservable states) of a dynamical system can be contained in a time499

series of an output and that the phase space can be reconstructed using multiple delayed500

time series of the output (Takens, 1981). For example, if discharge Q(t) is used as the501

output, Q(t) and its time delayed variables, Q(t − ∆τ), Q(t − 2∆τ), · · · , Q(t − (k −502

1)∆τ), where k is the embedding dimension and ∆τ is the time delay, can be used as503

state variables to reconstruct the phase space (Porporato & Ridolfi, 1997). When k and504

∆t are chosen appropriately, the reconstruction preserves the properties of the dynam-505

ical system that do not change under smooth coordinate changes (i.e., diffeomorphisms);506

For example, the attractor in the reconstructed phase space is topologically equivalent507

to the actual attractor, meaning that the trajectory shown in the reconstructed phase508

space can be used to understand system dynamics. Plotting the dynamics of Q(t) and509

dQ(t)/dt or Q(t) and g(t) is similar to that of Q(t+∆t/2) and Q(t−∆t/2) since Q(t)510

and dQ(t)/dt (or g(t)) have all the information necessary to estimate Q(t+∆t/2) and511

Q(t−∆t/2). In that sense, the recession plot is similar to a reconstructed phase space512

with the embedding dimension of two. In our case, the time delay is one day.513

We note here that suggesting what variables to use to construct (or reconstruct)514

a phase space that fully describe the system state is not a topic of this study. We only515

argue that the recession plot, that has been utilized very frequently in hydrology, has516
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a certain similarity to the phase space plot and that we may be benefited by analyzing517

the recession plot using methods and concepts developed to explain system dynamics518

using the phase space plots. The embedding dimension of two provides a convenient way519

of visualization perhaps without losing too much information. While the LSTM model520

result showed that 5 days of past discharge is needed to capture the flow recession dy-521

namics in the study catchment, Q(t−∆t/2) would be a dominant component in deter-522

mining Q(t+∆t/2) or g(t). In what follows we will focus on analyzing the system dy-523

namics shown in the recession plot.524

4.2 The attractor and hysteresis in the phase space plot525

A characteristic that we observe in the phase space plot is that there is an area where526

the LSTM estimated points are densely located. Figure 6A shows the Gaussian kernel527

density estimation f̂h(Q, g) (e.g., Silverman, 1986) illustrated by the color of each point.528

Scott’s method (Scott, 1992) was used to calculate the bandwidth of the kernel. The yel-529

low and green area is where the points are densely located. The dense area is a region530

where the catchment has spent a significant amount of time, meaning that the flow dy-531

namics of the dense area are slow or that the flow dynamics associated with that area532

are repeated frequently. The dense area can be divided into two parts according to its533

slope in the plot: the lower dense area with low slope (mainly the yellow area) and the534

upper dense area with high slope (mainly the green area).535

An event trajectory shows that the flow dynamics in the lower dense area (f̂h >536

0.35) is slow. The red line in Figure 6A is the LSTM model learned trajectory of an event537

from Sep. 1, 1991 to Oct. 14, 1991, which ended up in the yellow area. The event spent538

about half of its time in the yellow area (see the discharge time series in Figure 6B), while539

the line length of trajectory in the recession plot is much shorter inside the yellow area540

than the line length of trajectory of the earlier period. Note that the event trajectory541

in the yellow area also can be estimated using the ETS method, but is not easy to es-542

timate using the CTS method-based estimation due to greater noise (see Figure 6C). Note543

also that several parts of the trajectory (the red line) are indicated by dashed lines when544

the associated period is not determined as a recession period. According to the criteria545

for determining recession periods that we applied, this event was divided into three re-546

cession events due to a very small precipitation event (0.83 mm/day) and two small in-547

creases in discharge (about 0.02 mm/day increase over one day; see Figure 6B). How-548
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ever, looking at the discharge time series, it makes sense to treat the entire event as a549

single recession event. The precipitation event appears to be too small to affect the flow550

dynamics. The increases at two times are very small, and since the cause of the small551

increases is not clear, it seems better not to use the two small increases to determine the552

recession period.553

The yellow area is not only the area where the flow dynamics are slow but also the554

area that is often explored. Figure 6E shows that all 16 recession events over 30 days,555

which were selected previously, converge to the yellow area and then move along that556

area towards the lower-left corner. The same pattern is also observable in the forward557

model result (see Figure S2). It means that the yellow area behaves like an “attractor”,558

where all dynamics converge to that area and then move within that area, unless those559

dynamics are pushed away from it by external forcings. (See Beven and Davies (2015)560

for more discussion on the attractor in catchment hydrology.) This attractor will be called561

the “catchment flow attractor” because the attractor is a signature of catchment scale562

flow dynamics. (Note again that we only focus on the flow recession dynamics in this study563

and that exploring the potential existence of the catchment flow attractor in the rising564

limb of discharge is left for future research.) The dynamics in the catchment flow attrac-565

tor are expected to be equilibrated at a fixed point of zero flow as a point of “maximum566

entropy” (Beven & Davies, 2015). This state was not explored in this catchment because567

external forcing (e.g. precipitation) constantly pushes the system away from the point568

of maximum entropy.569

The dense area is where the most characteristic information about catchment scale570

recession dynamics exist. The area is a better representation of the ensemble of many571

recessions than the measure of central tendency and the lower envelope of Brutsaert and572

Nieber (1977). While the binned data captures the pattern of the dense area (see Fig-573

ure 4A), the binned data places above the dense area because it considers all data points.574

The situation is similar for the ML result with insufficient length of the past discharge.575

The full consideration results in the structure of the errors in the modeled g versus ob-576

served g plot (Figure 4C), and the error in the forward simulation using the central ten-577

dency model (Figure 5). While the performance of the central tendency model can be578

improved when some data points are filtered out before fitting the line (e.g., filtering out579

the first few days of data after each rain event and thus focusing more on the late time580

dynamics and the attractor), it certainly reduces the information content in data and581
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neglects the hysteretic dynamics. The method of Brutsaert and Nieber (1977) seems to582

fit the dense area to some extent (see Figure 3). However, we lack a method to fit the583

lower envelop objectively (e.g. Jachens et al., 2020). Furthermore, the upper part of the584

lower envelop with b = 3, which is predicted by the Boussinesq model, is much steeper585

than the slope of the upper dense area.586

The dense area can be parameterized to describe the flow recession dynamics within587

the area. A function consisting of two linear lines (in log-log space) can be fitted to the588

data points located in the dense area (f̂h > 0.2). The function can be written as: ln g =589

max(a1 + (b1− 1) lnQ, a2 + (b2− 1) lnQ). The crossover between the two lines occurs590

at Q∗ = (a2− a1)/(b2− b1). The lower line fits the catchment flow attractor with b =591

1.69 ± 0.00 up to Q = 3.29 mm/day (see the black dotted line in Figure 6A). The592

value is similar to that of the late time dynamics of the Boussinesq model (b = 1.5).593

The slope of the upper line is b = 2.10 ± 0.02. This value is smaller than the value594

of early time recession of the Boussinesq model (b = 3). The slope b = 2.10 is similar595

to the median value of 2.0 which is derived from the event-based analysis for 39 catch-596

ments in USA that are not affected by anthropogenic activities (Biswal & Marani, 2010).597

(Note that more objective or sophisticated parameterization schemes to fit the dense area,598

such as using the modal linear regression (Yao & Li, 2014), applying a variable thresh-599

old for f̂h over Q, or using a higher-order polynomial in the log-log space, might be ap-600

plicable but are not employed in this study.)601

Based on the trajectory of each event in the recession plot and the attractor, we602

can define “early time” recession and “late time” recession for each event. The early time603

recession is until the trajectory converges to the attractor, and the late time recession604

is after the trajectory converges to the attractor (see Figure 6A). Figure 6G shows that605

the attractor consists of the late time recession in that there were no increases in the re-606

cent past discharge data, while Figure 6F shows that above the attractor, there were in-607

creases in the discharge data of the recent past. This definition has an important dif-608

ference from the original definition based on the Boussinesq model result discussed ear-609

lier. Our definition is based on data and the characteristic extracted from data and ap-610

plies for each event trajectory, whereas the original definition is based on the process-611

based model and when describing data, it applies to the lower envelope of data.612
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Figure 6. Learning from what the machine learned. (A) Kernel density estimation at each

data point. Density is displayed in colors from yellow (dense) to blue (sparse). The red line is

the trajectory of the events from September 1, 1991 to October 14, 1991. The line is a solid

line during the periods that are determined as a recession period. Otherwise, it is a dashed line.

The black arrows indicate the direction of the flow recession dynamics in the plot, and the black

dashed lines are the power functions that are fitted to the dense area (f̂h > 0.2). (B) Time series

of the precipitation, the discharge, and the actual evapotranspiration during the event. If we use

the recession period determination criteria discussed in the text, this event is divided into three

events, and the vertical dotted lines show the timing of the division. The yellow area represents

the period during which the event moves within the yellow area (f̂h > 0.35) shown in (A). (C)

Data points of the event that are estimated using several methods. (D) The fitted early time re-

cession slope b for the events that converged to the attractor as a function of the initial discharge

at recession. (Note that only events that have more than three data points in the early time re-

cession were used.) (E) LSTM model-learned trajectories of all events longer than 30 days. (F) 5

days of the past discharge for the data contained in the upper box in (E), and (G) 5 days of the

past discharge for the events contained in the lower box in (E).
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The early time recession dynamics are, in general, similar to the dynamics reported613

in the event-based analysis. There is large event-to-event variability. As Jachens et al.614

(2020) reported, the recession event with lower initial discharge tends to have higher b615

values (see Figure 6D). At which discharge values a recession event converges to the at-616

tractor tends to vary from event to event but with a trend: recession events with lower617

initial discharge tend to converge to the attractor at lower discharge values. Furthermore,618

the early time trajectories are mostly convex similar to the result of Tashie et al. (2020).619

An important difference is that, as opposed to the claim of Tashie et al. (2020), only the620

early time trajectory is convex, but the entire recession event trajectory is concave un-621

less the event trajectory is forced away prior to its convergence to the catchment flow622

attractor by external forcings. The event-to-event variability of the early time recession623

dynamics are reduced for the events with high peak discharge values, resulting in the up-624

per dense area.625

These results would suggest that the analysis of the curvature of event trajectory626

is sensitive to two factors. First, it is sensitive to the −dQ/dt estimation method and627

the recession event determination criteria. Tashie et al. (2020) used the CTS method to628

estimate −dQ/dt and used the criteria of decreasing both Q and −dQ/dt for more than629

5–7 consecutive days to determine recession periods. Thus, it is possible that the early630

time dynamics is treated as one event, and the late time dynamics is treated as another631

event (which is mostly linear in the plot) or not considered as a recession event due to632

the noisy CTS method-based estimation (e.g., see the previous discussion about the Septem-633

ber 1991 - October 1991 event). Second, it is sensitive to precipitation events. As we de-634

scribed earlier, precipitation events can push the dynamics away from the catchment flow635

attractor before a trajectory converges to the catchment flow attractor. When this hap-636

pens frequently (e.g., in wet catchments), usual event-based analysis can place more weight637

on the early time dynamics than the late time dynamics.638

4.3 Attractor and the master recession curve639

The existence of the catchment flow attractor implies that, at some point in reces-640

sion, multiple time scale dynamics may reduce to slower dynamics that are similar for641

all events. The slow dynamics in the catchment flow attractor can be described using642

the fitted line. The function g decreases with decreasing Q approximately following the643

power function g = aQb−1, where b = 1.69 in this case. When g is the power func-644
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Figure 7. The attractor as the master recession curve. The thin lines illustrate the discharge

time series of all recession events longer than 8 days. The thin lines are shifted over time from

right to left until it meets the parameterized master recession curve (the thick dashed line).The

parameterized master recession curve was determined using Equation 4 with the parameters that

are estimated based on the CTS method estimation and the LSTM model using the past 5 days

of discharge. The subset figure shows the parameterized master recession curve (the dotted line)

and the time-shifted discharge time series of the previously selected 16 events (the solid line).

tion of Q (i.e., g = aQb−1 and −dQ/dt = aQb), the flow recession in the catchment645

flow attractor can be written as (e.g., Rupp & Woods, 2008):646

Q(t) = (Q1−b
0 + a(b− 1)t)1/(1−b) (4)

where Q0 can be chosen as discharge at a time when the system dynamics converge647

to the catchment flow attractor, and t is the time lapse since the system converges to648

the catchment flow attractor. When b → 1, Q(t) = Q0e
−a/t, and the catchment be-649

haves like a linear reservoir. When b > 1, the tail of the discharge time series is heav-650

ier than the exponential decay. Figure 7 illustrates that equation (4) with the estimated651

parameters captures the late time flow recession dynamics of each recession event that652

is longer than 8 days during the study period. The duration criterion was used to filter653

out as many events as possible that did not converge to the attractor due to precipita-654

tion events that occur before the trajectory of the recession event converges to it.655
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The curve represented by equation (4), that we estimated based on the parame-656

terized catchment flow attractor, is indeed the master recession curve. The term “mas-657

ter recession curve” was coined in Nathan and McMahon (1990) and introduced as a catch-658

ment characteristic that represents the most frequent low flow recession dynamics. The659

master recession curve estimated using the LSTM model result and the additional fit-660

ting is an ensemble of the late recession dynamics that can be thought of as a central661

tendency of the dynamics. The master recession curve has been estimated and discussed662

in many catchments (e.g., Nathan & McMahon, 1990; Lamb & Beven, 1997; Fiorotto &663

Caroni, 2013), but this is the first to derive a representation as an attractor that over-664

comes the variations from event to event without convergence (e.g., Tashie et al., 2020).665

Our results suggest that this may be the result of combination of the noise in data and666

the criteria for defining the recession periods that make it hard to recognize the master667

recession curve from plots of individual recessions. For the catchments where the mas-668

ter recession curve exists, we can expect that the attractor would exist in the recession669

plot and that each event trajectory converges to the attractor unless pushed away from670

the attractor due to external forcings. Thus, care must be taken when analyzing the re-671

cession plot especially for the low discharge range.672

4.4 Process-based interpretation673

While did not attempt to provide detailed physical interpretation based on process-674

based models, we can still infer some processes that might have resulted in the dynam-675

ics we observed in the phase space plot and Figure 7. The event to event difference of676

the early time recession, i.e., the dynamics before those converge to the attractor, might677

exist due to the difference in the initial condition and boundary conditions (e.g., exter-678

nal forcings, including precipitation and snowmelt, and consequent patterns of storage679

in the catchment). Difference in the initial condition and the boundary condition would680

also result in different hydrologic connectivity that could affect to flow recession dynam-681

ics. Those conditions would show seasonality, meaning that the event-to-event variabil-682

ity of the early time dynamics may also be dependent on evapotranspiration rates and683

seasonality. For example, most of the hysteresis is observed in dry seasons (see Figure684

S3). Sometime later the dynamics of each event converge to the attractor, as the effects685

of those conditions and forcings vanish. When the effects vanish, the spatial distribu-686
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tion of celerity that controls discharge could be uniquely characterized by the value of687

discharge at that time.688

The contrasting slope of each recession trajectory in the recession plot where it is689

high during the early time and is low during the late time may also indicate some pro-690

cesses. During the early recession, the discharge decreases at a faster rate. This may be691

due to the continuous deactivation of some fast flow pathways, such as overland flow and692

macropore flow, rapid reduction in transmissivity with lower storage, and rapid contrac-693

tion of variable source areas. For the late time dynamics, we hypothesize that most of694

the fast flow paths were already deactivated, the contraction of the variable source area695

is slow, and the flow dynamics are largely dominated by subsurface flow and perennial696

stream flow, resulting in low g values. During the late time, the Boussinesq model re-697

sult of the slope of the trajectory is not far from the slope of the parameterized attrac-698

tor, indicating that the Boussinesq model may be applicable to explain the late time dy-699

namics.700

It might be worth noting here that the attractor we defined does not seem to change701

over time during the study period, while the land cover has changed to some extent mostly702

as a result of logging. The effect on the shape of the recession part of hydrograph seems703

negligible based on our analysis as the late time recession dynamics of each recession event704

can be approximated by the estimated master recession curve (see Figure 7 where all avail-705

able data are plotted; see also Figure S4 where data for three periods, 1984-1993, 1994-706

2003, and 2004-2014, were plotted in the same way used to construct Figure 7). Further-707

more, the model performance is similar for the training period (March 1984 to Decem-708

ber 2000) and the validation period (January 2001 to December 2014) with low mean709

absolute error for both periods. While there are many studies that show that logging sig-710

nificantly impacts discharge (e.g., Moore & Wondzell, 2005), their implication to our study711

is unclear. Those studies mostly focus on analyzing small headwater catchments where712

a significant portion of the catchment is logged, and those studies mostly focused on an-713

alyzing the quantity of discharge (e.g., increasing discharge and decreasing evaporation714

at much larger time scale such as month or annual) and the peak flow rather than the715

shape of the recession part of hydrograph. Nevertheless, based on studies that show the716

effect of evapotranspiration on the low flow dynamics (e.g., Szilagyi et al., 2007), one may717

expect to observe the effect of logging on the shape of the attractor. As potential rea-718

sons for no significant temporal variation of the attractor in our study catchment, we can719
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hypothesize that: 1) the scale of this catchment is large enough compared to the area720

of the land use change; Only about 5% of the catchment has been recovered during the721

period, and about another 5% of the catchment has been logged during about the lat-722

ter half of the study period according to the LCMAP data, 2) in this catchment, the shape723

of the recession hydrograph might not be affected much by the land cover change and724

the associated change in water partitioning, but other factors such as geomorphologic725

structure, soil hydraulic properties, and geology that were not changed significantly dur-726

ing the study period dominantly determine the shape.727

4.5 Estimating storage-discharge relationship using the attractor728

The catchment flow attractor can be utilized to estimate the hysteretic active storage-729

discharge relationship. In previous studies, the catchment sensitivity function that is es-730

timated as a central tendency has been used to estimate the storage-discharge relation-731

ship (e.g., Kirchner, 2009; Dralle et al., 2018), neglecting the hysteresis in the storage-732

discharge relationship. The existence of the attractor implies that the hysteresis in the733

storage-discharge relationship is not detectable from the discharge data after each re-734

cession event converges to the attractor, while the hysteresis is detectable before the sys-735

tem dynamics converge to the attractor. It means that a non-hysteretic storage-discharge736

relationship would sufficiently capture the catchment dynamics during recession periods737

inside the attractor. Using the non-hysteretic part of the relationship, the hysteretic storage-738

discharge relationship can be estimated in terms of drying scanning curves if we calcu-739

late the storage using the mass-balance backward in time starting from the attractor.740

Figure 8 shows the (relative) active storage-discharge relationship for the two events741

(the 1998 July - September event and the 2013 June - August event that are shown in742

Figures 5 and 6) estimated considering the discharge time series; i.e., dS/dt = −Q. The743

relative active storage was estimated from the point marked by ‘X’ with the initial con-744

dition of zero relative storage. The storage-discharge relationship in Figure 8 shows that745

the event trajectories overlap at a low flow condition, when the system flow dynamics746

moves inside the attractor. The overlapped trajectory can be captured by the storage-747

discharge relationship that is estimated using the parameterized g(Q) for the attractor748

(see Figure S5). While we estimated the storage from the certain point in the example,749

it is straightforward to generalize it by estimating the storage-discharge relationship as-750

sociated with the attractor first and then calculate the storage backward in time from751
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Figure 8. The recession plot and the corresponding storage-discharge relationship. (A) Two

event trajectories in the recession plot are illustrated by the red and the blue lines. The solid

grey line shows the parameterized attractor, and the dashed grey line shows the parameterized

upper dense area. (B) The corresponding active storage-discharge relationship. The marker ‘X’ in

both (A) and (B) indicates g and the active storage at a low flow condition at which the storage

is set to zero. The solid grey line and the dashed grey line illustrate the relationship estimated

using the parameterized attractor and the parameterized upper dense area.

the attractor. The storage-discharge relationship associated with the upper dense area752

can also be used to estimate the hysteretic storage-discharge relationship at high flow753

conditions.754

It is also possible to estimate the relative “total” storage considering ET from an755

initial condition; see Figure S5. The figure implies that another attractor may be found756

using g = (dQ/dt)/(−Q−ET ) (instead of using g = (dQ/dt)/(−Q)) and that the at-757

tractor may be utilized to estimate the hysteretic (relative) total storage-discharge re-758

lationship. Note again that the denominator of g is dS/dt in its full formulation, and the759

form used in (1) neglects the effect of ET in the storage variation. While this method760

is, in part, based on the mass-balance, it is different from the traditional mass-balance761

approach that estimates the relative total storage starting from a fixed initial time. The762

traditional method can result in the drift of storage over time when the mass-balance763

is not closed and the uncertainty in the estimated storage accumulates over time. In the764

method using the attractor, the initial time of storage calculation is the most recent time765

when the system dynamics is in the attractor, reducing the uncertainty. It is more likely766

that this attractor may exist under the water-limited condition where ET is limited by767
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Figure 9. Other phase space plots. (A) −dQ/dt vs. Q plot and (B) Q(t + ∆t) vs. Q(t) plot.

The top figures show the data during the flow recession periods. The bottom figures show the

trajectory of each recession event (the grey lines) and the trajectory of the sixteen events that

were selected previously (the lines colored in a same way to Figures 7 and 8). The black dashed

lines illustrate the parameterized attractor from the g vs. Q plot using the LSTM model result.

water availability. We leave a further discussion about the effect of ET on the catchment768

sensitivity function and the total storage-discharge relationship for future study.769

4.6 Attractor in other phase space plots770

In this last subsection of discussion, we briefly introduce other phase space plots771

and how the attractor and the trajectory of system dynamics appear in the plots. Some772

plots that we previously discussed can be treated as a phase space plot. For example,773

the storage-discharge plot is a phase space plot, and where the event trajectories over-774

lap (e.g., the storage-discharge relationship approximated using the parameterized g(Q)775

for the attractor in the recession plot) is the attractor in the storage-discharge relation-776

ship (see Figure 8 and Figure S5). Figure 7 can also be thought of as a phase space plot,777

while unlike other phase space plots, a reconstruction of data (i.e., shifting event discharge778

time series) is required to produce the plot. In the phase space plot, the master reces-779

sion curve is the attractor.780
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In addition, the plot of Q(t+∆t) vs. Q(t) and the other type of the recession plot,781

−dQ/dt vs. Q plot, are phase space plots. As expected, the −dQ/dt vs. Q plot shows782

information in a similar way to the g vs Q plot (see Figure 9A), while the hysteretic dy-783

namics are displayed more clearly in the g vs Q plot. All findings that we draw from the784

g vs Q plot can be observed in the −dQ(t)/dt vs Q plot. For example, while the attrac-785

tor is not clearly visible in the −dQ(t)/dt vs Q plot generated by data (Figure 9A-1),786

the machine-learned trajectories show the attractor clearly (Figure 9A-2).787

Figure 9B shows the plot of Q(t+∆t) vs. Q(t). This plot was introduced in Langbein788

(1938) and discussed in Linsley et al. (1958) and Brutsaert (2005). They described that789

the lower envelope and the upper envelope can be used to characterize the slowest re-790

cession and the fastest recession dynamics, respectively. We discussed in section 4.1 that,791

this plot can be used as a phase space plot and, in theory, would show the same infor-792

mation compared to the other phase space plots we discussed. However, there is a no-793

table difference in the pattern of data shown in this plot compared to the pattern in other794

phase space plots: The area where the data points are densely located is clearly displayed795

over the entire discharge range. This is because the derivative of discharge, that induced796

the noise in the recession plot, is not involved. There is noise in the discharge data that797

creates a zigzag pattern in the event trajectory (see Figure 9B-3), but the noise does not798

appear large enough to obscure the lower envelope. The parameterized attractor from799

the g vs. Q plot can be displayed in this plot using: Q(t + ∆t) = (Q(t)1−b + a(b −800

1))1/(1−b), that is derived using equation (4), and the parameterized attractor fits the801

dense area for the low discharge range (< 3.29 mm/day; see Figure 9B-2). It might be802

tempting to parameterize the attractor from the Q(t+∆t) vs. Q plot as the dense area803

displays clearly unlike the data represented in the recession plot, but care must be taken.804

While the shape of the dense area for the low discharge range looks almost linear, im-805

plying that b = 1 in −dQ/dt = aQb, the b value estimated from the g vs Q plot is 1.69.806

The parameterized attractor with b = 1.69 looks almost linear in this plot, illustrat-807

ing that the non-linearity is not clearly visible. (See Figure S6 for the consequence of us-808

ing the b = 1 to characterize the low flow dynamics). In addition, the degree of hys-809

teresis is suppressed in this plot compared to other plots that we discussed; however, it810

does not mean that the hysteresis is negligible as we discussed in preceding sections (e.g.,811

see Figures 6 and 7).812
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In summary, those plots show the same information in a different way, and some813

information is displayed more clearly in one plot than the others. The hysteretic flow814

recession dynamics are shown more clearly in the g vs. Q plot or in the −dQ/dt vs Q815

plot than the plot of Q(t+∆t) vs. Q(t). The existence of the attractor can be more clearly816

inferred from the Q(t+∆t) vs Q(t) plot. It might be worthwhile to examine other phase817

space plots, e.g., Poincaré section of Porporato and Ridolfi (1997, 2003) (see Figure S7),818

if there is additional information about catchment dynamics that we could learn. For819

example, some phase space plots, such as the Poincaré section, include the rising limb820

of discharge data. What we have described in this study can be used to explain the flow821

recession dynamics in the plot (as described in Figure S7), and there may be room for822

better understanding the rising limb of discharge by utilizing such a plot. Also, there still823

might be unexplained patterns in the recession data which may be displayed more clearly824

in other phase space plots.825

5 Conclusions826

The flow recession analysis has been presented as a tool to understand catchment827

scale flow dynamics and catchment properties (e.g., Troch et al., 2013). However, there828

are seemingly contrasting methods of extracting information from the flow recession plot829

(Q versus −dQ/dt or (−dQ/dt)/Q). Traditional methods use the lower envelope to cap-830

ture the ensemble characteristics of many recessions (Brutsaert & Nieber, 1977), or use831

a fitted function to entire data points as a measure of centrality (Vogel & Kroll, 1992;832

Kirchner, 2009). In contrast, recent studies highlight the importance of the event scale833

analysis and have questioned the use of the lower envelope and the measure of central-834

ity (Jachens et al., 2020; Tashie et al., 2020).835

Based on the machine learning model results, we emphasize the importance of an-836

alyzing both the ensemble characteristics and the event scale dynamics. The machine837

learning model, the Long Short-Term Memory (LSTM) model using 5 days of past dis-838

charge, captures both the ensemble characteristics and the event scale dynamics of the839

Calawah catchment. The LSTM model results indicate that the early time dynamics,840

which are sensitive to initial conditions, lead to the hysteretic trajectories of system dy-841

namics that appears in the recession plot. Analyzing such hysteretic trajectories (event842

scale trajectories of the early time dynamics) is the focus of previous event scale anal-843

ysis studies (Jachens et al., 2020; Tashie et al., 2020). The model results further show844
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that the trajectories of system dynamics converge to an attractor, the catchment flow845

attractor, unless pushed away from the attractor due to external forcings. The early time846

recession dynamics of large events also share similar trajectories (i.e., the upper dense847

area determined in the Gaussian kernel density analysis), perhaps because those dynam-848

ics for larger events are less sensitive to initial conditions. The catchment flow attrac-849

tor and the upper dense area represent ensemble characteristics of many recessions. We850

also briefly illustrated that the catchment flow attractor can be utilized to estimate the851

the drying part of a hysteretic storage-discharge relationship. The active storage esti-852

mated in this study might be affected by evapotranspiration because we did not apply853

the criterion of Q >> ET . The criterion was not applied mainly because we used daily854

dataset and since applying the criterion would remove significant portion of the dry sea-855

son data. However, the shape of the attractor does not show seasonal variation, imply-856

ing that the effect of evapotranspiration on the attractor is not significant in the study857

catchment. (Note that the effect of evapotranspiration during the recession period may858

appear more clearly at low flow conditions; see Szilagyi et al. (2007).) One way to con-859

firm the effect of evapotranspiration on the active storage and the catchment sensitiv-860

ity function would be using hourly data. Applying the condition of Q >> ET to hourly861

data could avoid filtering out too much of dry season data. For the hourly application,862

the advantage of the LSTM model will become pronounced, as a larger number of past863

values would be required to capture the hysteretic flow recession dynamics.864

It might be worth noting that our findings are based on an effort to find patterns865

in the “data-based” modeling result (i.e., the LSTM model results) and to explain these866

patterns. There are hydrologic models, such as the two bucket model operating in par-867

allel, that could reproduce these patterns. When the dynamics of the faster bucket be-868

come negligible to the discharge flowing out of the entire system (i.e., during the late time869

recession), the slower bucket dominates the flow dynamics, which would then determine870

the attractor. Depending on the relative contribution of each bucket, the early time re-871

cession dynamics can show event-to-event variability. While such a model has been ap-872

plied to explain the dynamics shown in the recession plot (e.g., Gao et al., 2017), the ex-873

istence of the attractor in the recession plot and its relation to the master recession curve874

has not been discussed. That is because such a model application is, in general, limited875

to explain already known patterns (e.g., the time-variability of the early time recession876

dynamics). In terms of finding new patterns out of noisy data, we believe that apply-877
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ing a “data-based” model is preferable as it is relatively free from model structure er-878

ror compared to models in which their structure is determined a priori. Here, a poten-879

tial advantage of using a ML model over the traditional data-based model where trans-880

fer functions or autoregressive models are used is how flexibly the non-linearity of the881

model can be considered as we described in section 2.2.882

While we focused on analyzing one catchment, we believe that the ML model de-883

signed to capture the flow recession dynamics and the developed analysis tool can be gen-884

eralized in several ways to improve our understanding of catchment scale flow dynam-885

ics. This analysis can easily be extended to the continental scale or to the global scale886

by analyzing many catchments. Analyzing more catchments will allow us to examine if887

catchment attributes (e.g., area, aridity index, topographical, geological, and ecological888

properties) can explain some patterns, such as the existence of the dense area (includ-889

ing the attractor) and its slope, concavity, and extent.890

Machine learning tools are powerful in that the model structure is flexible. Rather891

than using only discharge Q, other variables can be used in the function H to examine892

if there is a better surrogate variable for the function or depending on a purpose of anal-893

ysis. For example, the past trajectory of precipitation J can be used in the H function894

when the prediction of an ungauged basin is of interest. Also, both J and Q (and also895

ET ) can be used to better capture the flow recession dynamics and the rising limbs. For896

a better forecasting, the model can also be trained while continuously updating the mod-897

eled Q as the input. Furthermore, the model can also easily be modified to estimate Q898

instead of g. We showed that the machine learning model result provide a convenient899

way to extract information out of the noisy catchment scale signature, the recession plot.900

Following the discussion in Beven (2020a), we hope the approach we applied in this study,901

making inferences from what the machine learned and what it needed to learn, will be902

useful for understanding more catchment scale dynamics when such inferences are well903

guided by scientific knowledge.904

Appendix A Non-hysteretic active storage-discharge relationship and905

one-to-one relationship in the recession plot906

Let us assume that there is an invertible, one-to-one relation p so that Sa = p(Q).907

We also assume that p is differentiable. The temporal fluctuation of the active storage908

during flow recession periods can be estimated as: dSa/dt = −Q if we assume negli-909

–37–



manuscript submitted to Water Resources Research

gible water exchange between the active storage and other compartments such as the in-910

active storage and negligible evapotranspiration loss from the active storage. (This ac-911

tive storage is identical to the ”dynamics” storage in (Staudinger et al., 2017).) The or-912

dinary differential equation can then be rewritten as dSa/dt = (dp(Q)/dQ)(dQ/dt) =913

−Q and then −(dQ/dt)/Q = 1/p′(Q), and the right hand side term is, by definition,914

one-to-one relation. 1/p′(Q) is indeed g(Q).915
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