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Abstract

A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0.

Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a

given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model

components. The online coupled data assimilation scheme now additionally utilizes sea-surface salinity and sea-level anomaly as

well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea-ice and ocean

states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic

errors in the deeper ocean, although issues remain over polar regions where strong atmosphere-ocean-ice interaction occurs.

One-year-long sea-ice forecasts initialized on January 1st, April 1st, July 1st and October 1st from 2003 to 2019 are described.

To correct systematic forecast errors, sea-ice concentration from 2011 to 2019 is calibrated by trend-adjusted quantile mapping

using the preceding forecasts from 2003 to 2010. The sea-ice edge raw forecast skill is within the range of operational global

subseasonal-to-seasonal forecast systems, outperforming a climatological benchmark for about two weeks in the Arctic and

about three weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea-ice edge forecasts

outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated

forecast skill exhibit strong seasonal variations.
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Key Points:10

• We describe an upgrade of the AWI Coupled Prediction System with new ocean11

and atmosphere models and more observations assimilated.12

• The assimilation of ocean temperature and salinity (surface and profile observa-13

tions) improves the ocean state significantly.14

• Calibrated sea-ice edge forecasts outperform a climatological benchmark for around15

one month in both hemispheres.16
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Abstract17

A new version of the AWI Coupled Prediction System is developed based on the Alfred18

Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are19

upgraded or replaced, reducing the computation time by a factor of 5 at a given resolu-20

tion. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar21

resolution in both model components. The online coupled data assimilation scheme now22

additionally utilizes sea-surface salinity and sea-level anomaly as well as temperature and23

salinity profile observations. Results from the data assimilation demonstrate that the sea-ice24

and ocean states are reasonably constrained. In particular, the temperature and salinity25

profile assimilation has mitigated systematic errors in the deeper ocean, although issues26

remain over polar regions where strong atmosphere-ocean-ice interaction occurs. One-year-27

long sea-ice forecasts initialized on January 1st, April 1st, July 1st and October 1st from28

2003 to 2019 are described. To correct systematic forecast errors, sea-ice concentration from29

2011 to 2019 is calibrated by trend-adjusted quantile mapping using the preceding forecasts30

from 2003 to 2010. The sea-ice edge raw forecast skill is within the range of operational31

global subseasonal-to-seasonal forecast systems, outperforming a climatological benchmark32

for about two weeks in the Arctic and about three weeks in the Antarctic. The calibration is33

much more effective in the Arctic: Calibrated sea-ice edge forecasts outperform climatology34

for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the35

calibrated forecast skill exhibit strong seasonal variations.36

Plain Language Summary37

Ocean data sparseness and systematic model errors pose problems for the initialization38

of coupled seasonal forecasts, especially in polar regions. Our global forecast system follows39

a seamless approach with refined ocean resolution in the Arctic. The new version presented40

here features higher computational efficiency and utilizes more ocean and sea-ice obser-41

vations. Ice-edge forecasts outperform a climatological benchmark for about one month,42

comparable to established systems.43

1 Introduction44

With the increasing scientific and socioeconomic demands for long-term sea ice predic-45

tion (Jung et al., 2016), dynamical and statistical models are following different strategies46

to enhance prediction skill. When it comes to sea-ice forecasting with dynamical models, it47

is now common practice to assimilate remotely sensed sea ice concentration (SIC), ensuring48

a basic level of sea-ice forecast skill. With the advent of sea ice thickness (SIT) observations49

from satellites such as CryoSat-2 (Ricker et al., 2014), SMOS (Tian-Kunze et al., 2014) and50

ICESat-2 (Petty et al., 2020) and their assimilation into forecast systems in recent years,51

increased sea ice forecast skill with lead times ranging from synoptic to seasonal time scale52

has been reported as a result of better SIT initialization (Yang et al., 2014; Collow et al.,53

2015; Blockley et al., 2018; Mu et al., 2019; Liu et al., 2019). This holds in particular during54

the melt season when SIT anomalies are determining how long the ice can withstand the55

summer melt.56

Perfect-model studies suggest that some predictive skill for sea-ice forecasts should be57

achievable even after a whole year due to the memory of sea-surface temperature (SST) and58

SIT anomalies (Blanchard-Wrigglesworth et al., 2011; Tietsche et al., 2014; Day et al., 2016;59

Goessling et al., 2016). However, a large gap between potential and actual forecast skill re-60

mains, due to the sparseness of ocean observations and because substantial systematic errors61

prevail in all models. Recent studies suggest that applying bias correction, commonplace in62

seasonal forecasting for other predictands, to sea ice can effectively remove the systematic63

drift and thereby substantially increase the long-term forecast skill (Director et al., 2017;64

Dirkson et al., 2019).65

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems

The sparseness of observations in the polar regions is another limiting factor for the66

skill of sea-ice predictions, and in some cases even a lack of quality of oceanic data poses67

problems. For instance, Xie et al. (2019) found that the satellite sea-surface salinity (SSS)68

observations are inaccurate in the Arctic Ocean when SSS < 24 psu. T/S profile observations69

are rather limited with only several ice-tethered profilers each year in the central Arctic,70

and most are concentrated in the Beaufort Sea.71

The first version of our forecast system, termed the Seamless Sea Ice Prediction System72

(SSIPS v1.0, Mu et al., 2020), is based on the AWI Climate Model version 1.1 (AWI-CM1.1).73

The ocean/ice model component, FESOM (v1.4), employs an unstructured mesh with vary-74

ing resolution ranging from about 25 km in the Arctic to about 100 km at lower latitudes75

and uses the finite-element method. The atmosphere component ECHAM (v6.3.02p4) is a76

spectral model with a resolution of T63L47, corresponding to about 200 km horizontal grid-77

point resolution and 47 vertical levels. SSIPS v1.0 assimilates SIC, SIT, sea ice drift (SID),78

and SST using the Local Error Subspace Transform Kalman Filter (Nerger et al., 2012).79

It employs only 12 ensemble members but is still computationally rather expensive, mainly80

due to intricacies of the finite-element method in FESOM1 as well as the requirement to81

use rather short time steps in ECHAM.82

The availability of more efficient ocean and atmosphere model components has been83

identified as a promising way to increase the ensemble size and thereby to better represent84

the covariance of the state vector without compromising in terms of model resolution or85

throughput. We have thus upgraded our forecast system - now termed the AWI Coupled86

Prediction System - based on AWI-CM3, which features more efficient ocean and atmosphere87

model components. This enables the use of higher atmospheric resolution as well as a larger88

ensemble without speed reduction.89

Another major enhancement concerns the set of assimilated observations. Subsurface90

temperatures have been shown to yield significantly increased regional winter sea-ice extent91

forecast skill (Bushuk et al., 2017). We have thus incorporated in-situ T/S profile assim-92

ilation in the new system, alongside the assimilation of satellite-derived SSS and sea-level93

anomaly (SLA) observations.94

The paper is structured as follows. The model components and their coupling and the95

data assimilation are described in Section 2. Sections 3 introduces the forecast calibration96

method for sea ice and the metric for evaluations in the study. Section 4 provides the forecast97

experiment design. In Section 5 the forecast skill is evaluated. Summary and discussions98

are given in Section 6.99

2 The AWI Coupled Prediction System100

2.1 AWI-CM101

A new version of the AWI Climate Model (AWI-CM3) has recently been developed102

(Streffing et al., 2022). The new ocean model is FESOM version 2.0, described in Danilov103

et al. (2017). The most important difference between FESOM version 1.0 and 2.0 is that the104

discretization method has been changed from finite elements to finite volumes, leading to a105

speed-up of integration by a factor 3-5. For the ocean model we still use the same CORE II106

mesh (https://fesom.de/models/meshessetups/) as in Mu et al. (2020) with a resolution107

of around 25 km in the tropical oceans, the northern North Atlantic and Arctic Ocean,108

and around 100 km in the subtropics and mid-latitudes. In the vertical, the ocean model109

employs Arbitrary Lagrangian Eulerian (ALE) coordinates, here with 47 levels at fixed110

depths. The sea ice model component is the successor of the Finite-Element Sea-Ice Model111

FESIM (Danilov et al., 2015). A single ice thickness category, zero-layer thermodynamics,112

and the ”standard” elastic-viscous-plastic (sEVP, Bouillon et al., 2013; Danilov et al., 2015)113

rheology are used. The prognostic snow layer follows Owens and Lemke (1990). Flooding114

happens when snow becomes thick enough to submerge.115
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The atmosphere component now replaces ECHAM with OpenIFS, the open version116

of the Integrated Forecasting System (OpenIFS) maintained by the European Centre for117

Medium-Range Weather Forecasts (ECMWF). The version v43r3 is used at TL159L60 res-118

olution, which means vertically 60 levels and horizontally a triangular truncation of the119

spherical harmonics at wavenumber 159 for the dynamics paired with a linear reduced120

Gaussian grid corresponding to 110 km resolution for the physics. The model is forced by121

historical greenhouse-gas forcing before 2015, and follows the scenario of the Shared Socioe-122

conomic Pathway 5 (SSP5), that is “a world of rapid and unconstrained growth in economic123

output and energy use” (Kriegler et al., 2017), thereafter. A fixed aerosol climatology and124

land-use pattern is employed, which we consider acceptable given the moderate changes that125

occurred during the considered period which spans the first two decades of the 21st century.126

FESOM2 integrates the model with a time step of 1800 s with each run using 72 cores.127

OpenIFS uses 71 cores and has a large time step of 3600 s, benefiting from the Lagrangian128

advection scheme. As a standalone executable, a runoff mapper maps the runoff from129

OpenIFS to FESOM2. The two components exchange information every hour through the130

recently released coupler OASIS3-MCT4 (Craig et al., 2017). In total, 144 cores are used131

for one coupled model instance. This computation cost is a dramatic reduction compared132

to that used for its predecessor (480 cores) in Mu et al. (2020). The spherical resolution in133

the atmosphere model in the current configuration is even higher than before, whereas the134

grid-point resolution is slightly lower. Overall, a larger ensemble with less computational135

cost and faster throughput is possible with the new system.136

2.2 Data assimilation137

As the first version of the forecast system described in Mu et al. (2020), the new AWI-138

CPS implements an Ensemble Kalman Filter with the Parallel Data Assimilation Framework139

(PDAF) (Nerger & Hiller, 2013, http://pdaf.awi.de). We again adopt the online-coupled140

data assimilation (Nerger et al., 2019) feature, which provides high efficiency and full paral-141

lelization of the daily analysis and forecast steps. Again, the Local Error Subspace Transform142

Kalman Filter (LESTKF, Nerger et al., 2012) that preserves and projects all the ensemble143

information onto the error subspace is used. The ensemble size is now 30, which is 2.5144

times larger than that used in the first version (12). The online data assimilation enables145

direct MPI communication among all coupled-model instances. The processes owned by146

one coupled model gather information from all the processes, conduct the analysis step, and147

redistribute the updated state vector back to all the processes (grey box in Figure 1).148

The current state vector includes sea-ice concentration, sea-ice thickness, sea-ice velocity149

(u-component and v-component), 3D temperature, 3D salinity, and sea-surface height. A150

comparison of the state vector against the old version is shown in Table 1. The initialization151

of the ensemble at the very beginning of the assimilation procedure on 1st January 2002152

is performed by adding perturbations generated by second-order exact sampling (Pham,153

2001) onto the state that is reconstructed by the leading empirical orthogonal functions154

decomposed from a 30-year simulation of the free-running model.155

Another notable upgrade is that more different types of observations are assimilated.156

Apart from the assimilation of sea-ice concentration, sea-ice thickness, sea-ice velocity and157

sea-surface temperature in the previous system, sea-level anomaly, sea-surface salinity and158

temperature/salinity profiles are further assimilated now (Table 1). For sea-ice concen-159

tration, we use the product ”Interim Sea Ice Concentration Climate Data Record from160

EUMETSAT OSI SAF” with ID OSI-430-b (Lavergne et al., 2019) from EUMETSAT OSI161

SAF. The spatial resolution is 25 km on the EASE grid. Given that the OSI-430-b is the162

extension of OSI-450, a discontinuity and deterioration of the ensemble spread and the anal-163

ysis of sea-ice concentration over the transition period, as in (Mu et al., 2020), is avoided in164

the new system. The maximum observation error for sea-ice concentration is set to 0.15.165
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For sea-ice thickness, the CS2SMOS sea-ice thickness product (Ricker et al., 2017) that166

merges data from CryoSat-2 and SMOS operationally is used. We use the daily product167

(v202) to meet the daily assimilation cycle in our system, as before. The observation errors168

in the product are directly used for the assimilation. In addition, the daily sea-ice thickness169

data on Level 2 derived from the EnviSat satellite (Paul et al., 2018) are assimilated to170

cover the pre-CryoSat-2 period. Note that no sea-ice thickness observations are assimilated171

in the Antarctic currently.172

The sea-ice drift product from OSI SAF (OSI-405-c) constrains both components of173

the sea-ice drift. A constant uncertainty of 4.1 cm/s is prescribed. While no clear direct174

benefits have been reported from sea-ice drift assimilation due to the small inertia of sea-ice175

movements (Mu et al., 2020), we keep the assimilation of drift data because it provides176

benefits due to the impact on other, less volatile variables through cross-covariances.177

For sea-surface temperature we use the product from the Operational Sea Surface Tem-178

perature and Sea Ice Analysis (OSTIA), as before. The Level-2 sea-surface salinity data179

product from SMOS provided by European Space Agency (ESA, https://earth.esa.int/180

eogateway/) is also assimilated in the system. Both the sea-surface temperature and the181

sea-surface salinity product include error information explicitly.182

The sea-level anomaly data are taken from the Copernicus Marine Service (GLOBAL183

OCEANALONG-TRACK L3 SEA SURFACE HEIGHTS REPROCESSED (1993-ONGOING)184

TAILORED FOR DATA ASSIMILATION). This product provides along-track data for in-185

dividual sensor from all altimeter missions. The mean dynamic topography (MDT) is cal-186

culated by averaging the sea-surface height from a 30-years simulation of the free-running187

model, as in Skachko et al. (2019). Like for the sea-surface salinity observations, data thin-188

ning is applied by averaging the observations that are located in the same triangle of the189

ocean mesh.190

Lastly, the EN.4.2.1 profiles data from the Met Office Hadley Centre are also assimi-191

lated, as in Tang et al. (2020). A pre-processing step re-arranges the data along the time192

axis and distributes the profiles into mesh partitions. Uncertainties for the profiles decay193

with depth, as in Xie and Zhu (2010), with maximum values of 0.5 degree and 0.04 psu194

for temperature and salinity. Like in the previous version of our forecast system, no data195

constraints are applied in the atmospheric component here, although tests with nudging of196

the free-tropospheric winds are ongoing.197

All these observations are quality-checked and pre-processed by applying physical lim-198

itations. Gridded data are interpolated by distance-weighted average remapping onto the199

unstructured mesh. To avoid the initial shock, during the post-processing step the system200

constrains the absolute analysis increments to not exceed twice the ensemble spread, as in201

Sakov et al. (2012). The localization radius is set to 200 km. Considering the largely random202

atmospheric states, no ensemble inflation is required. The daily data assimilation with 30203

ensemble members at the chosen resolution uses a total of 4320 cores in parallel. The typical204

wall-clock time required for the analysis of one year is about 4.5 hours.205

2.3 Forecast206

After the analysis step, forecasts are started directly from the analyzed fields with207

the same ensemble size (30). The same coupling frequency of 3600 s is applied between208

OpenIFS and FESOM2. These seamlessly continuing forecasts are carried out to cover one209

year, initialized at different times of the year over numerous years (see Sect. 4).210

3 Calibration and metrics211

Post-processing is applied to the sea-ice forecasts to correct systematic errors that oc-212

cur in any climate model and gain importance the longer the forecast range. It has been213
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shown that calibration can dramatically improve Arctic sea-ice forecasts (e.g., Krikken et214

al., 2016). To maintain the added-value of the forecast ensemble, a calibration method suit-215

able for probabilistic forecasts is required. Therefore, we use the Trend-Adjusted Quantile216

Mapping (TAQM) method (Dirkson et al., 2019) to alleviate the forecast error. The TAQM217

method computes the probabilities of the historical observations and the historical forecasts218

after removing their linear trends and then maps the historical forecasted distribution to219

the historical observed distribution by quantiles. Subsequently, calibrated forecasts can be220

obtained by applying the reversed observed distribution function. The sea-ice concentration221

forecasts shown after Section 5.2.1 are all after calibration, unless stated otherwise.222

To evaluate the analyzed states and forecasts, we firstly consider the well-known Root223

Mean Squared Error (RMSE), defined as
√
⟨(xf − xo)2⟩, where xf is the analyzed or forecast224

value and xo is the observed value of the considered variable (e.g., sea-ice concentration),225

and
√
⟨·⟩ denotes an average over multiple analysis or forecast cases. Moreover, in order226

to gain a more comprehensive and integrative picture of the forecast skill with respect to227

the ice-edge location, we consider the Spatial Probability Score (SPS, Goessling & Jung,228

2018). This metric was designed to measure ensemble-based forecast skill of the sea-ice229

edge location from a probabilistic viewpoint. The SPS is defined as
∫
Ω
(P [sic > 0.15]f −230

P [sic > 0.15]o)
2 dΩ, where P [sic > 0.15]f is the probability of the sea-ice concentration231

to exceed 15% within the ensemble, P [sic > 0.15]o is the dichotomous probability of the232

observed sea-ice concentration to exceed 15%, and Ω is the integration area. The 15% sea-ice233

concentration contour is the most widely used definition of the ice-edge location.234

4 Experimental design235

The model and data assimilation system are initialized on January 1st 2002, as described236

above, but the first year is considered as spin-up and excluded from further analyses. The237

considered period thus starts on January 1st, 2003 and ends on December 31st, 2019. Restart238

files at the end of each month have been kept as initial states for free-running forecasts.239

To assess the performance of the analysis results, it is useful to compare the analysis240

error with the error of an unconstrained control experiment (CTRL). However, since a single241

control simulation contains its own weather-related variability, this independent variability242

adds to the CTRL error, which can result in an overestimation of the benefit from the data243

assimilation. We have thus simulated five realizations, with hydrography slightly perturbed244

in the ocean component at the very beginning, and use the ensemble mean to derive the245

CTRL error.246

Targeting on the subseasonal-to-seasonal time scale, we design four forecast experiments247

per year. For each year, the system restarts at the beginning of each season, i.e., January248

1st, April 1st, July 1st and October 1st, and then continues the forecasts out to one year249

lead time. Such experiments are carried out from 2003 to 2019. The forecast results from250

2011 to 2019 are evaluated in the study. Before 2011, the sea-ice forecasts are employed as251

the historical forecasts required for the TAQM calibration. Figure 2 illustrates the timing252

of the forecast experiments from 2010 to 2019. Hereinafter, these experiments are referred253

to as Jan-init, Apr-init, Jul-init, and Oct-init, starting from these four months of each year.254

For each target month, four different forecasts with different lead times are available255

(Fig. 2). The climatology of Jan-init forecasts is computed by averaging all forecasts over256

the 2011-2019 period starting from January 1st, and analogously for Apr-init, Jul-init and257

Oct-init forecasts. Note that for forecasts starting from the year preceding the target year,258

the forecast climatology averages the forecasts initialized from 2010 to 2018. Taking the259

forecast climatology in April as an example, we have four forecasts: the first one starts260

from July of the previous year with lead month 9 (blue arrow), the second one starts from261

October of the previous year with lead month 6 (light-blue arrow), the third one starts from262

January of the same year with lead month 3 (light-green arrow), and the last one starts263
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Table 1. The state vector and observation vector for current AWI-CPS and its predecessor SSIPS

v1.0. SIC, SIT, SID, SSH, SLA, SST, and SSS are abbreviations for sea ice concentration, sea ice

thickness, sea ice drift, sea surface height, sea-level anomaly, sea surface temperature and sea

surface salinity, respectively. T and S represent the temperature and salinity, while T mix and

S mix specifically stand for the temperature and salinity in the mixed layer.

SIC SIT SID SSH T S

State X X X X X X AWI-CPS v2.0
vector X X X T mix S mix SSIPS v1.0

Observation X X X SLA SST&T profiles SSS&S profiles AWI-CPS v2.0
vector X X X SST SSIPS v1.0

Figure 1. Schematic of the AWI Coupled Prediction System. The ensemble has 30 members with

FESOM2 and OpenIFS shown in blue and orange. Communication between each coupled model

instance through the Message Passing Interface (MPI) is represented by the staggered mesh in the

background, which is emphasized by black color when the communication is active. The coupled

model instance with black border in the ‘Analysis’ chip conducts the analysis and redistributes all

the information to each processor. The seamless forecasts start from the analyzed states and run

one year ahead. Forecast calibration is applied to correct for drift due to long-term systematic

errors.
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Figure 2. Timing of the forecast experiments. The light-blue arrows indicate forecasts starting

from January 1st (Jan-init). The blue, light-green and green arrows indicate forecasts starting from

April 1st (Apr-init), July 1st (Jul-init) and October 1st (Oct-init).

Table 2. Lead time in months of the forecasts for each month. L0-2 indicates forecasts with lead

times of 0, 1, and 2 months, and so forth for L3-5, L6-8, and L9-11. The months when the forecasts

are initialized are marked in bold. Taking January as an example, it consists of four forecasts with

lead times of 0, 3, 6, and 9 months that start in January of the same year and October, July and

April of the previous year.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

L0-2 0 1 2 0 1 2 0 1 2 0 1 2
L3-5 3 4 5 3 4 5 3 4 5 3 4 5
L6-8 6 7 8 6 7 8 6 7 8 6 7 8
L9-11 9 10 11 9 10 11 9 10 11 9 10 11

from April of the same year with lead month 0 (green arrow). In such a case, the forecast264

climatology with lead months 0-2 is computed with output from 2011 to 2019 since they265

are all started in the current year, while for the other climatologies are computed over the266

period 2010-2018. For convenience, a table lists the lead time for each month (Table 2).267

5 Results268

5.1 Analysis state269

We firstly examine the performance of the data assimilation system in AWI-CPS with270

respect to the analyzed state. Figure 3 shows the RMSE of the sea-ice concentration, mea-271

sured against the OSI SAF satellite observations, in the Arctic and the Antarctic. The272

free-running CTRL experiment exhibits an area-averaged RMSE around 0.15–0.3 in both273

polar regions. In the Arctic, particularly high errors occur in September 2007 and 2012 when274

record-low sea-ice extent was observed which, not surprisingly, the free-running simulations275

do not capture. Overall, the free model exhibits an overestimation of sea-ice concentration276

in the melt season and an underestimation in the freezing season in both hemispheres (not277

shown). The assimilation reduces the sea-ice concentration RMSE by more than 80% for278

both the Arctic and the Antarctic. Strong error reduction is also found for the sea-ice thick-279
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ness in the Arctic with respect to the assimilated data (not shown). While not surprising,280

this error reduction is an important sanity check. Less obviously, the sea-ice velocity is also281

well constrained by the observations, as in the first version (Mu et al., 2020), despite the282

small inertia of the sea-ice movement.

Figure 3. RMSE of monthly mean sea-ice concentration in the Arctic and the Antarctic with

respect to the OSI SAF observations. The AWI-CPS analysis is shown in blue, while the CTRL

ensemble run without data assimilation is shown in black.

283

When it comes to the global ocean surface state, the RMSE of the sea-surface temper-284

ature and salinity is strongly reduced by the assimilation (Fig. 4a). The systematic errors285

of sea-surface temperature exhibit remarkable seasonality for both the northern and the286

southern hemisphere. The average assimilation increment for temperature during the anal-287

ysis step (Fig. 4b) is negative during the respective summer months in both hemispheres, and288

positive during winter. This indicates that the system systematically tends toward warmer289

sea-surface temperature in summer, which the data assimilation needs to work against. This290

is more pronounced in the northern hemisphere. Larger interannual variability of the RMSE291

is found for the salinity due to the sparser along-track SMOS sea-surface salinity data. In292

our system the assimilation generally increases the sea-surface salinity along the tracks,293

which is in accordance with the on-average positive increments of salinity brought through294

the cross-covariances from the sea-surface temperature assimilation (not shown). The SLA295

assimilation using the model-derived MDT field shows pronounced sea level increments in296

the sub-polar regions specifically the North Atlantic and the Southern Ocean where strong297

currents prevail due to large sea level gradient (Fig. 4d).298

Figure 5 shows the vertical profiles of the RMSE for temperature and salinity in different299

oceans. The temperature profile assimilation improves the temperature state in the water300

column below 400m depth in the Pacific and Indian Ocean, albeit the sparseness of the301

spatial distribution of the profiles. That is, the deep ocean can be reasonably constrained302

with a smaller density of profiles than we expected. With only sea-surface temperature303

assimilation, the improvements are limited to the mixed layer and do not penetrate to the304

deeper ocean. The simultaneous assimilation of sea-surface temperature and profiles brings305

these temperature errors down, which has also been reported in Tang et al. (2020). In306

the Atlantic Ocean and the Arctic Ocean, improvements with respect to temperature are307

mostly found in the upper ocean. Here, slight RMSE increases are found in the deep ocean.308

Even larger detrimental effect of the assimilation in AWI-CPS occur in the Southern Ocean,309

where the temperature RMSE reveals a substantial deterioration of the state compared to310

the CTRL run. In contrast, the temperature variability in the upper Southern Ocean is very311

effectively constrained, given that the RMSE is strongly reduced while only small changes312

are found for the mean state (Fig. 6). When it comes to the vertical salinity profiles, the313

RMSE is reduced at almost all depths in all ocean basins, besides the Southern Ocean.314
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Figure 4. RMSE of monthly mean sea-surface temperature/salinity relative to the OS-

TIA/SMOS observations (a). AWI-CPS results are shown by thin lines, CTRL results are shown

by thick lines. Annual cycle of the mean sea-surface temperature assimilation increments for the

two hemispheres (b). Mean sea surface height averaged from 2011-2019 (c) and the corresponding

increments (d).

Without salinity assimilation, we have not found such improvements in our previous system315

(SSIPS v1.0) where only sea-surface temperature and sea-ice observations are assimilated316

(Table 1).317

5.2 Sea-ice forecasts318

5.2.1 Forecast spread319

The ensemble spread provides a measure for the forecast uncertainty, which we consider320

here in terms of the ensemble standard deviation. Figure 7 shows the forecast spread of321

sea-ice and ocean variables. For sea-ice concentration, sea-ice thickness, sea-surface tem-322

perature and sea-surface salinity, the state is initially rather well constrained and generally323

shows a gradually growing spread, superimposed by seasonal variations. The initial spread324

corresponds to the spread of the assimilation ensemble at the respective initial times. Taking325
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Figure 5. RMSE of temperature (degree Celsius, first row) and salinity (psu, second row) with

respect to the World Ocean Atlas (WOA) 2018 data which are constructed by observations over

the period 2005-2017 for different ocean basins.

sea-surface temperature as an example, the initial standard deviation (variance) is about326

35% (12%) of the final standard deviation (variance) after one year of integration. The327

spread tends to converge toward a seasonally varying upper envelope that corresponds to328

the interannual spread of the unconstrained free-running model. Only for sea-surface salinity329

the spread after one year has not yet converged to a common envelope.330

In contrast to the previously mentioned variables, snow thickness is nearly completely331

unconstrained by the assimilation of the other variables. This is not a surprise as we332

neither assimilate snow observations, nor update the snow state through the covariances333

with the other variables because the snow is not included in the state vector. However, we334

do assimilate sea-ice drift observations, but due to the short inertia of the sea-ice motion335

this has almost no effect on the sea-ice velocity spread, even on the respective first day.336

Besides the lack of a direct influence from the assimilation on snow thickness and sea-ice337

drift, the unaffected spread also reveals that indirect constraints that could in principle338

be communicated through the atmosphere, e.g. because SST patterns might influence the339

atmospheric circulation and humidity content, are at most very weak.340

For the sea-ice variables, the seasonal cycle of the upper spread envelope generally341

corresponds to the seasonal cycle of the sea-ice state. The spread of the sea-ice variables342

shown in Figure 7 is small in the respective freezing season and gets large in summer.343

The seasonality is also prominent in the sea-surface temperature but not in the sea-surface344

salinity. The two peaks of the temperature spread per year are the result of the phase shift345

of the seasonal cycle between the two hemispheres.346
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Figure 6. Mean temperature (degree Celsius, first row) and salinity (psu, second row) with

respect to the WOA 2018 data (black), constructed by observations over the period 2005-2017 for

different ocean basins.

5.2.2 Forecast climatology before and after calibration347

Comparing the multi-annual raw forecast climatology and the observed climatology348

(Fig. 8) of sea-ice concentration reveals a strong positive bias in the Arctic along the marginal349

ice zones in both March and September already after 2 months. In particular in the East350

Greenland Sea and the Sea of Okhotsk the ice cover in the raw forecasts is significantly351

overestimated, resulting in sea-ice concentration climatology differences exceeding 0.5. In352

September, the regions of dense ice cover in the central Arctic however exhibit too low353

sea-ice concentrations in the raw forecasts. In contrast, the raw forecasts in the Antarctic354

tend to underestimate the sea-ice extent almost all around the continent in March, both355

after 2 and 8 months lead time. In September, when the ice extent here reaches its annual356

maximum, the bias pattern after 2 months is less uniform, with a tendency toward too loose357

ice closer to the continent and too dense ice along the sea-ice margins. At 8 months lead358

time, however, the September bias is predominantly negative around the Antarctic. This359

suggests that the sea ice might be transported away from the continent too quickly, resulting360

in a dipole pattern at first and, due to faster melting, a more uniform negative bias later.361

The forecast calibration effectively reduces these systematic errors in both hemispheres362

(Fig. 9), which confirms that most of the trend-adjusted differences are robust between363

the periods used to determine the calibration (2003-2010) and for the evaluation (2011-364

2019). After calibration, the average forecast sea-ice concentration however still exceeds the365

observed values by up to about 0.2. A slight underestimation of the sea-ice concentration is366

still found in the central Arctic in September. The average errors of sea-ice concentration367

forecasts in the Antarctic are also strongly reduced, although with a slightly more prominent368

growth with lead time. Positive bias of the calibrated forecasts in March is found in the369
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Figure 7. Evolution of the forecast ensemble spread (standard deviation) for ocean and sea-ice

variables. Different colors mark the forecasts with different initial times as in Figure 2. All variables

are averaged globally, which explains the small numerical values for the sea-ice variables. Note that

only the zonal component is shown for the sea-ice velocity.

Ross Sea and north of the Weddell Sea, and a negative bias is present in the interior Weddell370

Sea.371

Climate models generally have difficulties in simulating Antarctic sea ice (Shu et al.,372

2020; Rackow et al., 2022) due to the complex ocean-atmosphere-ice interactions in the373

Southern Ocean. In particular, the well-documented sea-surface temperature bias in the374

Southern Ocean observed nearly in all the climate models deteriorates the sea-ice simulation375

in the models. This also holds for AWI-CM3, where these discrepancies lead to an non-376

uniform error distribution along the ice edge in September that persists also after calibration.377

5.2.3 Calibrated forecast skill378

The RMSE of the calibrated daily sea-ice concentration forecast against the OSI SAF379

observations for the Arctic and the Antarctic, arranged in groups corresponding to different380

lead-time ranges, is shown in Figure 10. As a reference, the OSI SAF climatology forecast381

for each target year is computed simply using the average of the observed values in the382

previous 9 years. For example, to get the climatology forecast in January 2018, we average383

the January observations from 2009 to 2017. The climatology forecast is normally employed384
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Figure 8. Climatological difference of the sea-ice concentration raw forecasts and OSI SAF

satellite observations in the Arctic (first and second row) and Antarctic (third and fourth row) in

March (first and third row) and September (second and fourth row), with two (left column) and

eight (middle column) months lead time, averaged over the period 2011-2019. The right column

shows the corresponding observed climatologies.

as a benchmark to assess when a forecast system completely loses its skill (Goessling et al.,385

2016; Goessling & Jung, 2018; Zampieri et al., 2018). The comparison suggests that in the386

Arctic, AWI-CPS forecasts averaged over lead times of 0-2 months (L0-2 in the figure, less387

than 90 days) have an RMSE of 0.167, thus beating the climatology forecast with a RMSE388

of 0.172 only slightly. Indeed, the time series reveals that the RMSE is substantially lower389

than the climatological error only during approximately the first half of each first season,390

implying that most of the L0-2 skill derives only from the first weeks. AWI-CPS forecasts391

with longer lead time tend to be worse than the climatology forecast, despite the forecast392

calibration. In the Antarctic, AWI-CPS forecast skill averaged over L0-2 does not exceed393

the skill of the climatology forecast (RMSE = 0.221 > 0.208). Here, the stronger biases394

result in errors at longer lead times exceeding the climatological error by an even larger395

margin.396
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Figure 9. Same as Fig. 8, but after calibration and without the observed climatologies.

The annual cycle of the SPS for the ice-edge location of the OSI SAF climatology fore-397

cast is shown in the upper panel of Figure 11. The SPS exhibits strong seasonal variability.398

The lowest SPS is observed in late summer (March) in the Antarctic, corresponding to the399

shortest ice-edge length. In the Arctic, the lowest SPS is found in late autumn and win-400

ter (November, December, January), again corresponding to the time of the year with the401

shortest ice edge (Goessling & Jung, 2018; Zampieri et al., 2019). The SPS in the Antarctic402

is up to twice as large as that in the Arctic, largely due to the longer ice edge. In the403

following we therefore always compare the SPS of the forecast system to the corresponding404

climatological error.405

The SPS for the different initial months, averaged over the evaluation period (Fig. 11),406

is largely consistent with the results obtained for the RMSE of the sea-ice concentration. The407

AWI-CPS forecasts outperform the climatological forecast during the first month (labeled L0408

above) but perform worse than climatology from the third month (labeled L2 above) onward;409

whether or not the forecast outperforms climatology during the second month depends on410

the hemisphere and the time of the year.411
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Figure 10. RMSE of the sea-ice concentration (0∼1.0) forecasts with respect to the observations

in the Arctic (top) and the Antarctic (bottom). L0-2, L3-5, L6-8, and L9-11 represent forecasts

with lead time of 0-2 months, 3-5 months, 6-8 months, and 9-11 months, respectively. Note that,

for example, forecasts in January, February, and March on line L0-2 are all initialized on January

1st and thus have lead months of 0, 1, and 2. The lead time for the very first month of each

forecast is labelled “0 months”. Stronger shading in the background indicates longer lead time.

The OSI SAF climatology forecast, derived from the preceding 9 years for each year individually, is

shown in black. The mean RMSEs of each time series, grouped by lead time, are annotated in the

corresponding color and located vertically at their value, to the left and right of the time series.

The forecasts tend to perform better in the Arctic, where in particular those initialized412

in April remain skillful also during the second month. It appears that Arctic sea-ice condi-413

tions in May are generally better forecast compared to other months in our system, as the414

SPS difference from climatology exhibits a temporal local minimum in May, independent415

of lead time. This minimum is very pronounced in the Arctic forecasts initialized in Jan-416

uary; in this case the skill gain in May can be attributed partly to a phenomenon termed417

re-emergence of skill that occurs when the marginal ice zone returns to the same regions418

where it was at the time of initialization over the course of the seasonal cycle (Blanchard-419

Wrigglesworth et al., 2011; Goessling et al., 2016; Blanchard-Wrigglesworth et al., 2017).420

Re-emergence of skill is even more prominent in November for the Arctic forecasts initialized421

in July. Finally, the Arctic forecasts initialized in April, although maintaining skill longest422

initially, exhibit a peculiarity around the following September, when the Arctic sea-ice min-423

imum occurs: Here they perform even worse than those forecasts initialized already three424

months earlier, in January. This is likely related to the seasonal cycle of model biases.425

In the Antarctic, the ice-edge forecasts initialized around the sea-ice minimum, in Jan-426

uary and April, exhibit reasonable skill during the first month (labeled L0 above) and neutral427

skill relative to climatology during the second month (labeled L1 above). In contrast, the428

forecasts initialized around the sea-ice maximum, in July and October, are only marginally429

skillful already during the first month and worse than climatology during the second. The430

negative skill relative to climatology is generally most severe around December, which can431
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Figure 11. Monthly Spatial Probability Score (SPS) of sea-ice forecasts averaged over 2011-

2019, relative to OSI SAF observations. The seasonal cycle of the absolute SPS of the OSI SAF

climatology forecasts is shown in the upper panel. SPS differences between AWI-CPS forecasts and

the OSI SAF climatology forecasts are shown in the middle and bottom panels.

be partly explained by the corresponding seasonal cycle of the ice-edge length (see above).432

Here we again observe a case where the forecasts initialized earlier, in July, perform less bad433

than those initialized later, in October, again presumably due to the seasonality of model434

biases.435

The low forecast skill beyond two months lead time, remaining even after calibration,436

exposes plainly a gap in forecast skill compared to the potential predictability found in437

perfect-model studies (Tietsche et al., 2014; Day et al., 2016; Goessling et al., 2016). This438

is however not specific to our forecast system, but has also been reported for current op-439

erational subseasonal-to-seasonal forecast systems (Zampieri et al., 2018, 2019). In the440

following we thus consider forecast skill during the first three months more closely, at daily441

resolution, for both the raw and the calibrated forecasts, and relative not only to climatology442

but also to a benchmark based on persistence of the observed initial state.443

Averaged over all initial times across seasons and measured by the SPS for the ice-444

edge location, the raw forecasts outperform climatology only for about 12 days (Fig. 12).445

The calibrated forecasts beat climatology out to 45 days; however, beyond two weeks the446

advantage relative to climatology is marginal. At short lead times up to about 6 days, the447

calibration in fact deteriorates the forecast skill. What is more, for up to about 8 days, both448

the raw and calibrated forecasts are outperformed by persistence of the observed initial449

state. The superiority of the initial-state persistence may be partly due to the fact that450
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OSI SAF observations are essentially evaluated against the same data set, albeit at different451

times, but still this implies that the period where the (calibrated) forecasts are better than452

any of the two benchmarks by more than a small margin is limited to a short time window453

between about 8 and 14 days.454

In the Antarctic, the raw forecasts outperform the climatological benchmark for about455

19 days and thus slightly longer than in the Arctic. In contrast, the calibration delays the456

lead time at which the climatological SPS is surpassed only by about one week. Moreover,457

the deterioration brought about by the calibration at short lead times is even more severe458

than in the Arctic, so that the calibration becomes on average beneficial only after about459

14 days, just a few days before the calibrated forecast error surpasses the climatological460

error. On the other hand, the raw forecasts outperform the initial-state persistence already461

after 4 days, implying that the period of forecast skill beyond both benchmarks is broader in462

the Antarctic compared to the Arctic. Consistent with the monthly results based on RMSE463

and SPS discussed above, the Antarctic calibrated forecasts however develop even a large464

skill gap relative to climatology at long lead times beyond 1-2 months.465

As has become apparent already from the monthly analysis, the ice-edge forecast skill466

is initial-date dependent (Fig. 13). The raw forecasts outperform the climatology forecast467

for a longer lead time when initialized in April and October in the Arctic; the same holds468

in January and April in the Antarctic. This seasonal contrast is partly transferred also469

to the calibrated forecasts. For both hemispheres, the calibrated forecasts initialized in470

April show the longest lead time during which they outperform climatology –more than471

45 days – although still only marginally beyond about two weeks. Moreover, there are472

considerable seasonal variations of the effect of the calibration, in particular in the Arctic at473

short lead times. In January and July the calibration barely deteriorates the Arctic ice-edge474

forecast skill at all, but significantly improves the skill already after 1–3 days. In July this475

results in an extended time window during which the calibrated forecasts outperform the476

two benchmarks, whereas this is not the case for the January forecasts which exhibit too477

large errors already at initial time.478

Figure 12. Daily Spatial Probability Score (SPS) of AWI-CPS forecasts as a function of lead

time. The errors of forecasts with the same lead time (see Table 2) have been averaged over

the period 2011–2019 and all initial seasons. The shading area indicates their standard errors

(approximate 67% confidence intervals) over that period. The OSI SAF climatology forecast (OSI

SAF CLIM, black) and the persistence forecast (PER), which keeps the observed state on the

initial day, serve as benchmarks. AWI-CPS forecasts are evaluated before (AWI-CPS RAW) and

after (AWI-CPS CALI) calibration with the TAQM method.
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Figure 13. Same as Figure 12 but separately for the different initial seasons.

6 Summary and Discussion479

A new version of the AWI Coupled Prediction System based on the AWI Climate480

Model (AWI-CM3.0) with ocean and sea-ice data assimilation has been developed. The481

main upgrades compared to the old version are: 1. the atmosphere model has been replaced482

by OpenIFS, with finer spectral resolution, and the ocean model now uses the finite-volume483

method; 2. the speed-up of both the ocean and the atmosphere model enables us to have an484

ensemble size more than two times larger than before while using less computing resources; 3.485

the online data assimilation now includes essentially all relevant large-scale observations for486

the ocean and sea ice. Moreover, we now use more sophisticated post-processing, namely: 4.487

sea-ice calibration by Trend-Adjusted Quantile Mapping (TAQM) is now applied to account488

for systematic errors for long-term prediction.489

The assimilation results are evaluated by the metric of RMSE. We observe strong error490

reductions and well constrained ensemble spread after data assimilation. The seasonal cycle491

of mean surface temperature increments points to model discrepancies related to surface492

flux errors, in particular in summer. The assimilation of temperature and salinity profiles493

tends to improve the ocean state even in deep levels where no observations are assimilated.494
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However, complex processes within the ocean, atmosphere and sea-ice system in the Arctic495

Ocean and Southern Ocean may introduce spurious covariances. Here, further relaxation of496

the Gaussian error distribution assumption or a smaller localization radius are options that497

should be explored.498

Forecast experiments over the period 2003–2019, of which we use the first eight years499

to derive the calibration parameters, show an overestimation of sea-ice concentration in the500

marginal ice zone in the Arctic in both March and September. The errors in the Antarctic501

are spatially less uniform, possibly due to different processes involved over different parts of502

the Southern Ocean. Calibrated sea-ice concentration and ice-edge forecasts in AWI-CPS503

outperform a climatological benchmark for about 45 days in the Arctic and about 30 days504

in the Antarctic, albeit with seasonal variations. The sea-ice forecast calibration performs505

better in the Arctic than in the Antarctic, which is possibly related to the different basin506

geometries, specifically the semi-closed basin in the Arctic. Our evaluation reveals that507

the calibration considerably deteriorates the forecasts at short lead times, implying that508

the raw forecast without calibration should be trusted over the calibrated one during the509

first week after initialization in the Arctic, and during the first two weeks in the Antarctic.510

This unwanted side effect is possibly related to the rather short time period used to derive511

the calibration parameters. It also calls for an advanced application of the calibration that512

gradually takes effect in a more seamless way.513

In our forecast system the atmosphere is still evolving without any constraint, except514

for the influence of the constrained ocean and sea-ice surface states. Efforts are currently on-515

going to explore how sea-ice forecasts and climate forecasts more generally can be improved516

by also constraining the atmosphere directly. While improvements at short, weather-related517

lead times are to be expected rather obviously, it is not clear to what extent such improve-518

ment can also sustain for longer times where model biases become the dominant matter519

of concern. Another aspect coming into play when the atmosphere is simultaneously con-520

strained is how this affects the oceanic data assimilation, specifically the spread of the521

model background. Replacing the currently largely random atmospheric weather states in522

the different ensemble members by more coherent states might necessitate to re-introduce a523

forgetting factor to prevent the ocean model spread from collapsing. At the same time, the524

more realistic atmospheric states are expected to help drive ocean and sea-ice anomalies,525

reducing the corrections to be introduced by the data assimilation. These aspects should526

be explored in future studies.527

The skill of the raw forecasts from our system is largely comparable to that from528

operational subseasonal-to-seasonal (S2S) forecast systems, even though the atmosphere529

models in these S2S systems are generally initialized by atmospheric data assimilation.530

This strongly indicates that constraining the atmosphere alone will not be sufficient to531

achieve major forecast performance gains at longer lead times. Rather, the correction of532

systematic errors will be critical, in general and in our forecast system specifically. The533

climate model used in our system, AWI-CM3, is a rather new combination of its model534

components and is still undergoing major tuning and even more fundamental developments535

at the moment. The co-development of our forecast system– the AWI Coupled Prediction536

System– is a major opportunity to help inform the development of the underlying climate537

model and, vice versa, to benefit from these developments.538
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