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Abstract

Extreme precipitation events, including those associated with weather fronts, have wide-ranging impacts across the world.

Machine learning-based detection algorithms can help with the automated classification of the synoptic-scale weather features

that produce extreme precipitation events, such as fronts. Here we use a deep learning algorithm to identify weather fronts

in high resolution Community Earth System Model (CESM) simulations over North America, and validate the results using

observational and reanalysis products. We further compare results between CESM simulations using present-day and future

climate forcing, to study how fronts and extreme precipitation might change with climate change. We find that detected front

frequencies in CESM have seasonally varying spatial patterns and responses to climate change, and are found to be associated

with modeled changes in large scale circulation such as the jet stream. We also associate the detected fronts with extreme

precipitation, and find that extreme precipitation associated with fronts mostly decreases with climate change, with some

seasonal and regional differences. These changes appear to be largely driven by changes in the frequency of fronts, especially

in Northern Hemisphere winter, demonstrating that extreme precipitation has seasonally varying sources and mechanisms that

will continue to evolve with climate change.
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Abstract16

Extreme precipitation events, including those associated with weather fronts, have wide-17

ranging impacts across the world. Here we use a deep learning algorithm to identify weather18

fronts in high resolution Community Earth System Model (CESM) simulations over the19

contiguous United States (CONUS), and evaluate the results using observational and re-20

analysis products. We further compare results between CESM simulations using present-21

day and future climate forcing, to study how these features might change with climate22

change. We find that detected front frequencies in CESM have seasonally varying spa-23

tial patterns and responses to climate change and are found to be associated with mod-24

eled changes in large scale circulation such as the jet stream. We also associate the de-25

tected fronts with precipitation and find that total and extreme frontal precipitation mostly26

decreases with climate change, with some seasonal and regional differences. Decreases27

in Northern Hemisphere summer frontal precipitation are largely driven by changes in28

the frequency of different front types, especially cold and stationary fronts. On the other29

hand, Northern Hemisphere winter exhibits some regional increases in frontal precipi-30

tation that are largely driven by changes in frontal precipitation intensity. While CONUS31

mean and extreme precipitation generally increase during all seasons in these climate change32

simulations, the likelihood of frontal extreme precipitation decreases, demonstrating that33

extreme precipitation has seasonally varying sources and mechanisms that will continue34

to evolve with climate change.35

Plain Language Summary36

Extreme precipitation can have devastating impacts on communities and ecosys-37

tems around the world. One source of extreme precipitation is weather fronts, or the bound-38

aries between different types of air masses which can also give rise to high winds, rain,39

and thunderstorms. Machine learning can be used to automatically detect weather fronts40

in observations and model simulations. In this work, we use a machine learning algorithm41

to detect weather fronts in a climate model, and compare present day fronts with those42

detected in simulations with future climate change. We also compare detected fronts with43

total and extreme precipitation, to better understand sources of extreme precipitation44

and how they are changing with climate change.45

1 Introduction46

Extreme precipitation has significant consequences and impacts on communities47

and ecosystems and is expected to increase in intensity with climate change (Allen & In-48

gram, 2002; Tebaldi et al., 2006). Extreme precipitation also originates from many dif-49

ferent sources and it is important to understand these sources, their associated mech-50

anisms, and how they might change in a warming climate (Barlow et al., 2019). Weather51

fronts are synoptic-scale features defined as the interface between two air masses of dif-52

ferent density and/or thermal characteristics (American Meteorological Society Glossary53

of Meteorology: Front , n.d.), and have been linked with other precipitation-generating54

features like extratropical cyclones (Kunkel & Champion, 2019). In the midlatitudes, ex-55

treme precipitation is often associated with weather fronts, with recent work finding 50-56

70% of extreme precipitation events over North America linked to fronts (Catto & Pfahl,57

2013; Kunkel et al., 2012). Cold fronts have been shown to produce a significant amount58

of rainfall and particularly intense rainfall in areas of southern Australia (Pepler et al.,59

2020) and South Africa (Burls et al., 2019). Schemm et al. (2017) found an increase in60

the frequency of extremely strong fronts over Europe due to increases in atmospheric hu-61

midity, using historical reanalysis data. Blázquez and Solman (2019) found a similar re-62

sult using climate model simulations, where Southern Hemisphere frontal precipitation63

largely increased with climate change due to increases in specific humidity. Hénin et al.64

(2019) found the opposite response in the Gulf Stream region, where frontal precipita-65
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tion decreased due to changes in cold fronts. These studies point to a need for analyz-66

ing regional and seasonal changes in fronts of different types as an important component67

to understanding how total and extreme precipitation, and their associated impacts, might68

change in the future.69

Previous work has developed objective methods to identify atmospheric fronts in70

weather and climate data by calculating the gradient of various surface fields and exam-71

ining where the gradient is changing quickly in space and time. For example, Kunkel et72

al. (2012) used temperature gradients, wind shifts, local minima in the pressure fields,73

and changes in the dewpoint temperatures to identify fronts in weather station data. Hewson74

(1998) proposed using wet-bulb potential temperature to diagnose fronts, and this method75

was utilized in Berry, Reeder, and Jakob (2011) to identify fronts in the European Cen-76

tre for Medium range Weather forecasts (ECMWF) ERA-40 reanalysis, and by Catto77

et al. (2012) in a similar approach with ERA-Interim. These studies further examined78

front speed to distinguish between different types of fronts. Simmonds et al. (2012) found79

the meridional component of wind to be the best field for identifying and tracking ex-80

tratropical fronts in the Southern Hemisphere. Schemm et al. (2015) compared both temperature-81

and wind-based methods for detecting fronts and found that the thermal method was82

better suited to identify fronts in strong baroclinic settings such as low pressure systems83

in Northern midlatitudes. However, for areas outside the midlatitudes, the wind-based84

method was preferred to identify fronts, such as for cases associated with strong wind85

shear. Hope et al. (2014) compared five different automated frontal identification meth-86

ods in reanalysis data over Western Australia, and discussed trade-offs and ideal use cases87

for thermal, wind, and statistical methods such as self-organizing maps and pattern match-88

ing. Parfitt et al. (2017) introduced a front detection method that combined thermal and89

non-thermal variables, which has the advantages of being robust and easy to calculate.90

Bitsa et al. (2021) also combined dynamic and thermodynamic criteria in cold front de-91

tection over the Mediterranean, and found improved performance relative to a wind-only92

scheme. The subjective choices that go into defining an automated front detection method93

were discussed further in Thomas and Schultz (2019b), including advantages of disad-94

vantages of different quantities used in frontal analysis and mathematical functions used95

to define fronts. Thomas and Schultz (2019a) discuss how climatological analyses may96

be additionally impacted by the choice of atmospheric level at which to analyze fronts97

(e.g., surface or 850 hPa) and the particular thresholds used to define a front.98

Machine learning and deep learning have provided an additional approach for au-99

tomated front detection, further increasing the efficiency beyond hand-labeled efforts and100

allowing for the use of multiple fields in the detection process (Biard & Kunkel, 2019).101

Wong et al. (2008) used pattern recognition via a genetic algorithm and achieved high102

precision and efficiency in identifying weather systems, including fronts, with a variety103

of meteorological fields. Lagerquist et al. (2019) leveraged a deep learning approach via104

a convolutional neural network (CNN) to detect warm and cold fronts, and found that105

the CNN outperformed a human-labeled analysis on the basis of probability of detec-106

tion and success ratio metrics. Biard and Kunkel (2019) also developed a CNN-based107

deep learning algorithm (DL-FRONT) for identifying weather fronts, and in validation108

testing the CNN correctly predicted the “front / no front” labels for 90% of 1◦ grid cells109

over North America. Front crossing rate climatologies calculated using the CNN predic-110

tions agreed well with those calculated using the Coded Surface Bulletin label data, with111

a Pearson’s correlation coefficient better than 0.94 for the grid cells within a rectangu-112

lar region of interest centered over the contiguous United States.113

While several previous studies have applied front detection methods to observa-114

tions and reanalysis data (e.g., Berry, Reeder, & Jakob, 2011; Catto et al., 2012; Soster115

& Parfitt, 2022), few have utilized global high resolution coupled climate models for this116

purpose. Catto et al. (2013) identified fronts in the Australian Community Climate and117

Earth System Simulator (ACCESS) atmosphere model, though the simulations were not118
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coupled and run at a lower horizontal resolution of 150 km. Catto et al. (2014) expanded119

this analysis to the Coupled Model Intercomparison Project, version 5 (CMIP5) mod-120

els for current and future climate conditions and found consistent results with the sin-121

gle atmosphere-only model of Catto et al. (2013). The horizontal resolution of these mod-122

els varied, though none of the models had a resolution finer than 0.75◦. Catto, Jakob,123

and Nicholls (2015) further evaluated winter frontal precipitation in the same models and124

found good representation of front frequencies with some biases in total frontal precip-125

itation, relating to compensating errors in the models. Leung et al. (2022) applied the126

method of Catto, Jakob, and Nicholls (2015) to the Coupled Model Intercomparison Project127

Phase 6 (CMIP6) models with a typical horizontal resolution of 1◦ and found a similar128

compensation of bias terms from the frequency and intensity of frontal precipitation. Blázquez129

and Solman (2019) focused on changes in wintertime frontal precipitation in the South-130

ern Hemisphere in a selection of CMIP5 models with atmospheric resolution no finer than131

1.4◦, and found humidity-driven increases in fronts over most of the region. Regionally132

varying changes in precipitation were largely consistent with changes in fronts over mid133

and high latitudes, confirming the results of Utsumi et al. (2016) which showed that pre-134

cipitation from extratropical cyclones including fronts increased poleward of storm tracks135

in future projections with a similar set of CMIP5 models.136

In this paper, we use the deep learning-based detection algorithm from Biard and137

Kunkel (2019) to identify weather fronts over the contiguous United States in high res-138

olution (0.25◦) Community Earth System Model (CESM) simulations. We evaluate the139

CESM results by comparing seasonal front frequencies with detected fronts in observa-140

tional and reanalysis products. We then compare detected fronts in different modeled141

climates to study the impact of climate change on weather fronts. Here we build on pre-142

vious literature analyzing observed historical trends in fronts by leveraging automated143

front detection and climate model simulations to understand the longer term projected144

climate changes (e.g., late 21st century). We further associate the detected fronts with145

total and extreme precipitation, studying responses across seasons and front types, to146

understand how climate change impacts the intersection of synoptic-scale features with147

extreme events.148

2 Data and Methods149

2.1 DL-FRONT Detection Algorithm150

The DL-FRONT algorithm from Biard and Kunkel (2019) is based on a CNN ar-151

chitecture, and developed using supervised learning where labeled fronts were used to152

train the CNN based on a set of meteorological fields as inputs. As a class of deep learn-153

ing models (Krizhevsky et al., 2012; LeCun et al., 2015), CNNs have demonstrated suc-154

cess in detection of weather and climate features (e.g., Liu et al., 2016; Lagerquist et al.,155

2019; Molina et al., 2021). Increases in computational power to train deep learning mod-156

els such as CNNs, combined with techniques to combat overfitting and improve stabil-157

ity, have increased the usage of CNNs for climate and meteorological applications. The158

deep and flexible architectures of CNNs allow them to learn broad features from data159

via visual pattern recognition. Compared to traditional gradient-based approaches for160

identifying fronts which use rules imposed by humans, CNNs aim to replicate how hu-161

mans visually identify fronts by automatically learning from data. CNNs utilize multi-162

ple layers to transform the input into abstract representations of the original data, which163

is often spatially gridded. DL-FRONT uses five different types of layers: convolutional164

layers, rectified linear unit (ReLU) layers, dropout layers, zero-padding layers, and a soft-165

max layer. These different layer types have specific purposes designed to process and learn166

features from the data. Convolutional layers use spatial filters to convolve the input data167

grid to produce an output data grid, consisting of feature maps. The ReLU and softmax168

layers are activation layers which apply nonlinear functions to the feature maps in or-169

der to learn nonlinear relationships. Dropout layers randomly zero out a fraction of the170
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feature maps to prevent overfitting the data during training. Zero-padding layers counter171

the spatial shrinking from convolutional layers by padding the output data grid with ad-172

ditional zero-valued rows and columns. DL-FRONT was trained by optimizing network173

weights and biases to minimize the difference, as measured by a loss function, between174

the labeled fronts and the network-predicted fronts based on meteorological input data.175

The meteorological fields used as inputs to train DL-FRONT were 3-hourly instantaneous176

2-meter air temperature, 2-meter specific humidity, air pressure reduced to mean sea level,177

the 10-meter east-west (u) component of wind velocity, and the 10-meter north-south178

(v) component of wind velocity. All input fields were taken from the Modern-Era Ret-179

rospective Analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al.,180

2017). Input fields were sampled at 1◦ resolution over a specific North American domain181

(10-77◦N, 171-31◦W) for the years 2003-2015. The output labels were taken from the182

National Weather Service (NWS) Coded Surface Bulletin (CSB) dataset (National Weather183

Service, 2019; Biard, 2019). This dataset includes front types and locations identified184

by NWS meteorologists from 2003-2015. 87.42% of cells were labeled as “not front” and185

12.58% of cells were labeled as “front” by the thickened CSB polygons, pointing to some186

asymmetry in this set of labels. Of those 12.58% labeled as “front”, 56.12% were pre-187

dicted as front by DL-FRONT and 43.88% were not. We refer the reader to Biard and188

Kunkel (2019) for more specific details on the DL-FRONT CNN architecture and train-189

ing process.190

2.2 Model Simulations191

We utilize high resolution CESM version 1.3 (CESM1.3) (Meehl et al., 2019) sim-192

ulations of present-day and future climate change to detect fronts and associated total193

and extreme precipitation. Higher resolution CESM offers more realistic simulated weather194

and climate, including a better representation of orography and storms, which is impor-195

tant for the representation of extreme precipitation in the model (Wehner et al., 2014).196

CESM1.3 includes the CAM5 atmospheric model (Park et al., 2014) with a spectral el-197

ement dynamical core (Dennis et al., 2012) and a horizontal resolution of 0.25◦ with 30198

vertical levels in the atmosphere. The other model components include the Community199

Ice Code Version 4 for sea ice (CICE4) (Hunke & Lipscomb, 2008), the Parallel Ocean200

Program Version 2 for the ocean (POP2) with a horizontal resolution of 1◦ and higher201

resolution in the equatorial tropics (Smith et al., 2010; Danabasoglu et al., 2012), and202

the Community Land Model Version 4 for the land (CLM4) (Lawrence et al., 2011) with203

the River Transport Model Version 1.204

To match the years used to train DL-FRONT, we sample a CESM1.3 historical cli-205

mate simulation from 2000-2005 that is forced by time varying natural and anthropogenic206

forcings (Meehl et al., 2019). To extend the years in our historical sample, we also use207

a CESM1.3 simulation with Representative Concentration Pathway 2.6 (RCP2.6) forc-208

ing from 2006-2015. The RCP2.6 simulation serves as the continuation of the historical209

CESM1.3 simulation, with a relatively low increase of anthropogenic forcing during the210

21st century (van Vuuren et al., 2011), though the forcing and corresponding climate re-211

sponse across all the RCP scenarios is very similar during this time period early in the212

century (Meehl et al., 2013). We further sample the years 2086-2100 from a simulation213

with Representative Concentration Pathway 8.5 (RCP8.5) with the same CESM1.3 con-214

figuration, to investigate the response of climate change at the end of the 21st century215

in a simulation with a high forcing level (Riahi et al., 2011).216

We post-process the CESM simulation output to prepare it for input to DL-FRONT217

using the following steps: (i) we resample the higher horizontal resolution of CESM from218

0.25◦ to 1◦ to match the resolution of DL-FRONT using bilinear interpolation, (ii) we219

subset the spatial area to match the North American domain of Biard and Kunkel (2019),220

and (iii) prepare yearly input files for each variable. We strive to match the input vari-221

ables as closely as possible to Biard and Kunkel (2019) given the simulation output avail-222

–5–



manuscript submitted to JGR: Atmospheres

ability and the need for high-temporal resolution fields. The following CESM output fields223

are available at 3-hourly instantaneous resolution: surface temperature (TS), sea level224

pressure (PSL), lowest model level zonal wind (UBOT), and lowest model level merid-225

ional wind (VBOT). With the exception of PSL, these are not the same exact fields used226

in the training of DL-FRONT but they are very close substitutions. 2-meter specific hu-227

midity was not available at 3-hourly instantaneous resolution for the CESM historical228

or RCP8.5 simulations, but full field 3D specific humidity (Q) was available at 3-hourly229

average resolution. Thus, we use the lowest model level specific humidity (QBOT) as a230

replacement for 2-meter specific humidity. For the RCP2.6 simulation, humidity was not231

available at 3-hourly temporal resolution, so here we use 6-hourly total vertically inte-232

grated precipitable water (TMQ) interpolated to 3-hourly resolution. We also calculate233

and update the scales and offset values needed for DL-FRONT specifically for each anal-234

ysis period and dataset (i.e., unique scales and offset values were used for the input vari-235

ables from CESM historical, CESM RCP2.6, CESM RCP8.5, and MERRA-2 data).236

2.3 Associating Total and Extreme Precipitation with Fronts237

To investigate the association between total and extreme precipitation with detected238

fronts in the model, we analyze the precipitation output from the same CESM simula-239

tions that are used to detect fronts. Since precipitation was not an input field used to240

detect fronts, we can treat these metrics as somewhat independent (though precipita-241

tion will be influenced by other fields used to detect fronts, such as humidity and pres-242

sure). We utilize the 3-hourly average precipitation rate (PRECT) from the CESM sim-243

ulations to compute total and extreme precipitation. Total precipitation is calculated244

on a seasonal basis for each gridpoint over the contiguous United States (CONUS; 26-245

50◦N, 125-68◦W) by summing over time. We then calculate the total precipitation as-246

sociated with a front by summing over time the precipitation where there is also a de-247

tected front in the same gridpoint at the same time. Here we consider only gridpoints248

labeled as front by DL-FRONT, rather than an expanded area of influence (e.g., Catto249

& Pfahl, 2013). The fraction of total precipitation associated with a front is computed250

by dividing total frontal precipitation by total precipitation, with separate calculations251

for each season and front type. Changes are calculated comparing 15-year climatologies252

of the CESM historical simulation (2000-2014) with the CESM RCP8.5 simulation (2086-253

2100). We further decompose the changes in total frontal precipitation into frequency254

and intensity terms, following similar approaches in Utsumi et al. (2016) and Pepler et255

al. (2021). The change in total precipitation associated with a front ∆PF can be rep-256

resented by the sum of three terms: the change due to frequency change, the change due257

to intensity change, and a covariation term (Equation 1). The frequency term is the prod-258

uct of the change in front frequency ∆nF and the mean precipitation intensity per as-259

sociated front in the historical climate IF , the intensity term is the product of the front260

frequency in the historical climate nF and the change in mean precipitation intensity per261

associated front ∆IF , and the covariation term is the product of the changes ∆nF and262

∆IF . The covariation term is small compared to the other two terms, thus we only in-263

clude the frequency and intensity terms in our analysis.264

∆PF = ∆nF IF + nF ∆IF + ∆nF ∆IF (1)

We calculate extreme precipitation based on the 90th percentile precipitation over265

land from the CESM historical simulation. While numerous definitions exist for extreme266

precipitation (Alexander et al., 2019; Schär et al., 2016), we choose the 90th percentile267

to include sufficiently intense precipitation events that provide adequate samples that268

could potentially be excluded using a more stringent index. More specifically, we calcu-269

late 90th percentile precipitation independently for each gridpoint and individually for270

each season, and use this location-based threshold to select where precipitation exceeds271

the 90th percentile value for that location and season. As we are interested in evaluat-272

ing changes in fronts and extreme precipitation relative to present day climate, we use273
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the same baseline period from the CESM historical simulation (2000-2014) to define ex-274

treme precipitation in both the historical and RCP8.5 simulations, following the approaches275

used in similar studies (e.g., Tebaldi et al., 2006; Sillmann, Kharin, Zwiers, et al., 2013;276

Utsumi et al., 2016). We calculate frontal extreme precipitation by selecting the extreme277

precipitation points that also include a detected front in the same gridpoint at the same278

time. As with the total frontal precipitation, we consider only gridpoints labeled as front279

by DL-FRONT. We use the probability ratio (PR) metric (Fischer & Knutti, 2015) to280

summarize frontal extreme precipitation as a ratio of the frequencies of occurrence (Equa-281

tion 2). More specifically, this metric compares the conditional probability of frontal ex-282

treme precipitation (NP |F/NF ) to the climatological probability of extreme precipita-283

tion (NP /N), where N is the number of time steps, NP is the number of time steps with284

extreme precipitation, NF is the number of time steps with fronts, and NP |F is the num-285

ber of extreme precipitation time steps associated with fronts. In other words, the PR286

is the factor by which the probability of frontal extreme precipitation is more likely to287

occur, with separate calculations for each season within the CESM historical and RCP8.5288

simulations.289

PR =
NP |F/NF

NP /N
(2)

3 Model Evaluation290

To evaluate the detected fronts in CESM, we apply the trained DL-FRONT model291

to post-processed CESM historical simulation output (2000-2015). The output of DL-292

FRONT produces spatial grids that represent the likelihood of the presence of a front,293

separated into 5 different categories: cold (which marks the leading edge of an advanc-294

ing colder air mass), warm (which marks the leading edge of a warmer air mass advanc-295

ing partly due to colder air retreating), stationary (which marks a boundary between cold296

and warm air masses that have stopped moving), occluded (which is generally where a297

cold air mass overtakes a slower moving warm air mass), and none. We further use post-298

processing tools developed by Biard and Kunkel (2019) to produce “one-hot” encoded299

versions of the front probabilities and polylines outlining front boundary locations. These300

files are then used to calculate monthly, seasonal, and annual front crossing rates (the301

frequency of fronts passing over a particular location) as well as monthly and seasonal302

front crossing rate climatologies and anomalies (Biard & Kunkel, 2019). Seasonal clima-303

tologies are calculated over four 3-month periods: December-January-February (DJF),304

March-April-May (MAM), June-July-August (JJA), and September-October-November305

(SON). The resulting CESM seasonal front crossing rate climatologies are delineated by306

front type and averaged over CONUS, as shown in Figure S1. Comparing panels a) and307

b) of Figure S1, we see that the transition to RCP2.6 forcing in year 2006 does not ap-308

pear to have a significant effect on the CESM front crossing rate climatology. In addi-309

tion, using TMQ instead of QBOT from the RCP2.6 simulation (due to data availabil-310

ity constraints) does not appear to significantly change the resulting climatology. There311

is a slight decrease in front crossing rates evident in JJA, but is within the standard de-312

viation across years. The overall climatology for the CESM historical simulations (2000-313

2015) is shown in panel c) of Figure S1. Cold and stationary fronts are more frequent314

than warm and occluded fronts across all seasons.315

We compare the CESM historical results to the CSB data in Figure 1. In general,316

there is good agreement between CSB and CESM for all fronts across seasons. When317

breaking this comparison down by front type (Figure S2), a seasonal bias of fewer fronts318

in CESM relative to CSB does become evident in warm and occluded fronts, though those319

are generally less frequent. In general, cold and stationary fronts are more frequent (Fig-320

ure S1) and better simulated (Figure S2). The spatial maps of the front crossing rate321

climatologies for CSB and CESM are shown in panels a) and c) of Figure 2. The spa-322

tial patterns show similar agreement, with the seasonal locations of the maximum front323

crossing rates in the western and central US generally agreeing across CESM and CSB.324
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Figure 1. Seasonal CONUS averaged front crossing rate climatologies (fronts/week) for

all front types. Coded Surface Bulletin (CSB) dataset (2003-2015) in blue diagonal hatching,

MERRA-2 reanalysis dataset (2000-2015) in green horizontal hatching, CESM historical simu-

lation (2000-2015) in orange cross hatching, and CESM RCP8.5 simulation (2086-2100) in pink

dotted hatching. Error bars show plus or minus the standard deviation across years for each

dataset.

There is a slight underestimation of overall front crossing rates in CESM, which is also325

reflected in the spatially averaged bar plot (Figure 1), though this is within the spatial326

mean standard deviation.327

We further compare the CESM historical results to detected fronts in the MERRA-328

2 reanalysis data. Here we use MERRA-2 fields specifically chosen to better match the329

variables from CESM that we are using to detect fronts. Specifically, we use lowest at-330

mospheric layer specific humidity (instead of 2-meter specific humidity), lowest atmo-331

spheric layer zonal wind (instead of 10-meter zonal wind), and lowest atmospheric layer332

meridional wind (instead of 10-meter meridional wind) from MERRA-2 to match the CESM333

variables. We also use surface temperature (instead of 2-meter air temperature) from MERRA-334

2 to match the CESM variable. Here we are comparing two machine learning-based cli-335

matologies (as opposed to CSB which uses hand labeled fronts). However, this is a fea-336

sible approach to further evaluate the CESM results, which would otherwise require hand337

labeling fronts in model output and is subject to human interpretation biases. We post-338

process the raw MERRA-2 fields similarly to how the CESM output is processed, and339

run the processed fields through DL-FRONT for 2000-2015. The resulting MERRA-2340

seasonal CONUS front crossing rate climatologies are shown in Figure 1. In general, there341

is good agreement between MERRA-2 and CESM for all fronts across seasons. There342

is again a seasonal bias of fewer fronts in CESM relative to MERRA-2 for warm and oc-343

cluded fronts that becomes evident when breaking down by front type (Figure S2), as344

well as a more pronounced positive bias in CESM stationary fronts (but within error).345

The corresponding spatial maps comparing MERRA-2 and CESM historical front cross-346

ing rate climatologies are shown in panels b) and c) of Figure 2. The spatial patterns347

are roughly similar, with the maxima located in the central U.S. There are some seasonal348
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Figure 2. Seasonal front crossing rate climatologies (fronts/week) for all front types. a)

Coded Surface Bulletin (CSB) dataset (2003-2015). b) MERRA-2 reanalysis dataset (2000-2015).

c) CESM historical simulation (2000-2015).

differences between CESM and MERRA-2 as evident in Figure 1, though they are also349

within the spatial mean standard deviation.350

To better evaluate different front types across datasets, we also calculate the an-351

nual mean front rates for each front type across CSB, MERRA-2, and CESM historical352

data (Figure S3). In general, CESM captures the magnitude of the annual mean front353

crossing rates for cold and stationary fronts relative to CSB and MERRA-2. The spa-354

tial pattern of more stationary fronts just east of the Rocky Mountains is consistent across355

datasets. However there is a positive bias of more warm and occluded fronts in CSB and356

MERRA-2 relative to CESM (also reflected in the spatial mean in Figure S2), in par-357

ticular looking at the spatial pattern of warm fronts across the upper Midwest. The spa-358

tial pattern of cold fronts in CESM is also shifted somewhat to the northeast, relative359

to CSB and MERRA-2.360

4 Results361

4.1 Front Frequency Response to Climate Change362

We next apply the CESM front detection to a future climate simulation using RCP8.5363

forcing. The resulting CONUS mean seasonal front crossing rate climatologies are shown364

in Figure 1 for all fronts and in Figure S2 by front type. There is a slight decrease in CESM365

detected front rates with RCP8.5 relative to historical for all fronts across all seasons,366

which is most evident in JJA, but no significant changes in the spatial average. Look-367

ing across front types, the decreases are coming mostly from cold fronts with smaller changes368

in other fronts. However, the spatial maps for each simulation period along with the spa-369
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Figure 3. Seasonal front crossing rate climatologies (fronts/week) for all front types. a)

CESM output for the historical simulation (2000-2014). b) CESM output for the RCP8.5 sim-

ulation (2086-2100). c) The spatial difference for each season. Hatched regions indicate changes

greater than the standard deviation from the historical simulation at that gridpoint.

tial differences show notable regional changes in Figure 3. Here we calculate the CESM370

historical climatology from 2000 to 2014 to match the number of simulation years avail-371

able from the RCP8.5 simulation (2086-2100). The difference plots indicate a westward372

shift in DJF and MAM front rates, and a northward shift in JJA and SON. Figures S4-373

7 show the spatial maps broken down by front type, where we again see that cold (Fig-374

ure S4) and stationary (Figure S6) fronts are the most frequent across the CONUS, with375

smaller contributions from warm and occluded fronts. The difference plots indicate that376

changes in stationary fronts drive most of the overall seasonal shifts, though cold and377

warm fronts also contribute to localized changes in all seasons. In particular, there are378

regional decreases in cold fronts during all seasons, and significant decreases in many ar-379

eas during JJA and SON. These seasonal decreases in summer and autumn indicate a380

potential poleward shift in cold front locations, which could have important downstream381

impacts.382

Seasonal changes in front frequencies could be connected to large-scale circulation383

changes, including changes in the jet stream or extratropical cyclone tracks (e.g., Burls384

et al., 2019). To provide further insights into upper level atmospheric circulation that385

can affect extratropical cyclone development and tracks, along with associated fronts,386

we plot changes in seasonal upper level (300mb) zonal wind, 300mb geopotential height387

anomalies, and sea level pressure (SLP) for the CESM RCP8.5 simulation minus the his-388

torical simulation in Figure 4. We compare the seasonal patterns in changes in upper389

level height (Figure 4b) and seasonal changes in sea level pressure (Figure 4c) with changes390

in front crossing rates (Figure 3c). The westward shift in all front types during DJF and391

MAM is also evident in the shifts in upper level wind patterns, with decreases in the east-392
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Figure 4. Seasonal mean changes in a) 300mb zonal wind speed (m/s), b) 300mb geopotential

height (m, global mean difference removed from each gridpoint), and c) sea level pressure (hPa).

Differences are shown with black line contours (solid for positive values and dashed for negative

values) and filled contours (shading, as indicated with colorbars). All panels show the CESM

RCP8.5 simulation (2068-2100) minus the CESM historical simulation (2000-2014).

ern U.S and increases in the western U.S., especially in DJF (Figure 4a). Similar increases393

in stationary fronts in DJF and MAM (Figure S6) are associated with an anomalous trough394

over the western U.S. in those seasons (Figure 4b). This anomalous trough in DJF, in-395

dicating increased storm activity, is also associated with an increase in cold fronts in the396

western U.S. (Figure S4). The anomalous trough weakens and shifts a bit south in MAM,397

and is associated with increased SLP anomalies over southern California and other parts398

of the western U.S. associated with changes in cold and stationary fronts there. The north-399

ward shift in all fronts in JJA and SON from Figure 3c is mirrored by broad decreases400

in upper level zonal wind across CONUS with increases over Canada (Figure 4a). The401

upper level circulation anomalies in JJA and SON indicate a broad area of positive 300mb402

height anomalies (Figure 4b) and anomalously high SLP in the western U.S. (Figure 4c)403

which would indicate more stagnant circulation and stalled fronts that would produce404

increases of stationary fronts (Figure S6) and decreases of cold fronts (Figure S4). By405

SON, the area of positive 300mb height anomalies covers almost all of North America,406

and is associated with a consequent increase of stationary fronts over most of the U.S.407

and a corresponding decrease of cold fronts.408

4.2 Changes in Total Frontal Precipitation409

Seasonal spatial plots of the CESM fraction of total precipitation associated with410

a front are shown in Figure 5 for the CONUS domain. In the eastern U.S., fronts are a411
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Figure 5. Fraction of total precipitation (%) associated with a front by season. a) CESM his-

torical simulation (2000-2014). b) CESM RCP8.5 simulation (2086-2100). c) The spatial differ-

ence between CESM RCP8.5 and historical for each season. Hatched regions indicate statistical

significance at the 95% confidence level using a two-tailed 1,000-member bootstrap resampling

test.

large source of precipitation (40-60%) across seasons. In the western U.S., the frontal412

precipitation fractions are lower than in the eastern U.S., especially in JJA. The spatial413

patterns are similar between the historical simulation (Figure 5a) and the RCP8.5 sim-414

ulation (Figure 5b), however the difference plots (Figure 5c) do show some significant415

seasonal changes. There are large areas of decrease (10-20%) in all seasons, particularly416

in the southeastern U.S. There are also a few regions of significant increases, for exam-417

ple the western U.S. in DJF and the central U.S. in SON.418

We also calculate the fractions of total frontal precipitation separately for each front419

type (Figures S8-11). As noted in the discussion above, the patterns of changes in cold420

(Figure S4) and stationary (Figure S6) fronts are the primary drivers of the patterns of421

changes in all fronts (Figure 3). Similarly, cold (Figure S8) and stationary (Figure S10)422

fronts have higher frontal precipitation fractions relative to warm (Figure S9) and oc-423

cluded (Figure S11) fronts. Cold front precipitation is concentrated in the eastern U.S.424

and off the East and West Coasts in all seasons, with smaller percentages in JJA. Pre-425

cipitation associated with stationary fronts shows the opposite spatial pattern to cold426

fronts with higher percentages in JJA in the Eastern U.S., and also a specific region of427

high percentages in DJF over the Rocky Mountains. Warm and occluded front precip-428

itation fractions are higher in DJF and MAM than in other seasons, and concentrated429

along coastlines. Looking at changes between the historical and RCP8.5 simulations, cold430

and stationary front precipitation fractions show more areas of significant changes than431

warm and occluded fronts. There are significant decreases in JJA in the southeastern432

U.S. for both cold and stationary front precipitation fractions. There are also significant433
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increases in MAM in southern California for cold front precipitation fractions, and sig-434

nificant increases in SON in the central U.S. for stationary front precipitation fractions.435

Warm front precipitation fractions do show some significant increases off the coast of south-436

ern California in DJF, and the same area shows significant decreases in occluded front437

precipitation fractions in MAM.438

The changes in total frontal precipitation due to changes in frequency and inten-439

sity (as specified by Equation 1) are shown in Figure 6 for each season. The frequency440

term (Figure 6a) is an important component of the total change (Figure 6c) for all sea-441

sons, while the intensity term (Figure 6b) contributes for specific regions and seasons.442

For example, intensity increases in the eastern U.S. in DJF cancel out decreases in fre-443

quency there and lead to total increases in frontal precipitation. However in the west-444

ern U.S. in DJF the frequency term is more important to total increases in frontal pre-445

cipitation there, driven by changes in cold and stationary fronts as discussed above (Fig-446

ures S4 and S6). While overall there is a decrease in cold fronts over the western U.S.447

in MAM and an increase in SLP there (Figure 4c), the southern California coast shows448

the potential to have more precipitation associated with cold fronts (Figure S8). This449

is also reflected in the intensity increases in this region. So while cold fronts decrease in450

frequency in MAM in the western U.S., and increased SLP suggests fewer incoming storms,451

when they do arrive, they are likely more intense and could bring more moisture into the452

coast. Stationary fronts may be stalling out due to anomalously high SLP in MAM and453

JJA in the western U.S., which could help explain regions like the northern U.S. that454

see coincident decreases in cold fronts and increases in stationary fronts in JJA, lead-455

ing to a mixed response in the total frontal precipitation changes there. Frequency de-456

creases off the East Coast in JJA, driven by decreases in cold and stationary fronts, are457

particularly important for total changes in frontal precipitation. Intensity decreases in458

the eastern U.S. in SON are important for explaining the total decreases there, and could459

be related to changes in cold fronts and cold front precipitation there. We test the sen-460

sitivity of these results to removing days with total precipitation less than 1 mm, and461

find that while this filtering does increase the magnitude of these changes it does not sig-462

nificantly alter the results in terms of seasonality or spatial patterns (Figure S12).463

To summarize changes in precipitation frequency and intensity terms across front464

types, we compute the spatial average for each term over CONUS, separately for each465

season and front type (Figure 7). In general, cold fronts have a negative contribution from466

changes in frequency which is balanced by a positive contribution from changes in in-467

tensity in all seasons except JJA. Occluded fronts also have a negative contribution from468

changes in frequency in all seasons except DJF, though the magnitudes of the contribu-469

tions are smaller than cold fronts. Warm fronts have positive contributions from changes470

in intensity across all seasons, and a positive contribution from changes in frequency for471

DJF only (other seasons show small negative contributions in frequency). Stationary fronts472

have positive contributions in frequency in all seasons except JJA, and negative contri-473

butions in intensity in all seasons except DJF. While using the CONUS spatial mean helps474

facilitate a comparison of these changes across front types and seasons, it is worth not-475

ing that small changes in the spatial means of frequency and intensity contributions may476

be due to spatially varying responses with different signs getting averaged out.477

4.3 Changes in Frontal Extreme Precipitation478

Seasonal spatial plots of the CESM probability ratios (PR) of frontal extreme pre-479

cipitation (as specified by Equation 2) are shown in Figure 8 for the CONUS domain.480

These plots are reminiscent of total frontal precipitation fractions in Figure 5 where in481

the eastern U.S. extreme precipitation is more likely to be associated with a front (PR >482

1) across seasons. Probability ratios tend to decrease in the central and western U.S.,483

especially in JJA, but increase again towards the West Coast in other seasons. The spa-484

tial patterns are similar across the CESM historical (Figure 8a) and RCP8.5 (Figure 8b)485
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Figure 6. Decomposition of changes in frontal precipitation (mm/day) for all fronts by sea-

son. a) Frequency term: changes due to changes in front frequency. b) Intensity term: changes

due to changes in frontal precipitation intensity. c) Total changes. Changes are calculated for the

CESM RCP8.5 simulation (2068-2100) minus the CESM historical simulation (2000-2014).
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Figure 7. Seasonal CONUS averaged decomposition of changes in frontal precipitation

(mm/day) for cold fronts in blue diagonal hatching, warm fronts in red horizontal hatching,

stationary fronts in grey cross hatching, and occluded fronts in purple dotted hatching. The fre-

quency term is shown in darker colors and the intensity term is shown in lighter colors. Changes

are calculated for the CESM RCP8.5 simulation (2068-2100) minus the CESM historical simula-

tion (2000-2014).
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Figure 8. Probability ratios comparing the conditional probability of frontal extreme pre-

cipitation (greater than 90th percentile) over land to the climatological probability of extreme

precipitation. a) CESM historical simulation (2000-2014). b) CESM RCP8.5 simulation (2086-

2100).

simulations, with an expansion of the regions less likely to have frontal extreme precip-486

itation (PR < 1) in all seasons under RCP8.5.487

Since definitions of extreme precipitation can vary (Alexander et al., 2019; Schär488

et al., 2016), we test the sensitivity of the above analysis to the definition of extreme pre-489

cipitation. We calculate extreme precipitation based on 95th and 99th percentiles, re-490

peat the analysis of probability ratios, and find that the conclusions are not overly sen-491

sitive to the definition of extreme precipitation. Looking spatially, the 95th percentile492

results are consistent with the 90th percentile results, both in terms of areas that see lower493

or higher probability ratios, as well as areas that see an expansion of PR < 1 in the494

RCP8.5 simulation relative to the historical simulation (Figure S13). The 99th percentile495

results are also broadly consistent, though much noisier, likely due to the more extreme496

definition resulting in a smaller sample size (Figure S14). As with the total frontal pre-497

cipitation analysis, we test the sensitivity of these results to removing days with total498
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precipitation less than 1 mm before calculating the extreme precipitation, and find that499

this filtering does not significantly alter the results (not shown).500

For reference, we summarize CESM changes in mean and extreme precipitation for501

the RCP8.5 simulation relative to the historical simulation in Figure 9. The season spa-502

tial patterns of changes in mean (Figure 9a) and extreme (Figure 9b) precipitation are503

similar in terms of sign, though not always in terms of relative magnitude (Allen & In-504

gram, 2002). Extreme precipitation is expected to increase almost everywhere over the505

U.S. in a warmer climate (e.g., Tebaldi et al., 2006; Sillmann, Kharin, Zwiers, et al., 2013;506

Akinsanola, Kooperman, Reed, et al., 2020), and this is also observed in these CESM507

RCP8.5 simulations. However, in certain seasons and regions, the changes in frontal-associated508

precipitation (Figures 5c and 6c) are often tied to changes in the fronts themselves (Fig-509

ures 3c and 6a), and may not be reflected in total increases in extreme precipitation. For510

example, in DJF the changes in front frequency show an east-west dipole with increases511

in the west and decreases in the east that is not present in the changes in mean and ex-512

treme precipitation. The interplay between extreme precipitation from fronts and from513

other other sources is indicated by decreases in fronts and the fraction of total frontal514

precipitation in the upper Midwest and Northeast in DJF while there are overall signif-515

icant increases of extreme precipitation in those regions. While some of this can be ex-516

plained by changes in intensity (Figure 6b), processes other than fronts, such as extra-517

tropical cyclones, could also be producing the increased extreme precipitation in those518

regions during DJF. Changes in frontal precipitation and mean and extreme precipita-519

tion show similar overall patterns in MAM with decreases in the upper Midwest and the520

northwestern U.S., and increases in New England. As in DJF, areas where there are de-521

creases in frontal precipitation and the likelihood of frontal extreme precipitation (Fig-522

ure 8) and increases in total extreme precipitation (e.g., the Gulf Coast) indicate regions523

where processes other than fronts are producing increases in extreme precipitation. In524

MAM, likely candidates include mesoscale convective systems or extratropical cyclones.525

In JJA, there are decreases in front frequencies and frontal precipitation in the central526

and southeastern U.S. There is also a notable decrease in the likelihood of frontal extreme527

precipitation across most of the U.S. However, there is an overall increase in mean and528

extreme precipitation across these regions. In this season, such precipitation extremes529

are likely to be produced by organized convective systems, particularly in the central U.S.530

where the significant increases in total extreme precipitation likely have contributions531

from stronger convection in the North American Monsoon. Increases in mean and ex-532

treme precipitation along the Gulf Coast and southeastern U.S. in JJA could be asso-533

ciated with tropical cyclones. In SON, there is again an east-west dipole in changes in534

front frequencies and total frontal precipitation but shifted somewhat southeastward from535

the DJF response, with increases in the Great Plains and decreases in the southeastern536

U.S. There is also a decrease in the likelihood of frontal extreme precipitation in the south-537

eastern U.S. in SON. The increases in the Great Plains would act to contribute to the538

total increases of mean and extreme precipitation there, while the decreases in the south-539

eastern U.S. indicate that other processes in that region, likely associated with organized540

convective storms or tropical cyclones, are probably the main drivers of increased extreme541

precipitation there.542

5 Discussion and Conclusions543

In this paper we apply a deep learning algorithm (DL-FRONT) to study how sea-544

sonal changes in fronts influence total and extreme precipitation in global high resolu-545

tion coupled climate model simulations with the Community Earth System Model (CESM).546

We show success in applying DL-FRONT to CESM output over CONUS, despite the al-547

gorithm being trained on observational and reanalysis data (Biard & Kunkel, 2019). These548

results provide evidence that CNNs can be applied to data products that differ from those549

used for training, and are thus transferable and robust for feature detection applications.550
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Figure 9. Seasonal mean changes in a) mean precipitation rate (mm/day) and b) total ex-

treme precipitation (greater than 90th percentile) over land (%). Both panels show the CESM

RCP8.5 simulation (2086-2100) minus the CESM historical simulation (2000-2014). Hatched re-

gions indicate statistical significance at the 95% confidence level using a two-tailed 1,000-member

bootstrap resampling test.
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Furthermore, we utilize similar observational and reanalysis products to evaluate the CESM551

results. While it is difficult to find labeled front data, we are able to leverage an exist-552

ing NWS dataset over North America, the Coded Surface Bulletin (CSB), as well as MERRA-553

2 reanalysis fields run through the front detector. Both the CSB and MERRA-2 seasonal554

front crossing rate climatologies compare well with the results from CESM (Figures 1,555

2, and S2) and annual mean front crossing rates by front type exhibit similar spatial pat-556

terns across datasets (Figure S3). In the future, transfer learning through adjustments557

to the DL-FRONT architecture and feature importance tests to understand which vari-558

ables contribute the most predictive skill could allow for applications outside the train-559

ing dataset of North America. The use of other data products like high resolution ERA5560

reanalysis fields could provide further insight into the evaluation of automated front de-561

tection on climate data, especially as frontal identification has been shown to vary with562

spatial resolution across reanalysis datasets (Soster & Parfitt, 2022) and the various fac-563

tors that contribute to defining fronts (Thomas & Schultz, 2019b).564

A number of previous studies have investigated fronts and precipitation in climate565

models. Using the ACCESS atmosphere model, Catto et al. (2013) evaluated frontal pre-566

cipitation and found that front frequency and precipitation were well captured in the model,567

relative to ERA-Interim reanalysis. They also highlighted some regional differences be-568

tween ACCESS and ERA-Interim, including fewer modeled fronts over the western U.S.,569

which is similar to what we find comparing CSB and MERRA-2 front climatologies with570

CESM detected fronts (Figures 2 and S3). This result was confirmed by Catto et al. (2014)571

looking across CMIP5 models, where they also saw a poleward bias in the location of572

the Northern Hemisphere front frequency maximum. Catto et al. (2013) connected these573

regional differences in the Northern Hemisphere to poleward shifts in the modeled storm574

track and stronger pressure gradients in the model, relative to observations. This mech-575

anism is likely also responsible for what we see in CESM relative to the MERRA-2 re-576

analysis, where the seasonal sea level pressure in the North Atlantic and North Pacific577

is higher in the model than in reanalysis, especially in JJA (Figure S15).578

We find the highest front frequencies in CESM over the central U.S., or just east579

of the Rocky Mountains (Figure 3a, b). This result is consistent with annual mean front580

frequencies from Berry, Jakob, and Reeder (2011) where they looked across four differ-581

ent reanalysis products, and linked areas with high front frequencies to persistent baro-582

clinic zones produced by changes in terrain. Schemm et al. (2015) also saw a peak in DJF583

front frequency east of the Rocky Mountains in ERA-Interim reanalysis, though it was584

more pronounced using a wind-based detection method relative to a temperature-based585

method, demonstrating an important sensitivity to variables used in front detection. Lagerquist586

et al. (2020) calculated front frequencies using a machine learning method applied to ERA5587

reanalysis, and also showed that North American winter cold fronts have the highest fre-588

quency downwind of the Rockies and are related to cyclonic activity. They found a lo-589

cal maximum of winter warm fronts over the Great Lakes region, and summer warm fronts590

over the northern Plains. Thomas and Schultz (2019a) found a relative minimum in sum-591

mertime fronts over southern North America, looking at ERA-Interim reanalysis. We592

see similar features in Figures S4-5 looking at CESM seasonal cold and warm front rate593

climatologies.594

Our results comparing CESM front frequencies across historical and future climate595

change simulations show seasonally and spatially varying patterns and responses to cli-596

mate change, with some decreases evident in all seasons (Figure 3c). This is similar to597

what other studies have found regarding historical trends in North American fronts. For598

example, Berry, Jakob, and Reeder (2011) found a 10-20% decrease in front frequency599

in the North Atlantic storm track from 1989-2009 using four independent reanalysis prod-600

ucts. They related these trends to a poleward shift of the Northern Hemisphere storm601

track. Rudeva and Simmonds (2015) also found a northward shift of frontal activity in602

the Northern Hemisphere, looking at ERA-Interim reanalysis from 1979-2013, and linked603
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these changes to modes of variability such as the North Atlantic Oscillation (NAO) and604

El Niño-Southern Oscillation (ENSO). Significant positive correlations between fronts605

and the NAO were found in Northern Hemisphere winter (DJF) over North America,606

with decreases in DJF front frequency across the eastern U.S. associated with ENSO (Rudeva607

& Simmonds, 2015). We also find significant decreases in DJF front frequency across most608

of the central and eastern U.S. with climate change (Figure 3c). Lagerquist et al. (2020)609

analyzed historical trends in front frequencies from 1979-2018 and found consistent re-610

sults with previous analyses, including poleward shifts in winter and spring frontal ac-611

tivity. They also found a decrease in summer and increase in winter cold front lengths,612

possibly driven by a lack of cold air reaching the southeastern U.S. and more cold air613

reaching the western U.S., respectively, as well as a strong connection to ENSO phase614

and intensity (Lagerquist et al., 2020). These regional changes in front length are con-615

sistent with the seasonal changes in all front crossing rates in Figure 3c and more specif-616

ically cold and stationary front crossing rates in Figures S4 and S6, with decreases in JJA617

over the southeastern U.S. and increases in DJF over the western U.S. Connecting changes618

in fronts and other synoptic features to changes in modes of variability will be the fo-619

cus of future work.620

While there are consistencies between our results and previous studies looking at621

historical trends in fronts, recent historical trends are not the same as the projected cli-622

mate change signal from an RCP8.5 simulation at the end of the century. Catto et al.623

(2014) analyzed changes in front frequencies under RCP8.5 in CMIP5 simulations and624

found annual mean decreases over most of CONUS with small increases in the north-625

eastern U.S., largely consistent with what we see across seasons. Barnes and Screen (2015)626

looked at the impact of future warming on the midlatitude jet stream, and found a pole-627

ward shift of the North Atlantic jet in all seasons except winter, looking across 21 CMIP5628

models under RCP8.5 at the end of the century. Osman et al. (2021) used paleoclimate629

data to assess the role of natural variability in projections of North Atlantic jet stream630

position and intensity, and found further evidence of a northward migration of the jet631

during the 21st century. These results are consistent with the northward shift in front632

frequencies (Figure 3c), decreases in upper level zonal wind (Figure 4a), and positive 300mb633

height anomalies across the northern CONUS (Figure 4b) that we see in JJA and SON634

for CESM under RCP8.5. If the jet stream is trending north due to a warmer climate,635

extratropical cyclones may also stay farther north. This signal could result in both de-636

creases in cold fronts (Figure S4) and increases in stationary fronts (Figure S6) over more637

southern latitudes, as cold air masses could stall due to being farther away from the ex-638

tratropical cyclone support at those more southern latitudes. The responses in winter639

and spring could be related to the seasonality of the North Pacific storm track and its640

influence over the western U.S. (Breeden et al., 2021; Newman & Sardeshmukh, 1998;641

Hoskins & Hodges, 2019), which would help explain the westward shift in maximum front642

frequencies (Figure 3c), particularly in cold and stationary fronts, and shifts in corre-643

sponding circulation patterns (Figure 4) we see in DJF and MAM. With regard to changes644

in specific front types with climate change, we note that Biard and Kunkel (2019) showed645

DL-FRONT had some difficulty distinguishing between cold and stationary fronts, adding646

some uncertainty in the projections of each front type. Assessing the sensitivity of a deep647

learning model like DL-FRONT to climate change conditions, while out of scope for this648

current study, is an important consideration for future work (Molina et al., 2021).649

We find that modeled frontal precipitation has a broader spatial pattern over CONUS650

in the winter than in the summer (Figure 5a, b). This result is consistent with studies651

relating total precipitation to fronts, where a maximum is observed in Northern Hemi-652

sphere winter that reduces to a minimum in summer (Catto et al., 2012; Hénin et al.,653

2019). This seasonality is related to shifts in the midlatitude storm track, as discussed654

above. Our results also show that modeled frontal precipitation is more common in the655

central and eastern U.S. in all seasons, and this is especially driven by cold (Figure S8)656

and stationary (Figure S10) frontal precipitation. Catto and Pfahl (2013) also found that657
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cold fronts were responsible for a larger proportion of precipitation events, relative to658

warm and quasi-stationary fronts. Hénin et al. (2019) found that warm fronts were im-659

portant for precipitation over the Great Lakes region, consistent with the local maximum660

in warm front precipitation we see in this region in Figure S9. Using probability ratios,661

we find that frontal extreme precipitation is more likely over the eastern U.S. in all sea-662

sons, and also more likely over the West Coast in all seasons except JJA (Figure 8). Catto663

and Pfahl (2013) found a similar spatial pattern looking at ERA-Interim extreme pre-664

cipitation, where greater than 70% of extreme precipitation events in the eastern U.S.665

were associated with fronts (noting that they defined extreme precipitation as greater666

than the 99th percentile). They also found higher percentages in DJF compared to JJA,667

consistent with the seasonality of fronts and frontal extreme precipitation. Using weather668

station data, Kunkel et al. (2012) found that fronts accounted for 54% of U.S. extreme669

precipitation events in the last 100 years, with locally higher percentages across the cen-670

tral U.S., comparable to what we see in our analysis.671

Our results show that the fraction of total precipitation associated with fronts over672

CONUS mostly decreases with climate change, though there are some localized increases673

in certain seasons (Figure 5c). These decreases are driven mostly by cold (Figure S8) and674

stationary (Figure S10) fronts, similar to what Hénin et al. (2019) found in the North675

Atlantic region where cold fronts were more important than warm fronts in explaining676

trends in frontal precipitation. Despite the decreases in frontal precipitation fractions,677

we also find general increases in mean and extreme precipitation over most of the U.S.678

under the RCP8.5 simulation (Figure 9). When analyzing the decomposition of frontal679

precipitation changes, we find total increases in DJF driven mostly by changes in inten-680

sity, total decreases in JJA driven mostly by changes in frequency, and mixed responses681

in other seasons (Figures 6, 7). Utsumi et al. (2016) saw simultaneous decreases in the682

annual mean frequency of front precipitation and increases in front precipitation inten-683

sity across all of CONUS in CMIP5 simulations, though they also included extratrop-684

ical cyclones in their analysis. Burls et al. (2019) looked at Southern Hemisphere win-685

ter fronts and rain days in ERA-Interim from 1979-2017, and found a decrease in rain686

days associated with fronts despite no significant changes in front days. They related these687

changes to a poleward shift in the subtropical high as well as an increase in intensity of688

post-frontal high pressure. Pepler et al. (2021) investigated changes in Australian rain-689

fall over the past several decades and also found that the amount of frontal precipita-690

tion has decreased while there is little change in number of fronts. This result is driven691

by a simultaneous decrease in rainfall-producing fronts and increase in dry fronts. While692

we see significant changes in both front frequencies and precipitation associated with fronts,693

it is possible that these historical trends in the Southern Hemisphere related to midlat-694

itude circulation, such as the Hadley Cell expansion (Burls et al., 2019; Amaya et al.,695

2018), could be influencing the changes we see in modeled North American frontal to-696

tal and extreme precipitation. Furthermore, we see decreases in the likelihood of frontal697

extreme precipitation across seasons and especially in JJA (Figure 8). While extreme698

precipitation is increasing in the model with climate change, frontal precipitation is largely699

decreasing and frontal extreme precipitation is becoming less likely. These changes are700

related to the seasonal shifts in front frequency, and in particular changes in cold and701

stationary fronts. This result also points to the importance of other sources of extreme702

precipitation over the U.S. (Huang et al., 2018), and the difficulty of disentangling to-703

tal and extreme precipitation from converging sources (Kunkel et al., 2012; Kunkel &704

Champion, 2019; Blázquez & Solman, 2019). It is also important to note that model pro-705

jections of frontal precipitation may be influenced by compensating errors in frequency706

and intensity, as shown in Catto, Jakob, and Nicholls (2015) evaluating wintertime frontal707

precipitation in CMIP5 models and Leung et al. (2022) with CMIP6 models. However708

Leung et al. (2022) noted that CMIP6 models on average appear to have smaller errors,709

indicating some potential improvement in model biases.710
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This study focuses on fronts only, though fronts are often associated with other synoptic-711

scale features such as extratropical cyclones (ETCs) (Catto & Pfahl, 2013) and warm712

conveyor belts (WCBs) (Catto, Madonna, et al., 2015). Schemm et al. (2018) charac-713

terized two types of frontal-associated ETCs based on whether there is an associated front714

1) at cyclogenesis, or 2) acquired during its lifecycle. ETCs initially associated with a715

front are most common in the Northern Hemisphere storm track regions, including the716

eastern U.S., whereas late-front cyclones have a higher occurrence downwind of the Rocky717

Mountains, though some of these regional details depend on the method used to detect718

fronts (Schemm et al., 2018). Catto and Pfahl (2013) found that many extreme precip-719

itation events located in storm track regions are associated with both an ETC and a front,720

and even the “front-only” events can be linked to a cyclone at some point along their721

length. Catto, Madonna, et al. (2015) combined front identification with WCBs and found722

that the majority of midlatitude extreme precipitation events are linked to cold or warm723

fronts, and most of those fronts have associated WCBs. Dowdy and Catto (2017) inves-724

tigated a “triple storm type” made up of a cyclone, front, and thunderstorm, and found725

that this event type is associated with the highest risk of extreme precipitation, related726

to environmental conditions like convective available potential energy. In the Northern727

midlatitudes in particular, extreme precipitation is caused most often by some combi-728

nation of cyclones, fronts, and thunderstorms despite a “front-only” event type being the729

most frequent at these latitudes (Dowdy & Catto, 2017). It is likely that other event types,730

especially ETCs and mesoscale convective systems, are contributing to the extreme pre-731

cipitation we see in the model as well as how mean and extreme precipitation are chang-732

ing with climate change (Figure 9). The use of machine learning and climate models to733

capture multiple synoptic-scale features in the context of extreme precipitation will be734

the focus of future study.735

The ability of the climate model to simulate total and extreme precipitation in both736

present day and future climates is important to consider. Previous studies using CMIP5737

and CMIP6 models found that the multi-model mean better captured extreme precip-738

itation than individual models, relative to present day observational datasets, likely due739

to compensating errors (Sillmann, Kharin, Zhang, et al., 2013; Akinsanola, Kooperman,740

Pendergrass, et al., 2020; Srivastava et al., 2020). Looking across CMIP6, Akinsanola,741

Kooperman, Pendergrass, et al. (2020) and Srivastava et al. (2020) found that several742

individual models, including CESM2, exhibited a summertime dry bias over the east-743

ern U.S. and a wintertime wet bias over the western U.S., which they linked to biases744

in orographic and convective processes. Leung et al. (2022) found that CMIP6 models745

were able to well represent the spatial patterns of daily precipitation and duration of dry746

spells, implying these models would also be able to capture precipitation extremes. Con-747

tinued model improvements in resolution (Wehner et al., 2014; Bador et al., 2020), cal-748

ibration (Yang et al., 2012) and process representation such as convective precipitation749

(Harding et al., 2013) and atmospheric circulation (Shepherd, 2014; Priestley & Catto,750

2022) may help address these biases and aid in the assessment of extreme precipitation751

associated with fronts.752

When examining projected changes in extremes across CMIP5 models, Sillmann,753

Kharin, Zwiers, et al. (2013) found that extreme precipitation generally increases in most754

regions including North America. Looking specifically at projected changes in U.S. ex-755

treme precipitation across CMIP6 models, Akinsanola, Kooperman, Reed, et al. (2020)756

found consistent increases in heavy and very heavy winter precipitation days, with less757

agreement in summer. Robust increases in winter aligns with what we see in the changes758

in CESM extreme precipitation (defined as greater than 90th percentile) over the U.S.759

(Figure 9b). While we see significant increases across the U.S. in all seasons, some sea-760

sonal variations begin to emerge in MAM and JJA, highlighting the importance of an-761

alyzing seasonal (rather than annual mean) responses. Furthermore, the changes in ex-762

treme precipitation in a model can be sensitive to the definition of extreme precipita-763

tion (Barlow et al., 2019; Pendergrass, 2018; Zhang et al., 2011). Here we define extreme764
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precipitation as any precipitation greater than the 90th percentile, and investigate changes765

over space and time. The seasonal spatial patterns of the likelihood of frontal extreme766

precipitation are generally consistent when using more extreme metrics to define extreme767

precipitation (Figures S13-S14), though some regions (e.g., the West Coast) show an in-768

crease in likelihood when using a more extreme threshold, consistent with previous work769

(Utsumi et al., 2016). Future work could consider how adding a temporal or spatial buffer770

to the definition of extreme precipitation or fronts (rather than matching exact gridpoints771

in space and time) impacts the resulting frontal precipitation (Catto & Pfahl, 2013).772

In summary, our results demonstrate how machine learning-enabled automated de-773

tection of synoptic weather features, specifically fronts, can enable greater understand-774

ing of seasonal and regional precipitation sources and mechanisms. Leveraging the power775

of automated front detection, we discuss the mechanisms related to the seasonality of776

different front types and projected changes due to climate change. We find seasonal dif-777

ferences in total frontal precipitation changes across CONUS driven by the relative im-778

portance of changes in frontal precipitation frequency and intensity. By investigating mod-779

eled changes in total and extreme frontal precipitation, we advance the understanding780

of extreme precipitation events, their intersection with frontal systems of different types,781

and how those associations are changing with climate change.782

6 Open Research783

The Coded Surface Bulletin (CSB) dataset is available here: https://zenodo.org/784

record/2642801 (National Weather Service, 2019) in ASCII format, and here: https://785

doi.org/10.5281/zenodo.2651361 (Biard, 2019) in netCDF format. The MERRA-2786

datasets used in this study can be downloaded via the NASA Goddard Earth Sciences787

(GES) Data and Information Services Center (DISC) here: https://disc.gsfc.nasa788

.gov/. All CESM simulation output used in the analysis is available through the NCAR789

Geoscience Data Exchange (GDEX) and published under the following DOI: https://790

doi.org/10.5065/q6t7-ta06 (Dagon et al., 2022). Software being actively developed791

for this study is available through GitHub: https://github.com/katiedagon/ML-extremes.792

Acknowledgments793

This material is based upon work supported by the U.S. Department of Energy (DOE),794

Office of Science, Office of Biological & Environmental Research (BER), Regional and795

Global Model Analysis (RGMA) component of the Earth and Environmental System Mod-796

eling Program under Award Number DE-SC0022070 and National Science Foundation797

(NSF) IA 1947282. This work was also supported by the National Center for Atmospheric798

Research (NCAR), which is a major facility sponsored by the NSF under Cooperative799

Agreement No. 1852977 and by NOAA through the Cooperative Institute for Satellite800

Earth System Studies under Cooperative Agreement NA19NES4320002. The CESM project801

is supported primarily by the National Science Foundation (NSF). Computing and data802

storage resources were provided by the Computational and Information Systems Lab-803

oratory (CISL) at NCAR. An award of computer time was provided by the Innovative804

and Novel Computational Impact on Theory and Experiment (INCITE) program. This805

research used resources of the Argonne Leadership Computing Facility, which is a DOE806

Office of Science User Facility supported under Contract DE-AC02-06CH11357. This re-807

search is also part of the Blue Waters sustained-petascale computing project, which is808

supported by the NSF (Awards OCI-0725070 and ACI-1238993) and the state of Illinois.809

Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its810

National Center for Supercomputing Applications. This work is also part of the “High811

Resolution Earth System Modeling Using Blue Waters Capabilities” PRAC allocation812

support by the National Science Foundation (Award ACI-1516624). This research used813

resources of the National Energy Research Scientific Computing Center (NERSC), a U.S.814

Department of Energy Office of Science User Facility located at Lawrence Berkeley Na-815

–23–



manuscript submitted to JGR: Atmospheres

tional Laboratory, operated under Contract No. DE-AC02-05CH11231. We thank Melissa816

Breeden for useful conversations that informed this work, and Nan Rosenbloom, Gary817

Strand, and Susan Bates for assistance with managing CESM data.818

References819

Akinsanola, A. A., Kooperman, G. J., Pendergrass, A. G., Hannah, W. M., & Reed,820

K. A. (2020, aug). Seasonal representation of extreme precipitation indices821

over the United States in CMIP6 present-day simulations. Environmental822

Research Letters, 15 (9), 094003. Retrieved from https://doi.org/10.1088/823

1748-9326/ab92c1 doi: 10.1088/1748-9326/ab92c1824

Akinsanola, A. A., Kooperman, G. J., Reed, K. A., Pendergrass, A. G., & Hannah,825

W. M. (2020, oct). Projected changes in seasonal precipitation extremes over826

the United States in CMIP6 simulations. Environmental Research Letters,827

15 (10), 104078. Retrieved from https://doi.org/10.1088/1748-9326/828

abb397 doi: 10.1088/1748-9326/abb397829

Alexander, L. V., Fowler, H. J., Bador, M., Behrangi, A., Donat, M. G., Dunn, R.,830

. . . Venugopal, V. (2019, dec). On the use of indices to study extreme pre-831

cipitation on sub-daily and daily timescales. Environmental Research Letters,832

14 (12), 125008. Retrieved from https://doi.org/10.1088/1748-9326/833

ab51b6 doi: 10.1088/1748-9326/ab51b6834

Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and835

the hydrologic cycle. Nature, 419 (6903), 228–232. Retrieved from https://836

doi.org/10.1038/nature01092 doi: 10.1038/nature01092837

Amaya, D. J., Siler, N., Xie, S.-P., & Miller, A. J. (2018). The interplay of internal838

and forced modes of Hadley Cell expansion: lessons from the global warming839

hiatus. Climate Dynamics, 51 (1), 305–319. Retrieved from https://doi.org/840

10.1007/s00382-017-3921-5 doi: 10.1007/s00382-017-3921-5841

American Meteorological Society Glossary of Meteorology: Front. (n.d.). https://842

glossary.ametsoc.org/wiki/Front. (Last Access: 26 January 2022)843
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Figure S1. Seasonal CONUS averaged front crossing rate climatologies (fronts/week) for cold

fronts in blue diagonal hatching, warm fronts in red horizontal hatching, stationary fronts in grey

cross hatching, and occluded fronts in purple dotted hatching. a) CESM historical simulation,

2000-2005. b) CESM RCP2.6 simulation, 2006-2015. c) CESM combined historical/RCP2.6

climatology, 2000-2015. Error bars show plus or minus the standard deviation across years and

front types for each simulation.
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Figure S2. Seasonal CONUS averaged front crossing rate climatologies (fronts/week) for a)

cold, b) warm, c) stationary, and d) occluded fronts. Coded Surface Bulletin (CSB) dataset (2003-

2015) in blue diagonal hatching, MERRA-2 reanalysis dataset (2000-2015) in green horizontal

hatching, CESM historical simulation (2000-2015) in orange cross hatching, and CESM RCP8.5

simulation (2086-2100) in pink dotted hatching. Error bars show plus or minus the standard

deviation across years and front types for each simulation.
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Figure S3. Annual mean front crossing rates (fronts/week) for four different front types in

each row (cold, stationary, warm, and occluded fronts). a) Coded Surface Bulletin (CSB) dataset

(2003-2015). b) MERRA-2 reanalysis dataset (2000-2015). c) CESM historical simulation (2000-

2015). Note the differences in color scale for cold and stationary fronts (top rows) and warm and

occluded fronts (bottom rows).
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Figure S4. As in Figure 3, for cold fronts. Note the changes in color scale relative to Figure 3.
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Figure S5. As in Figure 3, for warm fronts. Note the changes in color scale relative to Figure

3.
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Figure S6. As in Figure 3, for stationary fronts.
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Figure S7. As in Figure 3, for occluded fronts. Note the changes in color scale relative to

Figure 3.
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Figure S8. As in Figure 5, for cold fronts. Note the changes in color scale relative to Figure 5.
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Figure S9. As in Figure 5, for warm fronts. Note the changes in color scale relative to Figure

5.
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Figure S10. As in Figure 5, for stationary fronts. Note the changes in color scale relative to

Figure 5.
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Figure S11. As in Figure 5, for occluded fronts. Note the changes in color scale relative to

Figure 5.
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Figure S12. As in Figure 6, with the precipitation output filtered for days with precipitation

greater than 1 mm.
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Figure S13. As in Figure 8, for 95th percentile precipitation.
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Figure S14. As in Figure 8, for 99th percentile precipitation.
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Figure S15. Seasonal mean climatology of sea level pressure (hPa) shown as contours (black

lines, solid for positive values and dashed for negative values) and filled contours (shading). a)

MERRA-2 reanalysis, and b) CESM output, both 2000-2015. c) The spatial difference for each

season.
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