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Abstract

Following the 15 January 2022 Hunga Tonga-Hunga Ha’apai eruption, several trace gases measured by the Aura Microwave

Limb Sounder displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2,

and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl

injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in

both magnitude (far exceeding any previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere).

We estimate the mass of H2O injected into the stratosphere to be 146+-5 Tg - ˜10% of the stratospheric burden. It may take

several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate

aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O.
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Key Points:11

• Following the Hunga Tonga-Hunga Ha’apai eruption, the Aura Microwave Limb12

Sounder measured enhancements of stratospheric H2O, SO2, and HCl13

• The mass of SO2 and HCl injected is comparable to that from prior eruptions, whereas14

the magnitude of the H2O injection is unprecedented15

• Excess stratospheric H2O will persist for years, could affect stratospheric chem-16

istry and dynamics, and may lead to surface warming17
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Abstract18

Following the 15 January 2022 Hunga Tonga-Hunga Ha’apai eruption, several trace gases19

measured by the Aura Microwave Limb Sounder displayed anomalous stratospheric val-20

ues. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhance-21

ments were injected by the eruption. In comparison with those from previous eruptions,22

the SO2 and HCl injections were unexceptional, although they reached higher altitudes.23

In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any24

previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere).25

We estimate the mass of H2O injected into the stratosphere to be 146±5Tg — ∼10%26

of the stratospheric burden. It may take several years for the H2O plume to dissipate.27

This eruption could impact climate not through surface cooling due to sulfate aerosols,28

but rather through surface warming due to the radiative forcing from the excess strato-29

spheric H2O.30

Plain Language Summary31

The violent Hunga Tonga-Hunga Ha’apai eruption on 15 January 2022 injected not32

only ash into the stratosphere but also large amounts of water vapor, breaking all records33

for direct injection of water vapor, by a volcano or otherwise, in the satellite era. This34

is not surprising since the Hunga Tonga-Hunga Ha’apai caldera was formerly situated35

150 meters below sea level. The massive blast injected water vapor up to altitudes as36

high as 53 km. Using measurements from the Microwave Limb Sounder on NASA’s Aura37

satellite, we estimate that the excess water vapor is equivalent to around 10% of the amount38

of water vapor typically residing in the stratosphere. Unlike previous strong eruptions,39

this event may not cool the surface, but rather it could potentially warm the surface due40

to the excess water vapor.41

1 Introduction42

Hunga Tonga-Hunga Ha’apai (HT-HH), a submarine volcano in the South Pacific43

(20.54◦S, 175.38◦W), reached its climactic eruption phase on 15 January 2022. The blast44

sent a volcanic plume into the mesosphere to altitudes of up to 57 km — a record in the45

satellite era (Carr et al., 2022; Proud et al., 2022). It also triggered tsunami alerts across46

the world (Ramirez-Herrera et al., 2022; Carvajal et al., 2022), waves that propagated47

globally (Wright et al., 2022), and ionospheric disturbances (Themens et al., 2022). De-48

tails about the HT-HH caldera complex, seismology, and volcanology are given by Kusky49

(2022) and Yuen et al. (2022).50

In addition to particulate matter, volcanic eruptions can loft large quantities of gases51

into the stratosphere. Although around 80% of this gas volume can be magmatic H2O52

(Pinto et al., 1989; Coffey, 1996), up to 90% of the volcanically emitted humidity is usu-53

ally removed by condensation at the cold point tropopause (Glaze et al., 1997). Consid-54

erable amounts of CO2 and SO2 are also often found in volcanic plumes, along with HCl55

and other trace gases (e.g., Carn et al., 2016). SO2 reacts with H2O and OH to form sub-56

micron sulfate aerosols that reflect solar radiation, lowering surface temperature. For ex-57

ample, the radiative influence of the 1991 Mount Pinatubo eruption “put an end to sev-58

eral years of globally warm surface temperature” (McCormick et al., 1995), illustrating59

the capacity of volcanic eruptions to substantially alter global climate.60

The composition of the HT-HH plume is unprecedented, as the eruption injected61

vast amounts of H2O directly into the stratosphere. The high moisture content of the62

plume is perhaps not surprising, since the HT-HH caldera was situated 150m below sea63

level (Cronin et al., 2017), where water in contact with the erupting magma (at temper-64

atures of ∼1100–1470K) was superheated, resulting in explosive steam.65
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The Microwave Limb Sounder (MLS) onboard NASA’s Aura satellite provides mea-66

surements of 15 trace gases, among them H2O, HCl, and enhanced volcanic SO2. MLS67

measures thermal emission from the Earth’s limb, covering spectral regions near 118, 190,68

240, and 640GHz (Waters et al., 2006). MLS is well suited to observe volcanic plumes,69

since microwave radiances are largely unaffected by sulfate aerosols. Moreover, the MLS70

two-dimensional retrieval exploits overlapping limb observations to better constrain trace71

gas gradients (Livesey et al., 2006), allowing the spatial heterogeneity of the plume to72

be captured.73

Here, we use MLS version 4 (v4) data, instead of the most recent version 5 (v5).74

In the v4 190-GHz retrievals, tangent point pressure information is taken from earlier75

retrievals considering O2 spectral lines, while v5 retrievals update this information in light76

of measurements of H2O emission. Poor fits to these signals in regions with extremely77

enhanced H2O, such as those discussed here, lead to discrepancies in tangent pointing78

information as large as ∼2.5 km, degrading the accuracy of the H2O, N2O, HNO3, and79

HCN retrievals in v5.80

2 Validity of MLS Measurements After the Eruption81

Ten hours after the eruption on 15 January, MLS measured enhanced values of H2O82

at altitudes up to 0.46 hPa (∼53 km), well above the stratopause (Figure 1c). Most of83

these measurements of enhanced H2O did not pass the MLS quality screening (QS) cri-84

teria defined by Livesey et al. (2020), indicating that the retrieval achieved only a poor85

fit to the radiances. The poor performance of the standard data processing algorithms86

is unsurprising, as the largest H2O values are more than an order of magnitude greater87

than any previously observed by MLS and more than 100 standard deviations above back-88

ground levels. Here data points with values greater than 7 standard deviations above the89

climatological January-February-March (JFM) 2005–2021 average are identified as en-90

hancements.91

The eruption injected H2O throughout a large vertical range encompassing most92

of the stratosphere, but on 15 January MLS only measured the outer edge of the plume93

in the upper stratosphere, where strong winds advected the lofted H2O to locations sam-94

pled by MLS. Near 80 hPa on this day, MLS also measured some enhanced H2O injected95

by a previous, less violent, HT-HH eruption on 14 January.96

For the next several days, most of the largest enhancements failed the QS. Figure 1d97

shows the profiles displaying the largest mixing ratios on 15, 16, 17, and 18 January. Back98

trajectories (as in Livesey et al. (2015); Santee et al. (2022)) indicate that these enhance-99

ments lie downwind from the HT-HH volcano (Figure 1b), and the measured spectral100

signature is well represented by radiance simulations (Figure 1e). Peaks centered on chan-101

nels 5 and 22 on 16 and 17 January are SO2 spectral lines; they indicate that these lower102

plumes contained more SO2 than the high-altitude plume on 15 January.103

As the plume dispersed, the daily number of profiles failing the QS increased, reach-104

ing a maximum on 19 January. Retrieval performance then returned to normal by 8 Febru-105

ary, by which time the plume had dispersed sufficiently that maximum H2O values had106

dropped to ∼50 ppmv, versus up to 350 ppmv immediately following the eruption (Fig-107

ure 1).108

Taken together, the back trajectories, radiance simulations, and return to typical109

retrieval quality confirm that the measured enhancements represent real volcanically en-110

hanced H2O values. However, the absolute magnitudes of the enhancements, especially111

for those failing the QS screening, are still in question because of the poor radiance fits.112

The MLS retrievals were not optimized to handle such strong H2O enhancements. Thus,113

to fully quantify these injections and their uncertainties, we are developing a special re-114
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Figure 1. (a) Location of observed H2O enhancements on 14 and 15 January. (b) Location

of maximum H2O on 15, 16, 17, and 18 January. Lines display back trajectories from these mea-

surements to the eruption time. (c) H2O profiles associated with locations shown in (a). The

temperature profile (red dashed line) is the average of the temperature profiles retrieved by MLS

at those locations. (d) H2O profiles associated with locations shown in (b). The 2005–2021 JFM

mean plus 100 standard deviation values (µ + 100σ) are also shown in (c) and (d). (e) Measured

(solid lines) and simulated (with and without considering SO2, dotted and dashed lines, respec-

tively) radiances at the mixing ratio maxima for the enhanced profiles shown in (d) (colored

lines), as well as for background conditions at the same pressure levels (gray lines). Note that

this MLS spectrometer is centered on the 183.3GHz H2O spectral line. Most MLS spectrometers

observe emissions from two separate spectral regions: the “lower sideband” (LSB) and “upper

sideband” (USB), as indicated for selected channels.

trieval for MLS measurements of the HT-HH plume. Preliminary results suggest that115

H2O retrievals that better fit the radiances lie within 20% of current v4 estimates.116

In addition, it is essential to account for the relatively coarse resolution of the MLS117

observations (∼3.2 × 230 km for H2O at these altitudes, as quantified by the averaging118

kernels (Livesey et al., 2020)) in the presence of strong vertically confined plumes (Schwartz119

et al., 2013, 2020). Accordingly, mid-January maximum plume values of 1500 ppmv mea-120

sured by radiosondes (Sellitto et al., 2022) are not necessarily inconsistent with observed121

MLS abundances given the disparity in their respective resolutions.122

Many chemical species measured by MLS show anomalous mixing ratios in the plume123

(Figure S1). However, only the H2O, SO2, and HCl spectral signatures can confidently124

be ascribed to real enhancements in those quantities; perturbations in other species are125

likely artifacts arising from SO2 spectral interference. SO2 is retrieved from a spectrom-126

eter that targets an O18O line but also covers many SO2 lines, the strongest of which127

are located in channels 5, 11, and 20. The triple-peak structure in measured radiances128

within the volcanic plume (Figure 2b) can only be plausibly explained by an SO2 enhance-129

ment.130
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HCl is currently measured by a spectrometer that targets an O3 line but covers HCl131

lines in channels 3 and 25. The ∼5K HCl radiance signature overlaps with an ∼180K132

O3 signal. The differences between the measurements and the simulations with and with-133

out accounting for contributions from HCl suggest that the observed enhancements rep-134

resent real atmospheric signals (Figure 2d). The HCl spectral signature is similar to that135

of the background because the HCl enhancements are not as dramatic as those of H2O136

or SO2.137

MLS estimates of ice water content (IWC) are based on the differences between the138

measured radiances and the expected clear-sky radiances, with the residuals attributed139

to ice scattering and/or ice absorption. The clear-sky radiances are calculated using the140

retrieved atmospheric states; since most retrievals in the volcanic plume fail the QS in141

the days following the eruption, the derived IWC estimates are unreliable. In contrast,142

the quality of the MLS temperature, CO, and O3 measurements is not affected by the143

plume.144

3 Unprecedented stratospheric H2O injection145

Figure 3 compares the HT-HH HCl, SO2, and H2O stratospheric injections to other146

stratospheric injections (volcanic or otherwise) observed by MLS. Large injections are147

marked individually.148

The HT-HH eruption did not inject vast amounts of either HCl or SO2 into the strato-149

sphere. The total injected mass of stratospheric SO2 (calculated as described by Pumphrey150

et al. (2021)) was 0.41±0.02Tg, which pales in comparison to that from previous erup-151

tions measured by MLS, such as the 2008 Kasatochi, the 2009 Sarychev, or the 2019 Raikoke152

eruptions, which each emitted ∼1Tg (Pumphrey et al., 2015; de Leeuw et al., 2021). The153

mass of SO2 injected by HT-HH is even less noteworthy in the context of the 17Tg in-154

jected by the 1991 Pinatubo eruption (Read et al., 1993).155

The only unusual aspect of the SO2 plume is its injection height. SO2 plumes are156

typically injected at altitudes no higher than 46 hPa (∼21 km) (Carn et al., 2016; Pumphrey157

et al., 2015). HT-HH is the only injection observed by MLS that produced maximum158

values of SO2 at 14 hPa (∼29 km), with enhanced values detected up to 6.8 hPa (∼35 km)159

— outside the normally recommended pressure range for MLS SO2. By 27 January, the160

SO2 plume dropped below background levels (Figure S1).161

The HCl injection was similarly unremarkable, with only 8 profiles during 16–18162

January (barely) exceeding the threshold for enhancement (Figure 2c; Figure S1). As163

with SO2, the only unusual aspect of the HCl plume is its injection height of 31.6 hPa164

(∼24 km), whereas previous eruptions reached no higher than 68 hPa (∼18.6 km).165

In contrast, the magnitude of the HT-HH H2O injection is unprecedented. Three166

natural pathways for direct injection of H2O into the stratosphere exist: overshooting167

convection, pyrocumulonimbus (pyroCb) storms, and volcanic eruptions. The previous168

stratospheric H2O record measured by MLS was 26.3 ppmv at 100 hPa associated with169

an overshooting convective event in August 2019 that spanned thousands of square kilo-170

meters and persisted for several hours (Werner et al., 2020). Two pyroCbs stand out in171

the MLS H2O record: the 2017 Pacific Northwest (Pumphrey et al., 2021) and the 2019/2020172

Australian New Year’s (Schwartz et al., 2020) events. Only the Australian pyroCbs in-173

jected enough H2O to allow an accurate estimate of mass (19±3Tg).174

The 2008 Kasatochi (Schwartz et al., 2013) and the 2015 Calbuco (Sioris et al., 2016)175

volcanic eruptions were the only others in the MLS record that injected appreciable amounts176

of H2O into the stratosphere. Neither deposited H2O at altitudes higher than 68 hPa (∼18.6 km),177

and both injections were too small for a reliable H2O mass estimate.178
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Figure 2. Profiles with maximum (a) SO2 and (c) HCl on 16 and 17 January. All of these

measurements lie downwind of the HT-HH volcano. (b) Measured (solid lines) and simulated

(dashed) SO2 radiances at the mixing ratio maxima for the enhanced profiles (colored lines),

as well as for background conditions at the same pressure levels (gray lines). (d) As (b) but for

differences between measured radiances and those simulated without HCl (solid lines), as well as

estimated HCl signatures (from differences between simulations, see legend; dashed lines). All

enhancements shown fail the QS.
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Figure 3. Time series of quality-screened maximum H2O, SO2, and HCl mixing ratios at

different pressure levels. SO2 maxima at 14 hPa and HCl maxima at 31 hPa disregarding QS after

the HT-HH eruption are shown in pink. Similarly, H2O maxima disregarding QS are shown in

pink for each level.
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The HT-HH eruption injected at least 146±5Tg of H2O into the stratosphere, not179

only surpassing the magnitudes of all other injections in the MLS record, but also eclips-180

ing a theoretical estimate of 37.5Tg from Pinatubo (Pitari & Mancini, 2002). To put181

the HT-HH injection into perspective, the enhancement represents ∼10% of the estimated182

stratospheric H2O burden of 1400Tg (Glaze et al., 1997). Further, the H2O plume in-183

jection height far exceeded that of any other injections in the MLS record (Figure 3).184

4 Evolution of the H2O plume185

To study the development of the H2O plume, Figure 4 shows maps for selected days186

after the eruption and meridional and zonal mean anomalies based on all data points as187

well as only those that pass the QS criteria. On 15 January, the plume reached 0.46 hPa188

(∼53 km), with most of the MLS retrievals failing QS. On 16 January, two separate plumes189

are visible, one in the upper stratosphere (between 1 and 8 hPa) and the other in the lower190

stratosphere (between 10 and 80 hPa), where most of the H2O volume was injected. On191

this day, the effects on the plume of strong wind shear between 1 and 8 hPa are already192

apparent.193

By 22 January, the plume had almost entirely circled the globe at 2.1 hPa, while194

only travelling halfway around at 26 hPa. On average, through January and February,195

the plume moved ∼37 degrees longitude per day at 2.1 hPa, but only ∼18 degrees lon-196

gitude per day from 31 to 6 hPa, consistent with winds from meteorological analyses (see197

Figure S2) interpolated to the MLS measurement times and locations as described by198

Manney et al. (2007). By 5 February, the plume covered all longitudes, with the largest199

enhancements from 38 to 21 hPa (∼22 to 26 km). By 31 March, the plume around 4.6 hPa200

had dropped to near background values.201

Measurements from 31 March show the persistence of the H2O plume in the lower202

and middle stratosphere. Concurrent with encircling the globe, the H2O plume broad-203

ened slowly, spreading mostly northward around 26 hPa. This plume will require further204

monitoring as the eruption signal propagates into the upper stratosphere and toward the205

poles in the Brewer-Dobson Circulation (BDC).206

5 Discussion and Summary207

The importance of stratospheric H2O is well established; it affects stratospheric chem-208

istry and dynamics, as well as atmospheric radiation. For example, excess stratospheric209

H2O could lead to enhanced OH concentrations, slightly enhancing O3 production through210

the CH4 oxidation cycle but worsening O3 depletion through the HOx cycle, leading to211

a net decrease in O3 (e.g., Dvortsov & Solomon, 2001; Stenke & Grewe, 2005). The en-212

hanced OH concentrations could also increase the loss of CH4, resulting in a decrease213

in its lifetime (e.g., Ko et al., 2013; Stevenson et al., 2020) and thus reducing its long-214

term effect on climate. In addition, if enhanced H2O concentrations were to be entrained215

into the developing Antarctic vortex to an extent sufficient to raise the formation tem-216

perature of polar stratospheric clouds, then the earlier onset of heterogeneous process-217

ing would exacerbate cumulative chemical O3 loss. In terms of transport, a study of the218

dynamical response to a uniform doubling of stratospheric H2O concluded that such moist-219

ening could reduce stratospheric temperature and increase the strength of the BDC; it220

could also result in the tropospheric westerly jets becoming stronger and storm tracks221

shifting poleward (Maycock et al., 2013). Since the HT-HH injection is ∼10% of the strato-222

spheric H2O burden, a dynamical response of lesser magnitude than that found by Maycock223

et al. (2013) would be expected.224

H2O enters the stratosphere primarily in the tropics, where it freeze-dries at the225

cold point tropopause (Brewer, 1949). This mechanism gives rise to the “tape recorder”,226

whereby the annual cycle in tropopause temperatures is imprinted in alternating bands227

–8–
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Figure 4. (a) Maps of H2O at selected pressure levels for illustrative days after the eruption.

Stippling indicates regions where a majority of the retrievals do not pass the QS. The volcano

location is indicated by a triangle. (b) Meridional (30◦S to 5◦N) and (c) zonal mean anomalies

for the same days. Colored contours show anomalies using all MLS H2O retrievals, while line con-

tours display the same anomalies based only on QS data; differences indicate regions where many

measurements do not pass QS. The volcano location is shown by dashed vertical lines; dashed

horizontal lines indicate the level of the map on each day.
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of dry and moist air rising in the tropical stratosphere (Mote et al., 1996). By short-circuiting228

the pathway through the cold point, HT-HH has disrupted this “heartbeat” signal (Fig-229

ure 5a).230

Consistent with the freeze-drying mechanism, unusually low tropopause temper-231

atures around 2001 led to a sharp drop in the amount of H2O entering the stratosphere232

(e.g., Randel et al., 2006; Rosenlof & Reid, 2008, Figure 5). This dry anomaly propa-233

gated via the BDC (Randel et al., 2006; Urban et al., 2014), slowly rising through the234

stratosphere and moving towards the poles. Using the propagation of the 2001 H2O drop235

as described by Brinkop et al. (2016) as an analogue for the transport of the HT-HH plume,236

we expect that ascent could carry volcanic H2O to 10 hPa within ∼9 months. The ex-237

cess H2O could arrive in northern and southern midlatitudes in ∼18 and ∼24 months,238

respectively, over a broad domain in the upper stratosphere. Since part of the plume has239

entered the lower branch of the BDC, the elevated H2O may reach lower stratospheric240

midlatitudes within a few months. The timescale for complete dissipation of the plume241

may be 5 to 10 years (Hall & Waugh, 1997).242

The sudden drop in H2O of ∼0.4 ppmv in 2001 (Figure 5b) demonstrated that the243

radiative forcing from even small variations in lower stratospheric H2O can induce changes244

in global-mean surface temperature (e.g., Solomon et al., 2010). The unprecedented HT-245

HH enhancement would correspond to ∼1.5 ppmv if averaged over 60◦S–60◦N.246

Previous studies of the radiative effects of stratospheric H2O perturbations, includ-247

ing direct volcanic injection, have shown that they can cause surface warming (e.g., Rind248

& Lonergan, 1995; Joshi & Jones, 2009). As established in Section 3, the HT-HH erup-249

tion was unusual in that it injected extremely large amounts of H2O. Preliminary model250

simulations (Figure S3b) suggest an effective radiative forcing (e.g., Forster et al., 2001;251

Myhre et al., 2013; Wang et al., 2017; Smith et al., 2020) at the tropopause of +0.15Wm−2
252

due to the stratospheric H2O enhancement. For comparison, the radiative forcing increase253

due to the CO2 growth from 1996 to 2005 was about +0.26Wm−2 (Solomon et al., 2010).254

The HT-HH H2O enhancement will exert a positive radiative forcing on the sur-255

face, offsetting the surface cooling caused by the aerosol radiative forcing (e.g., Zhang256

et al., 2022; Sellitto et al., 2022). Given the extraordinary magnitude of the HT-HH H2O257

injection and the fact that its anticipated stratospheric residence time exceeds the typ-258

ical 2–3 year timescale for sulfate aerosols to fall out of the stratosphere (Joshi & Jones,259

2009), HT-HH may be the first volcanic eruption observed to impact climate not through260

surface cooling caused by volcanic sulfate aerosols, but rather through surface warming261

caused by excess H2O radiative forcing.262

In summary, MLS measurements indicate that an exceptional amount of H2O was263

injected directly into the stratosphere by the HT-HH eruption. We estimate that the mag-264

nitude of the injection constituted at least 10% of the total stratospheric H2O burden.265

On the day of the eruption, the H2O plume reached ∼53 km altitude. The H2O injec-266

tion bypassed the cold point tropopause, disrupted the H2O tape recorder signal, set a267

new record for H2O injection height in the 17-year MLS record, and could alter strato-268

spheric chemistry and dynamics as the long-lived H2O plume propagates through the269

stratosphere in the BDC. Unlike previous strong eruptions in the satellite era, HT-HH270

could impact climate not through surface cooling due to sulfate aerosols, but rather through271

surface warming due to the excess stratospheric H2O forcing. Given the potential high-272

impact consequences of the HT-HH H2O injection, it is critical to continue monitoring273

volcanic gases from this (and future) eruptions to better quantify their varying roles in274

climate.275
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Figure 5. (a) The atmospheric tape recorder (zonal mean H2O anomalies in the tropics). (b)

Time series of near-global (60◦S to 60◦N) H2O at 100 and 31 hPa. H2O abundances are based on

GOZCARDS (Froidevaux et al., 2015) and MLS data.
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Themens, D. R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A.,482

. . . Jayachandran, P. T. (2022). Global propagation of ionospheric distur-483

bances associated with the 2022 Tonga volcanic eruption. Geophysical Research484

Letters, 49 (7). Retrieved from https://doi.org/10.1029/2022gl098158485

doi: 10.1029/2022gl098158486

Urban, J., Lossow, S., Stiller, G., & Read, W. (2014). Another drop in water vapor.487

Eos, Transactions American Geophysical Union, 95 (27), 245–246. Retrieved488

from https://doi.org/10.1002/2014eo270001 doi: 10.1002/2014eo270001489

Wang, Y., Su, H., Jiang, J. H., Livesey, N. J., Santee, M. L., Froidevaux, L., . . . An-490

derson, J. (2017). The linkage between stratospheric water vapor and surface491

temperature in an observation-constrained coupled general circulation model.492

–15–



manuscript submitted to Geophysical Research Letters

Climate Dynamics, 48 (7-8), 2671–2683. Retrieved from https://doi.org/493

10.1007/s00382-016-3231-3 doi: 10.1007/s00382-016-3231-3494

Waters, J., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W., . . .495

Walch, M. (2006). The Earth Observing System Microwave Limb Sounder496

(EOS MLS) on the Aura satellite. IEEE Transactions on Geoscience and Re-497

mote Sensing , 44 (5), 1075–1092. Retrieved from https://doi.org/10.1109/498

tgrs.2006.873771 doi: 10.1109/tgrs.2006.873771499

Werner, F., Schwartz, M. J., Livesey, N. J., Read, W. G., & Santee, M. L. (2020).500

Extreme outliers in lower stratospheric water vapor over North America ob-501

served by MLS: Relation to overshooting convection diagnosed from colocated502

Aqua-MODIS data. Geophysical Research Letters, 47 (24). Retrieved from503

https://doi.org/10.1029/2020gl090131 doi: 10.1029/2020gl090131504

Wright, C., Hindley, N., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell,505

C., . . . Yue, J. (2022). Tonga eruption triggered waves propagating glob-506

ally from surface to edge of space. Earth and Space Science Open Archive,507

23. Retrieved from https://doi.org/10.1002/essoar.10510674.1 doi:508

10.1002/essoar.10510674.1509

Yuen, D. A., Scruggs, M. A., Spera, F. J., Zheng, Y., Hu, H., McNutt, S. R., . . .510

Tanioka, Y. (2022). Under the surface: Pressure-induced planetary-scale511

waves, volcanic lightning, and gaseous clouds caused by the submarine erup-512

tion of Hunga Tonga-Hunga Ha'apai volcano. Earthquake Research Advances,513

100134. Retrieved from https://doi.org/10.1016/j.eqrea.2022.100134514

doi: 10.1016/j.eqrea.2022.100134515

Zhang, H., Wang, F., Li, J., Duan, Y., Zhu, C., & He, J. (2022). Potential impact516

of Tonga volcano eruption on global mean surface air temperature. Journal517

of Meteorological Research, 36 (1), 1–5. Retrieved from https://doi.org/518

10.1007/s13351-022-2013-6 doi: 10.1007/s13351-022-2013-6519

–16–



JOURNAL OF GEOPHYSICAL RESEARCH

Supporting Information for “The Hunga

Tonga-Hunga Ha’apai Hydration of the Stratosphere”
L. Millán1, M. L. Santee1, A. Lambert1, N. J. Livesey1, F. Werner1, M. J.

Schwartz1, H. C. Pumphrey2, G. L. Manney3,4, Y. Wang5,1, H. Su1, L. Wu1,

W. G. Read1, and L. Froidevaux1

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

2School of GeoSciences, The University of Edinburgh, Edinburgh, UK

3NorthWest Research Associates, Socorro, New Mexico, USA

4New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA

5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

Contents of this file

1. Figures S1, S2, and S3

Introduction

The main document describes volcanic stratospheric enhancements in H2O, SO2, and

HCl mixing ratios as measured by the Aura Microwave Limb Sounder (MLS) (Waters

et al., 2006; Livesey et al., 2020) following the 15 January 2022 Hunga Tonga-Hunga

Ha’apai (HT-HH) eruption. In particular, the main document describes the unprecedented

H2O injection. Supporting information contains additional figures supplementing the

discussion in the main text.
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Figure S1 shows examples of the anomalous mixing ratios encountered in the HT-HH

plume for most of the trace gases retrieved by MLS. Anomalous mixing ratios are identified

as data points with values greater (lower) than 7 standard deviations above (below) the

climatological January-February-March (JFM) 2005–2021 average. As mentioned in the

main document, anomalous values in products other than H2O, SO2, and HCl in the

HT-HH plume are believed to be artifacts arising from SO2 spectral interference. Note

that many of these anomalous values are negative. Many MLS measurements have poor

signal to noise ratio for individual profiles; for these species, radiance noise, combined

with negative “lobes” in averaging kernels (Livesey et al., 2020), can lead to the retrieval

of negative mixing ratios.

Figure S2a shows the longitude of 10 hPa H2O outliers with mixing ratios exceeding

11 ppmv; the HT-HH plume circles the globe four times at this level in the first two and

a half months after the eruption. Figure S2b shows a linear fit through the “unwrapped”

longitudes of these outliers with respect to time, showing that the plume was advected by

consistent easterly flow at this level throughout the study period. Figure S2c compares

the slopes of similar fits to outlier locations at stratospheric retrieval levels from 83 hPa to

1 hPa (red line) with the level averages of degrees of longitude per day at outlier locations

derived from GEOS-5.12.4 winds (black line). Thresholds defining “outliers” at a given

level were selected to highlight each level’s primary plume. A small number of outliers

that were not located within the primary HT-HH plume have been removed at some levels.

Analysis winds are interpolated to MLS measurement locations as described by Manney

et al. (2007).
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Figure S3a shows the zonal mean H2O measured by MLS in February 2022. Figure S3b

shows the effective radiative forcing response due to the excess H2O, calculated based on

climate simulations from the National Center for Atmospheric Research (NCAR) Com-

munity Earth System Model (CESM) version 1.2.1. We use the downwelling long-wave

radiation flux output at the tropopause level to diagnose stratospheric H2O radiative forc-

ing (Forster et al., 2001; Wang et al., 2017). The effective radiative forcing includes both

the instantaneous forcing and atmospheric and land adjustments (Smith et al., 2020),

and it is widely used in the recent IPCC Assessment Reports (e.g., Myhre et al., 2013).

A pair of 10-year CESM simulations were conducted with present-day radiative forcing

from other agents, such as greenhouse gases, aerosols, etc. Sea surface temperature and

sea ice were prescribed using the present-day climatology. Both runs were nudged to

time-invariant zonal mean stratospheric H2O fields, with the control run nudged to an

MLS-derived (2005–2013) climatology, and the sensitivity run nudged to the same clima-

tology augmented by the 2022 February anomaly. The average differences between the

runs over the last 9 years of the simulations are used for the forcing calculation (the first

year was used for model spin-up).
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Figure S1. Anomalous profiles after the HT-HH eruption for several MLS trace gases. For

clarity, only the profile with the maximum enhancement or deficit is shown for each day; individ-

ual days are represented by colored lines (see legend). Dotted lines indicate that the profile did

not pass the quality screening (QS) criteria; solid lines indicate that it did. The climatological

January-February-March 2005–2021 mean is shown by a solid black line. The black dashed lines

show values 7 standard deviations above and below the mean for each trace gas; these lines are

used to identify enhancements or deficits. The gray vertical bars mark the recommended pres-

sure range for typical conditions as described in the MLS data quality document (Livesey et al.,

2020).
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Figure S2. (a) Longitudes of enhanced 10 hPa H2O (a mixing ratio threshold of > 11 ppmv

is used to define outliers at this level) as a function of time. Colors represent different H2O

abundances. (b) The enhanced H2O values shown in (a) but using “unwrapped” longitude. The

red line is a linear fit through these points. (c) Slopes from linear fits through enhanced H2O

values at different pressure levels (red line), as well as the averaged degrees-longitude-per-day at

each level derived from GEOS-5.12.4 zonal winds interpolated to the outlier locations.
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Figure S3. (a) February 2022 MLS zonal mean H2O measurements, with no quality screening

applied. (b) Effective radiative forcing (ERF) at the tropopause due to the February 2022 MLS

H2O anomaly, based on 9 years of model simulations.
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