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Abstract

Ka-band (32 GHz) communications links utilized by the National Aeronautics and Space Administration (NASA) flight missions

for science downlink are susceptible to degradation due to weather. In this study, a customized real-time forecast system has

been developed to predict zenith atmospheric noise temperature (Tatm) at the Deep Space Network (DSN) tracking sites using

machine learning (ML). A random forest model is trained with the Global Forecast System (GFS) forecast and analysis datasets

in addition to the Tatm measurements derived from on-site advanced water vapor radiometers (AWVR). The real-time forecast

uncertainty is quantified for different error regimes using the Self-Organizing Map method. The results show that the Root

Mean Square Error (RMSE) of the 24-hour Tatm prediction at Goldstone, CA increases with the increase of Tatm. Ninety

percent of the forecasts have RMSE (bias) of less than 3.50 K (0.22 K) for fair-weather conditions with Tatm < 17 K. In

comparison to the current approach in designing Ka-band communications links, application of weather forecasts can increase

data return to the downlink for 80% of the time. A downlink gain of up to 1.61 dB (45% more data) can be realized at 20?

elevation angle when Tatm = 9 K.
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Key Points: 19 

• A customized real-time weather forecast system is developed for the Deep Space 20 
Network tracking sites using a machine learning method. 21 

• 90% of the 24-hour forecasted atmospheric noise temperature has root-mean-squared-22 
error less than 3.50 K.  23 

• Up to 45% more data can be realized for Ka-band communications links using the real-24 
time weather forecast system.  25 
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Abstract 26 
Ka-band (32 GHz) communications links utilized by the National Aeronautics and Space 27 

Administration (NASA) flight missions for science downlink are susceptible to degradation due 28 
to weather. In this study, a customized real-time forecast system has been developed to predict 29 
zenith atmospheric noise temperature (Tatm) at the Deep Space Network (DSN) tracking sites using 30 
machine learning (ML). A random forest model is trained with the Global Forecast System (GFS) 31 
forecast and analysis datasets in addition to the Tatm measurements derived from on-site advanced 32 
water vapor radiometers (AWVR). The real-time forecast uncertainty is quantified for different 33 
error regimes using the Self-Organizing Map method.  34 

The results show that the Root Mean Square Error (RMSE) of the 24-hour Tatm prediction 35 
at Goldstone, CA increases with the increase of Tatm. Ninety percent of the forecasts have RMSE 36 
(bias) of less than 3.50 K (0.22 K) for fair-weather conditions with Tatm < 17 K. In comparison to 37 
the current approach in designing Ka-band communications links, application of weather forecasts 38 
can increase data return to the downlink for 80% of the time. A downlink gain of up to 1.61 dB 39 
(45% more data) can be realized at 20° elevation angle when Tatm = 9 K.  40 
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1 Introduction 41 
Ka-band (32 GHz) communications links utilized by the National Aeronautics and Space 42 

Administration (NASA) deep space flight missions for science downlink are more susceptible to 43 
degradation due to weather than lower frequency S-band (2.3 GHz) and X-band (8.4 GHz) (Slobin, 44 
2009). The current approach in designing Ka-band communications links employs conservative 45 
assumptions, such as designing at the lowest elevation angle of a tracking pass and with high 46 
probability of weather constraints (Davarian et al., 2004). For example, the Europa Clipper mission 47 
assumes a 3 dB margin for the data downlink. Such assumptions can result in inefficient downlink 48 
capacity. By making use of real-time weather forecasting one can greatly increase data return 49 
efficiency and the reliability of the communications links (Shambayati, 2004; Biscarini et al., 50 
2016; Morabito et al., 2016; Nikoukar et al., 2020).  51 

Weather service agencies, such as the National Centers for Environmental Prediction 52 
(NCEP), provide operational weather forecasts globally using numerical weather prediction 53 
(NWP) models. Raw NWP output, however, is not adequate to resolve the fine-scale topographical 54 
features and mesoscale processes that govern local weather at specific locations, such as at the 55 
Deep Space Network (DSN) tracking sites. In addition, the NWP raw output contains biases 56 
relative to local observations. Morabito et al. (2016) showed that the NWP model captures local 57 
weather conditions at the DSN tracking sites most of time but significant discrepancies occur due 58 
to cloud and precipitation processes. 59 

A variety of (dynamical or statistical) downscaling methods have been developed to 60 
provide robust weather predictions at local scales for various applications (Barsugli et al., 2013). 61 
Dynamical downscaling extrapolates the effects of large-scale processes to regional or local scales 62 
of interest using high-resolution NWP models. Physical laws are explicitly represented in the NWP 63 
models. However, dynamical downscaling can be sensitive to biases in the boundary and initial 64 
conditions from large-scale coarse-resolution models. Dynamical downscaling can be 65 
computationally expensive, which is not practical for use in mission operations such as for 66 
command and on-board control. Statistical downscaling determines relationships between large-67 
scale patterns simulated by the global NWP models and responses on the local scale using 68 
statistics-based techniques, including Machine Learning (ML) methods. These relationships are 69 
applied to the NWP outputs and are transformed into statistical inferences of local responses with 70 
bias corrections. Statistical downscaling requires a relatively low number of computing resources 71 
and can be readily applied to real-time or near real-time space mission operations. 72 

In this study, a customized weather forecast system with uncertainty quantification (UQ) 73 
is developed for the DSN tracking sites using a ML method. The workflow of the ML forecast 74 
system is shown in Figure 1. We use global NWP datasets and in-situ observations to train the 75 
ML-forecast model. A UQ model is also trained to characterize the bias and standard error of the 76 
real-time forecasts. Thus, real-time weather forecasts with error characteristics can be provided for 77 
the DSN tracking sites.  More details of the real-time ML forecast system will be described in the 78 
following  sections. We use a 24-hour forecast of zenith atmospheric noise temperature (Tatm) at 79 
Goldstone, CA as a demonstration case of the ML forecast system. This ML forecast system will 80 
be adopted to other tracking sites and expanded to predict other atmospheric variables when in-81 
situ observations become available.  82 

Section 2 describes the datasets used for the training and testing of the ML forecast system. 83 
The ML forecast model and the forecast results are presented in section 3. Section 4 presents the 84 
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UQ model and results. Section 5 discusses the assessments of the ML forecasts used to quantify 85 
improvements in Ka-band downlink efficiency for the Europa Clipper mission. Section 6 provides 86 
summary and discussion. 87 

2 Training and testing datasets 88 

2.1 Atmospheric noise temperature 89 
This study aims to apply ML to NWP model forecast data and generate real-time forecasts 90 

of zenith Tatm at the DSN tracking sites, which can be ingested into the DSN communication link 91 
protocol. The increase of Tatm can be used to assess other weather-induced effects such as 92 
attenuation due to gas (e.g. water vapor and oxygen), cloud liquid and rain liquid (Slobin, 2009; 93 
Morabito, 2014). The Advanced Water Vapor Radiometer (AWVR) has been used to measure 94 
weather effects at the DSN Goldstone tracking site for over 20 years and at the Madrid site for ~11 95 
years. The AWVRs were primarily developed to remove atmospheric effects from radio science 96 
data for the Cassini mission and are currently being used for the Juno mission (see references in 97 
Morabito et al., 2022). Tatm and precipitable water vapor (PWV) can be derived from sky brightness 98 
temperatures observed by the AWVR (Slobin, 2005; Morabito, 2007; Morabito et al., 2015; 2016; 99 
2022). The AWVR data acquired in 2019 encountered problems related to inadequate temperature 100 
control (Morabito et al., 2022), thus these data are not used in this study.  101 

We use hourly-averaged Tatm from 2015 to 2020 (except 2019) as observations to train and 102 
test the ML forecast system. The AWVR observations (Figure 2) show that the minimum value of 103 
Tatm at Goldstone is 7.15 K. The maximum value of Tatm can be up to 132.10 K (or higher), mainly 104 
due to the impacts of cloud liquid and rain precipitation. 90% (95%) of the Tatm observations are 105 
less than 16.50 K (19.11 K).  106 

2.2 NWP analysis and forecast  107 
NCEP Global Forecast System (GFS) provides global analysis and forecasts (up to 16 days) 108 

of the weather at 0.25° horizontal resolution every six hours (NCEP, 2015). The GFS data archive 109 
is available online with data spanning from 2015/01/15 to the present. Data samples numbering 110 
5435 from both the GFS and AWVR are available to train and test the ML forecast model. Both 111 
GFS analyses and forecasts are used as predictors, in order to retain information from current 112 
observations and physical model forecasts. 113 

We analyze the correlation of ln(𝑇!"#) at 24-hours after the forecasting time (T24) with 114 
the coarse-grid-scale variables from both GFS analysis and 24-hour forecasts at the forecasting 115 
time (T0). Figure 3 shows that GFS 24-hour forecast (PWV_f024) nicely predicts the magnitude 116 
and variation of PWV observed at Goldstone (PWV_AWVR) for year 2017. The variation of 117 
ln(𝑇!"#) is following the variation of PWV most of the time, with a correlation coefficient of 0.71 118 
between the ln(𝑇!"#) at T24 and the 24-hour forecasted PWV at T0. In this study, those GFS 119 
variables with correlation > 0.30 are selected as the predictors to forecast ln(𝑇!"#) at T24 in the 120 
ML forecast model (Table 1). In general, GFS 24-hour forecasts have better correlation with Tatm 121 
than GFS analysis, because GFS 24-hour forecasts are valid at the same time of Tatm while GFS 122 
analysis is valid at 24 hours before Tatm. All of the moisture, cloud, precipitation and surface 123 
meteorological data from the 24-hour forecasts provide useful information to predict Tatm. Only 124 
PWV and surface meteorological data from analysis have correlation with ln(𝑇!"#) that are larger 125 
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than 0.30. This suggests that including NWP forecasts as predictors will provide better forecast 126 
skills than using in-situ measurements alone.   127 

3 Machine learning forecast 128 
Random forest (RF) regressor in the standard Python scikit-learn package (https://scikit-129 

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html) is used to 130 
build the ML-based forecast system. Historical AWVR and GFS data (a total of 5,435 samples) 131 
from 2015 to 2020, except 2019, are used for model training and testing. Pipeline in the scikit-132 
learn package (https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) is 133 
applied for the standardization of the predictors. Hyperparameters are optimized by a grid search 134 
with the 10-fold cross-validation method (https://scikit-135 
learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html). Model 136 
performance is evaluated by inspecting the root mean square error (RMSE) of Tatm relative to the 137 
AWVR measurements. We evaluate the model performance using the “leave-one-year-out” cross 138 
validation method (Kaplan et al., 2015; Su et al., 2020), which ensures the independence of the 139 
training and testing data. That is, for a single model, four years’ worth of data are used to train the 140 
ML forecast model and the withheld year is used to evaluate the forecast performance.   141 

The forecasted Tatm has a similar distribution to that of the AWVR observations (Figure 2). 142 
However, the data range in the forecast is smaller than that of the observations. The minimum 143 
(maximum) value is 7.80 K (43.19 K) in the forecast vs. 7.15 K (132.10 K) in the AWVR 144 
observation. Figure 4 shows that the forecasted Tatm has good agreement with the observations, 145 
especially when the observed Tatm is less than 17 K. The RMSE (bias) of all of the forecasts is 4.72  146 
(-0.27) K. Ninety percent of the forecast Tatm has a bias within 0.25 K (Figure 5a). The RMSE for 147 
Tatm < 9.50 K (20% of the forecasted Tatm) is 0.63 K (Figure 5b). The RMSE increases with the 148 
increase of Tatm. Ninety percent of the forecasts has a RMSE less than 3.50 K (or 25% relative to 149 
the mean Tatm) for fair-weather conditions with Tatm < 17 K. The forecast RMSE increases 150 
significantly for extreme-weather conditions with Tatm > 17 K. 151 

The PWV_f024 from GFS is the most important predictor of Tatm in the RF forecast model 152 
(Figure 6), consistent with the highest correlation between PWV_f024 and ln(𝑇!"#) (Table 1). 153 
The 24-hour forecasts from GFS are more important than the analysis from GFS in the RF forecast 154 
model, consistent with the correlations in Table 1. The relative importance of predictors are similar 155 
in different years with slight differences in the magnitude of the relative importance.  156 

4 Uncertainty quantification (UQ) 157 
Real-time error characterization is provided by a UQ methodology similar to that in 158 

Teixeira et al. (2021), wherein a clustering algorithm is used to identify regimes of prediction error.  159 
Teixeira et al. (2021) showed that error characterization of a geophysical prediction of atmospheric 160 
motion vectors benefitted from separating those predictions into different geophysical regimes 161 
because the error characteristics of the predictions can vary significantly between the regimes. The 162 
cursory analysis (Figure 5) shows that the bias and RMSE of the RF prediction is significantly 163 
greater for predictions of Tatm > 17 K. We enhance upon this simple observation by clustering with 164 
predictor variables in addition to the predictions themselves in the UQ analysis. 165 

A schematic of our UQ approach is detailed in Figure 7. We denote the predictors of the 166 
RF model as X, the RF prediction as Y(, and the observed Tatm as Y. We characterize the error as 167 
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both bias (the mean of [Y( − Y]) and standard error (the standard deviation of [Y( − Y]). After 168 
randomly splitting the dataset into a training (75%) and a testing (25%) set, we first train a 169 
clustering algorithm (a self-organizing map [SOM], as will be discussed in a subsequent 170 
paragraph) on the set of predictors X, predictions Y(, and observations Y from the training dataset 171 
(Panel 1 in Figure 7). Because it includes both the RF prediction and the observed Tatm, the 172 
clustering algorithm captures regimes of prediction error better than it would if the observed Tatm 173 
were not included. Of course, this implies a trade-off in which the clustering algorithm itself cannot 174 
be used operationally, since we have no knowledge of the actual Tatm in real applications; instead, 175 
we develop a classification algorithm (specifically a classification RF) which maps each set of 176 
predictors and prediction (X and Y() to its assigned cluster (Panel 2 in Figure 7). As such, any RF 177 
prediction and its associated predictors can be assigned a set of probabilities of belonging to each 178 
cluster. Subsequently, the bias and standard error for a particular RF prediction is the weighted 179 
mean of the biases and standard errors from each of the clusters (when applied to the testing set), 180 
where each value is weighted by the probability mapped from the RF prediction to that respective 181 
cluster. Because the clustering approach can be sensitive to the initial conditions of the training 182 
dataset, we run an ensamble of 100 identical models with different randomly-sample training 183 
datasets. The final model is the mean across the ensamble of predicted bias and standard error 184 
values. 185 

We employed a self-organizing map in the clustering portion of the error characterization 186 
model. SOM is an unsupervised learning technique in which a neural net fits a grid of neurons to 187 
the topological shape of a dataset. We choose SOM due to their repeated success in clustering 188 
atmospheric data into identifiable and interpretable geophysical regimes (Marques and Chen, 189 
2003; Richardson et al., 2003; Liu et al., 2006). As in Teixeira et al. (2021), we validated our 190 
trained model using the Continuous Rank Probability Score (CRPS), a scoring rule for 191 
probabilistic forecasts. CRPS is as a function of a cumulative distribution function F and an 192 
observation x as follows: 193 
 194 

CRPS(F, 𝐱) = 	, 	

!

"!
(F(𝐲) − 	H(𝐲 − 𝐱))#	𝐝𝐲						 195 

 196 
where H() is the Heaviside step function (Gneiting and Katzfuss, 2014). In this context, F is the 197 
cumulative distribution function associated with the bias and standard error that the UQ model 198 
provides, while x is a scalar observation of the difference between Tatm and the model prediction. 199 
In essence, CRPS attempts to measure how close an observation is to the center of a distribution, 200 
while penalizing distributions that are unnecessarily wide. We analyze the mean CRPS value for 201 
the test population of Tatm errors, with a lower CRPS value reflecting a more calibrated 202 
probabilistic forecast. Conveniently, the CRPS also serve as a metric for selecting the optimal 203 
number of clusters for SOM. Figure 8 shows CRPS values evaluated under different choices of 204 
cluster number compared against the CRPS value for a naïve model, which is equivalent to a 205 
single-regime model in which the error distributions are given by the population mean and 206 
population standard deviation of Tatm. The figure illustrates two key observations. Firstly, for all 207 
SOMs, the CRPS of forecasts is significantly lower than that of the naïve model; secondly, that as 208 
the number of clusters increases, the CRPS decreases in a inverse-logarithmic fashion.  209 

The second observation forms the basis for our choice of the cluster number. Our final 210 
model consists of SOM with a 30´30 feature grid which clusters the training data into 50 distinct 211 
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regimes. The UQ values applied on the testing dataset are illustrated in Figure 9. For 80% of the 212 
data, the estimated bias ranges between with -1.00 K and 1.76 K. However, for the 10% of data 213 
lying in the extremes, the estimated bias can range as low as -11.30 K and as high as 38.32 K. The 214 
RMSE estimates are similarly skewed: 50% of the data has an estimated RMSE estimate between 215 
0.67 K and 1.99 K; a further 30% range between 2.00 K and 3.28 K; and the highest 20%, however, 216 
ranges between 3.28 K and 12.59 K.  217 

We note that the results of the UQ analysis a bit different from that of Figure 5. Specifically, 218 
Figure 5 indicates that the first 40th percentile of data have a RMSE < 1.00 K, while the UQ result, 219 
as illustrated by the right-most panel of Figure 9, predicts that 40th percentile of data have a RMSE 220 
< 1.76 K. We note that this is because Figure 5 is derived from validation versus withheld data, 221 
and in general we would not know the prediction uncertainty of an estimate that arises from the 222 
forecast Tatm from the ML model in section 3. This gap is filled by the methodology in section 4, 223 
and the corresponding analog to Figure 5 is illustrated in the right panel of Figure 9. In general, 224 
the UQ methodology tends to overestimate the uncertainty of low Tatm percentiles, while 225 
underestimating the uncertainty of high Tatm percentiles. However, the similar upward convex 226 
shapes of the two plots and their similar magnitudes are encouraging, especially since estimation 227 
of uncertainties (second moments) tend to be much more difficult than estimation of the means 228 
(first moments).  229 

5 Link budget analysis 230 
The link budget analysis used by flight projects and telecom engineers makes use of the 231 

received signal-to-noise (SNR) as a key parameter related to data rate (Yuen, 1983). Received 232 
SNR is related to the received signal power divided by the observed noise power. The downlink 233 
signal power consists of contributions from the spacecraft transmit power, antenna gain, and 234 
various losses encountered as the signal propagates down to the receiving antenna, followed by 235 
contributions such as the gain of the receiving antenna. One of the loss contributors is due to the 236 
atmosphere, consisting primarily of the atmospheric attenuation due to oxygen and water vapor 237 
absorption, as well as liquid water such as in clouds and rain. Observed noise power includes the 238 
contribution due to the atmosphere, which is related to the elevation angle of the antenna, the 239 
optical depth of the atmosphere at zenith, and the effective radiating temperature of the 240 
atmosphere. 241 

Telecom engineers typically use two types of SNR to analyze a link: carrier SNR and data 242 
channel SNR (we neglect ranging).  For all link budgets, we ensure that the carrier SNR is adequate 243 
for signal lock. The data channel SNR is converted to the bit SNR (𝐸$/𝑁%) using the data rate. For 244 
a given elevation angle, we can define the downlink gain from the application of weather forecasts 245 
(forecast gain) as being the difference between the 𝐸$/𝑁% using the forecast-provided zenith Tatm 246 
(adjusted to the elevation angle of interest) and the 𝐸$/𝑁% using the nominal DSN 247 
Telecommunications Link Design handbook, 810-005 (Slobin, 2009) provided zenith value at 90% 248 
weather availability (and then adjusted to the elevation angle of interest). 249 

The link budget approach made use of nominal Europa Clipper link budget parameters at 250 
Ka-band taken from the Europa Clipper Telecommunications Design Control Document (Babuscia 251 
et al., 2020). A link budget was first generated to verify agreement with Europa Clipper project 252 
Ka-band downlink link budget from Babuscia et al. (2020), which assumed a range distance of 6.4 253 
AU, an elevation angle of 10º, no Jupiter hot-body noise and the Canberra, Australia DSN tracking 254 
site. 255 
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Next, the link budget was run to reference Goldstone as the downlink site using a Ka-band 256 
(32 GHz) capable downlink 34-m diameter antenna. The links were run with both the DSN 257 
Telecommunications Link Design handbook’s assumptions and weather forecast assumptions 258 
provided by the forcasting results. We assumed no ranging in any of the links, just a carrier channel 259 
and a downlink data channel with Binary Phase-shift Keying (BPSK) modulation. The link budgets 260 
were run for elevation angles of 90º, 60º, 40º and 20º with zenith Tatm ± 𝜎 values of 8.96 ± 0.63 K, 261 
10.02 ± 0.95 K, 11.10 ± 1.98 K, 12.75 ± 2.99 K, 14.57 ± 2.35 K, 15.76 ± 3.30 K, 17.57 ± 9.78 K 262 
and 22.55 ± 16.48 K. The results were examined and provided to the forecasting system. 263 

The results of forecast gain versus mean Tatm is shown in Figure 10 for each elevation angle 264 
case. At the low-end of  Tatm = 8.98 K, one can realize a forecast gain of 1.61 dB (45% more data) 265 
at 20° elevation angle with an uncertainty of 0.16 dB. This forecast gain is significant and would 266 
result in higher data return for missions with Ka-band telecommunication links. The forecast gain 267 
decreases with the increase of Tatm. At 80% of the time, higher data return can be realized when 268 
weather forecasting is used in telecommunication operations in place of using 90% weather 269 
availability in the link assumptions. All of the curves intersect at 0 dB for 15.76 K, as this is the 270 
90% weather availability point to which projects nominally design. Below this point at the high-271 
end of Tatm, most of the curves lie above the typical telecom link analysis margin point (-3 dB), 272 
implying that using 3 dB margin is adequate here. If a project opts to, they can lower the data rate 273 
appropriately during these adverse weather conditions to ensure lock-up with added margin. 274 

6 Summary and discussion 275 
In this study, we have developed a customized real-time weather forecast system for the 276 

DSN tracking sites using a ML method. A RF forecast model is trained using the global GFS 277 
forecast and analysis datasets and the Tatm derived from the AWVR measurements at Goldstone, 278 
CA. Twenty-four hour forecasts of Tatm are provided at Goldstone, CA. Error characterization of 279 
the forecasts is calculated using a SOM clustering and a RF classification method. Downlink gain 280 
of the telecommunications links is estimated by comparing the differences between using the real-281 
time weather forecasts and using the 90% weather availability in a telecommunication link budget 282 
model.  283 

The forecasts have a RMSE of 0.63 K for Tatm < 9.50 K. Forecast error increases when the 284 
Tatm increases. Ninety percent of the forecasts have a RMSE < 3.50 K and a bias within 0.25 K. 285 
The RMSE for all the forecasts is 4.72 K. The UQ methodology allows real-time ML forecasts to 286 
have unique RMSE values and bias estimates; 90% of forecasts will have an estimated RMSE < 287 
4.49 K and an estimated bias within ± 2K. Forecast gain can be as high as 1.61 dB (45% more data 288 
downlink) when the forecasted Tatm is at the low-end at 20 deg elevation. Higher data return can 289 
be realized for 80% of the time if the real-time weather forecast is applied in flight project 290 
operations. 291 

The real-time ML forecast system can provide forecasts of up to 16 days ahead for the DSN 292 
tracking sites. Real-time commands would be used to change data rates downlinked by the 293 
spacecraft for short time span forecasts (~6 hours to 2 days, which depends on round-trip light 294 
time and project operations). Forecasts over a longer time span may be used in the preparation of 295 
upcoming tracks such as defining data rate profiles in command loads that are uplinked to the 296 
spacecraft. For projects that uplink command loads on reasonably short periods such as within two 297 
weeks, these forecasts can be used to provide canned-in downlink rates to the uplink command 298 
loads. Real time commands would then be used to override these in case of significant weather 299 
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changes from the 16-day forecasts versus the 1-2 day forecasts. This ML forecast system will be 300 
adopted to other tracking sites and expanded to predict other atmospheric variables in future 301 
studies.  302 

With enhancement of knowledge and advancement of technology, technical issues for deep 303 
space missions have become increasingly more complex and comprehensive. Larger volumes and 304 
more diverse types of data are and will be collected. As the capacity of on-board data storage 305 
becomes stressed, efficient transmission of data to Earth in a timely fashion is desired. The ML 306 
model for predicting Tatm can be generalized to many other missions in which data communications 307 
are essential. It could serve as a component of future onboard data prioritization protocol. 308 
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Figure 1. Workflow of the Machine Learning-based forecast system.  379 
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Figure 2. Cumulative distribution function (CDF) of Tatm (K) at Goldstone, CA.  381 
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Figure 3. Time series of  precipitable water vapor (PWV) from GFS 24-h forecast (PWV_f024) 383 
and AWVR measurements (PWV_AWVR), as well as the AWVR Tatm in 2017 at Goldstone, 384 
CA.  385 
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Figure 4. The observed (AWVR) vs. forecasted (Fcst) Tatm (K).  387 
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 388 

Figure 5. Forecast (a) bias (K) and (b) RMSE (K) sampled by the forecasted Tatm. X-axis is the 389 
percentile range (%) of the forecasted Tatm; values inside parentheses are the corresponding 390 
ranges of the forecast Tatm (K).  391 

392 
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 393 

Figure 6. Relative importance of predictors for predicting Tatm in 2017 using the ML model.  394 
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 395 

Figure 7. A schematic representation of the Uncertainty Quantification model training and 396 
implementation framework. Panel 1 illustrates the clustering step, where a clustering algorithm is 397 
trained on the predictors (X), the predict and (Y(), and the true values (Y). Panel 2 demonstrates 398 
the subsequent step, where a classification algorithm models the relationship between X, Y(, and 399 
the defined clusters, circumventing the need for Y in the implementation step (Panel 3).  400 
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 401 

Figure 8. Line plot of CRPS values under different choices of cluster number. The blue line 402 
represents the mean CRPS for ensemble predictions at different specified cluster numbers for the 403 
Self-Organizing Maps, while the blue shadow area represents the standard deviation of the CRPS 404 
for the ensamble. The red line represents the CRPS value for a “naïve” model which considers 405 
only the training population mean and standard deviation, with the red shadowed area 406 
representing the standard deviation of the CRPS ensamble for different training datasets.   407 
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 408 

Figure 9. Quantile plot of bias (K) (left panel) and standard error (K) (right panel) from the 409 
Uncertainty Quantification model. Each point represents the respective quantile to the nearest 410 
one-tenth of a percentile. The red numbers represent the value for each decile (in K), including 411 
the maximum and minimum values.   412 
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 413 

Figure 10. Forecast Gain (DEb/N0, dB) relative to the 90% weather availability versus mean Tatm 414 
for different elevation angle cases (90°, 40° and 20°). Error bars represent the forecast errors. X-415 
axis is the percentile range (%) of the forecasted Tatm; values inside parentheses are the 416 
corresponding ranges of the forecast Tatm (K).    417 
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List of tables 418 

Table 1. List of predictors to forecast 24-hour Tatm in the machine learning forecast model. GFS 419 
analysis data is valid at the forecasting time (T0); GFS 24-hour forecast data provides 24-hour 420 
forecasts at T0; Tatm is valid at 24 hours after the forecasting time (T24). Third Column is the 421 
correlation of predictors with ln(𝑇!"#).    422 

Variable name Variable type Correlation Description 
PWV_f024 24-h forecast 0.71 Precipitable water vapor 
qv2_f024 24-h forecast 0.59 2-m specific humidity 
Td_f024 24-h forecast 0.57 2-m dew point temperature 
PWV_f000 analysis 0.52 Precipitable water vapor 
qv2_f000 analysis 0.40 2-m specific humidity 
RH2_f024 24-h forecast 0.39 2-m relative humidity 
Td_f000 analysis 0.38 2-m dew point temperature 
CW_f024 24-h forecast 0.37 Cloud water 
AccRain_f024 24-h forecast 0.32 6-hr accumulated precipitation 

 423 


